红外碳硫分析原理.PPT
- 格式:ppt
- 大小:66.50 KB
- 文档页数:16
红外吸收法碳硫分析仪红外吸收碳硫分析仪根据配置不同的高温炉可以组合包括高频炉-红外吸收碳硫分析仪,电弧炉-红外吸收碳硫分析仪和管式炉-红外吸收碳硫分析仪三种,而以高频炉-红外吸收碳硫分析仪应用最为广泛。
它们的主要区别在于高温炉系统(提取单元)的不同,分别为高频炉,电弧炉和管式炉(电阻炉),其它部分基本相似。
高频炉具有加热快、温度高、操作简单等特点,是目前应用最广泛的髙温炉。
随着电子元件的发展,高频炉输出功率也在不断地提髙,至今用于测定碳硫的高频炉输出功率通常达2kW左右。
红外吸收法分析依据是朗伯-比尔定律,其最大特点是不消耗化学试剂,没有化学反应冗长繁琐的操作,人为因素(误差)小。
虽然一次性投资较高,但分析成本低,对环境无污染,在进行批量分析时,有较好的综合经济效益。
高频红外线分析法具有高效、低耗、干净的特点。
1 仪器工作原理红外碳硫分析是利用CO2、SO2对红外线的选择性吸收这一原理实现的。
红外线是指波长为0.78~1000μm的电磁波,分为三个区域:近红外区为0.78~2.5μm,中红外区为2.5~25μm,远红外区为25~1000μm。
绝大部分的红外仪器工作在中红外区。
红外线的特性接近可见光,所以也称红外光。
它与可见光一样直线传播,遵守光的反射和透射定律,但它又不同于可见光,与可见光相比,它有三个显著特点:第一,在整个电磁波谱中,红外波段的热功率最大;第二,红外线能穿透很厚的气层或云雾而不致产生散射;第三,红外线被物质吸收后,热效应变化显著,且易于控制。
许多物质对红外线都能产生选择性吸收,CO2、SO2是其中之一。
CO2的最大吸收位于4.26μm,SO2的最大吸收位于7.35μm。
CO2、SO2对红外线的吸收同样服从光的吸收定律:朗伯-比耳定律,即:T = I/I01O g I0/I = KC1式中,T为透射比;I0为入射光强度;I为透射光强度;K为吸收系数;C为CO2或SO2浓度;1为气体光径长度。
电弧红外碳硫仪的原理及特点碳硫仪是如何工作的电弧红外碳硫仪的工作原理及其特点:电弧红外碳硫分析仪的基本工作原理是:对工业材料进行取样,为保证充分的氧气供应,将该样品进行充分燃烧,结果将样品中含有的碳元素和硫元素转换成二氧化碳(CO2)和二氧化硫(SO2),然后再借助CO2和SO2吸取特定波长的红外光能量的原理,将CO2和SO2的含量浓度信号转换成电压信号,最后借助于软件分析对得到的电压信号进行分析,得到CO2和SO2的含量,从而对应得到碳元素和硫元素的含量。
电弧红外碳硫仪的紧要特点:1、红外检测及数据处理,计算机自动化掌控2、WINDOWS中文操作系统3、电子天平不定量称样4、螺旋气压式或直压式炉头自动清扫5、双碳池双硫池测定自动切换(依据用户需要配置)6、分析过程动态显示7、抗干扰本领强,分析结果稳定、精准牢靠8、多通道设计,检测范围宽,依据材质、含量不同,可选择不同的分析通道9、分析数据结果可转换为Excel文件格式,可拷贝到任何计算机上查询、处理、打印10、数据采集接受24位高精度转换器,采样精度更高11、燃烧系统与检测系统一体化,结构布局更加合理,维护保养更加便利12、具有远距离数据传输及炉前报数工程碳硫仪常用检测法介绍碳硫仪适用于钢铁及其它材料中碳硫两元素养量分数的测定。
本仪器可接受高速引燃炉、管式燃烧炉燃烧样品,气体容量法测试碳质量分数、碘量法测试硫质量分数。
碳硫仪常用检测法介绍:1、红外吸取法:试样中的碳、硫经过富氧条件下的高温加热,氧化为二氧化碳、二氧化硫气体,气体经处理后进入相应的吸取池,对相应的红外辐射进行吸取,由探测器转发为信号,经计算机处理输出结果。
此法精准、快速、灵敏度高,高处与低处碳硫含量都可使用。
一般红外碳硫分析仪接受此法。
2、电导法:依据电导率的变化来测量分析碳硫含量。
被测样品经高温燃烧后产生的混合气体,经过电导池的吸取后,电阻率(电导的倒数)发生更改,从而测定碳、硫的含量。
红外碳硫仪及其配套燃烧炉工作原理第一节红外碳硫仪1.红外碳硫仪的基本组成部分:本仪器有高频感应燃烧炉、红外检测装置、电脑、电子天平、打印机等组成。
2.红外碳硫仪(配高频燃烧炉)适用于对钢铁、合金、有色金属、水泥、矿石、玻璃、陶瓷等材料的燃烧,能快捷准确的测定材料中的C、S含量,具有测量范围宽,分析结果准确可靠等特点。
该套设备的测量范围C:0.0001%-99.9999%,S:0.0001%-0.3500%(可扩展至99.9%),测量的误差C符合ISO9556标准,S符合ISO4935标准。
3.红外检测原理:CO2、SO2等气体分子在红外线波段具有选择性吸收,当某些特定波长的红外光通过CO2或SO2气体后能产生强烈的光吸收。
当选定一个特定的波长并且确定了分析池长度时,由测量光强能换算出混合气体中被测气体的浓度,本仪器选定的测量波长CO2为4.26µm,SO2为7.41µm。
4.整机的工作原理是将灼烧处理后的坩埚放入电子天平,经过去皮重,放入样品,样品的重量一般在0.5g左右,重量可联机输入电脑,加入一定量的助熔剂,再将坩埚放入高频炉的燃烧室,按下升炉,将气路密封后,仪器自动进行分析,在燃烧样品之前有一段吹氧过程,目的是将气路中残留的气体吹净,使整个气路管道充满纯氧,让样品在富氧的条件下充分的燃烧,同时释放出CO2和SO2等混合气体,通过载气将气体通过气路系统输送至吸收池,此时相应探测器上测得的信号分别为相应被测气体吸收后的电信号值,经放大处理后输入相对应的模数转换芯片,以每秒16次的测量速度转换,将所得的全部数据输入电脑,通过公式换算出被测气体的即时浓度,测量结束后整个燃烧过程的浓度累加起来,通过程序计算得出C、S的百分含量。
第二节高频感应燃烧炉1.仪器结构:高频感应燃烧炉内部采用框架结构,分上下两层,上层安装高频振荡电路及控制电路,下层安装电源、各种控制开关、气路通断及流量调节等器件,从正面看,左边部位是燃烧炉的燃烧区,其上方为燃烧后释放气体的过滤及清扫系统,下方为升降系统。
红外碳硫仪原理
红外碳硫分析仪是一种用于测定碳硫比的仪器。
它利用红外光谱分析技术,以燃烧法为基础,在不影响被测元素分析的前提下,通过测定燃烧过程中碳硫比来间接测定样品中碳和硫的含量。
1.炉温控制
仪器主要由燃烧系统、燃烧炉、分析炉体和检测系统组成。
炉温控制主要通过调节燃烧炉的功率和火焰温度来实现。
2.实验方法
根据样品的成分和含量选择不同的分析方法。
用氧化还原滴定法分析时,一般使用火焰光度法或碘量法,而用热重分析时一般使用高温燃烧量热计或红外碳硫分析仪。
在实验过程中,应根据实际需要选择合适的方法。
3.标准气体制备
为了得到准确的测量结果,必须将标准气体制备成与样品质量接近的标准气体。
常用的有空气、氧气、氢气、氩气等。
其中空气是最常用的,它操作简单,不需要其他设备,在现场就可以直接进行测量。
氧气和氢气一般在分析过程中作为辅助气体使用,以避免碳硫元素对样品质量产生影响。
—— 1 —1 —。
红外碳硫分析仪的分析原理孔径的掌控只允许所需大小的分子进入并通过,使催化剂产生预期的催化作用进而得到重要产物。
化学吸附测试试验对选择特别用途催化剂、催化剂生产商品质鉴定及测试催化剂的有效性以便确定何时更换催化剂等方面都特别的有价值。
催化剂的活性表面及孔结构显著影响到反应速度。
所以现在人们利用比表面及孔径分析仪,来表征料子样品的比表面和孔径的大小分布。
比表面及孔径分析仪的使用小技巧在此,特介绍几点测试的相关阅历。
,预处置阶段中温度和时间的掌控。
不同的样品能够经受的温度不同,一般来讲,高温预处置,预处置时间可以短一点,反之,低温预处置,预处置时间必须长一些,醉终的目的就是处分预处置样品,保证测试结果的度。
假如时间充裕,可以提前准备样品进行时间充足的预处置,这样更有利于测试;第二,关闭阀门。
测试即将开始时,首先要设置各压力点的压力值和对应的平衡时间,然后准备液氮,此时,在上升液氮杯之前,醉好通过点击软件相关勾选框,关闭系统内部全部阀门,保证内部密闭,然后再上升液氮杯,其目的就是使能够在上升液氮杯到开始试验这段时间内,与样品接触的空间容积尽量小,从而使样品在试验开始前吸附的杂质气体尽量少,从而能在肯定程度上进一步减小测试误差;第三,保持半分钟。
上升液氮杯后,由于样品所处环境温差很大,从室温降低到液氮温度(标态时—196℃),此过程并非瞬间完成,需要约15s,因此在上升液氮杯平稳后,醉好延迟约15~30s 再通过软件开始测试过称,其目的就是让样品所处环境的温度充足平衡从而完全实现液氮温度,为更充足地吸附氮气供给必须的温度条件。
碳硅分析仪通过微处置器进行温度曲线的手记,通过铁水结晶法来测量计算碳硅成份及铁水品质,通过改进的求值方法进行工作,能自动掌控紧要的冶金参数,弥补“光谱"难以测准非金属元素(C、Si、之不足,以及常规分析仪器不能充足炉前快速分析的时间要求,充足铸造生产的质量掌控要求。
碳硅分析仪使用步骤打开电源,进入测量准备状态。
红外碳硫分析仪红外碳硫分析仪重要用于冶金、机械、商检、科研、化工等行业中的黑色金属、有色属、稀土金属无机物、矿石、陶瓷等物质中的碳、硫元素含量分析。
分析仪器的红外碳硫分析仪采纳高频感应加热炉燃烧样品,红外线汲取法测试样品中碳硫两元素养量分数。
目录维护保养线性化定标应用软件检测系统分析方法分析原理概述维护保养1、燃烧室内的粉尘:样品燃烧过程中,产生Fe2O3及WO3粉尘,积聚在金属过滤器及石英管上方。
如粉尘积聚过多,对氧气流量,高频感应加热等均产生不利影响,使碳硫分析结果偏低不稳定,因此,在样品分析过程中或分析完成后,需加以清理,分析过程中,连续分析10个样品后即需除尘一次。
除尘方法:打开仪器面板,按下除尘按键,仪器自动清扫粉尘,并把粉尘收集在积尘盒内.样品在高频炉中燃烧后,混合气体(CO2、SO2、O2)经3#净化管进入分析仪检测。
在3#净化管中,上部装高氯酸镁,汲取坩埚及样品燃烧后有可能产生的水分,以除去对硫分析的影响。
下部装脱脂棉,对混合气体中可能残留的粉尘进行二次净化,确保检测系统不受粉尘污染。
2、高频燃烧炉内部的粉尘:经过长时间的使用仪器,仪器的内部会聚积少量粉尘,而且粉尘大多数是金属粉尘,具有导电性,由于高频感应炉中是高电压,高频率的环境,粉尘多了以后很简单在器件中导电,产生电路短路,打火等现象,严重的会烧坏整个设备,因此,仪器内部的粉尘应依据安置的环境和做样的频率,定期打扫,一般为6—8个月除尘一次.除尘方法:打开高频燃烧炉面板,用毛刷刷高频组件和高频室,清除大部分粉尘,然后用氧气管对着仪器吹,把剩余的粉尘吹走.再盖上仪器面板.(注意:在整个操作中,应当断掉仪器电源,拔出电源线,以免发生意外)3、红外碳硫分析仪净化剂的更换净化系统中的1#净化管的净化剂为高效变色吸水剂,用以汲取氧气中的水分,吸水后颜色变红。
2#净化管中的净化剂为碱石棉,汲取氧气中的二氧化碳。
3#净化管中的净化剂为高氯酸镁,汲取坩埚及样品燃烧后的水分。
红外吸收法碳硫分析仪红外吸收碳硫分析仪根据配置不同的高温炉可以组合包括高频炉-红外吸收碳硫分析仪,电弧炉-红外吸收碳硫分析仪和管式炉-红外吸收碳硫分析仪三种,而以高频炉-红外吸收碳硫分析仪应用最为广泛。
它们的主要区别在于高温炉系统(提取单元)的不同,分别为高频炉,电弧炉和管式炉(电阻炉),其它部分基本相似。
高频炉具有加热快、温度高、操作简单等特点,是目前应用最广泛的髙温炉。
随着电子元件的发展,高频炉输出功率也在不断地提髙,至今用于测定碳硫的高频炉输出功率通常达2kW左右。
红外吸收法分析依据是朗伯-比尔定律,其最大特点是不消耗化学试剂,没有化学反应冗长繁琐的操作,人为因素(误差)小。
虽然一次性投资较高,但分析成本低,对环境无污染,在进行批量分析时,有较好的综合经济效益。
高频红外线分析法具有高效、低耗、干净的特点。
1 仪器工作原理红外碳硫分析是利用CO2、SO2对红外线的选择性吸收这一原理实现的。
红外线是指波长为0.78~1000μm的电磁波,分为三个区域:近红外区为0.78~2.5μm,中红外区为2.5~25μm,远红外区为25~1000μm。
绝大部分的红外仪器工作在中红外区。
红外线的特性接近可见光,所以也称红外光。
它与可见光一样直线传播,遵守光的反射和透射定律,但它又不同于可见光,与可见光相比,它有三个显著特点:第一,在整个电磁波谱中,红外波段的热功率最大;第二,红外线能穿透很厚的气层或云雾而不致产生散射;第三,红外线被物质吸收后,热效应变化显著,且易于控制。
许多物质对红外线都能产生选择性吸收,CO2、SO2是其中之一。
CO2的最大吸收位于4.26μm,SO2的最大吸收位于7.35μm。
CO2、SO2对红外线的吸收同样服从光的吸收定律:朗伯-比耳定律,即:T = I/I01O g I0/I = KC1式中,T为透射比;I0为入射光强度;I为透射光强度;K为吸收系数;C为CO2或SO2浓度;1为气体光径长度。