热处理中齿轮渗碳层与模数的关系
- 格式:pdf
- 大小:77.17 KB
- 文档页数:1
一、渗碳钢的热处理工序用于制造渗碳零件的钢称为渗碳钢。
渗碳钢的主要热处理工序一般是在渗碳之后再进行淬火和低温回火。
处理后零件的心部为具有足够强度和韧性的低碳马氏体组织,表层为硬而耐磨的回火马氏体和一定量的细小碳化物组织。
有些结构零件,是在承受较强烈的冲击作用和受磨损的条件下进行工作的,例如汽车、拖拉机上的变速箱齿轮,内燃机上的凸轮、活塞销等。
根据工作条件,要求这些零件具有高的表面硬度和耐磨性,而心部则要求有较高的强度和适当的韧性,即要求工件“表硬里韧”的性能。
为了兼顾上述双重性能,可以采用低碳钢通过渗碳淬火及低温回火来达到,此时零件心部是低碳钢淬火组织,保证了高韧性和足够的强度,而表层(在一定的深度)则具有高碳量(0.85%~1.05%),经淬火后有很高的硬度(HRC>60),并可获得良好的耐磨性。
二、渗碳钢的成分特点渗碳钢的含碳量一般都很低(在 0.15%~0.25%之间),属于低碳钢,这样的碳含量保证了渗碳零件的心部具有良好的韧性和塑性。
为了提高钢的心部的强度,可在钢中加入一定数量的合金元素,如Cr、Ni、Mn、Mo、W、Ti、B等。
其中 Cr、Mn、Ni 等合金元素所起的主要作用是增加钢的淬透性,使其在淬火和低温回火后表层和心部组织得到强化。
另外,少量的Mo、W、Ti等碳化物形成元素,可形成稳定的合金碳化物,起到细化晶粒、抑制钢件在渗碳时发生过热的作用。
微量的B(0.001%~0.004%)能强烈地增加合金渗碳钢的淬透性。
渗碳钢的分类根据淬透性或强度等级的不同,合金渗碳钢分为三类。
低淬透性合金渗碳钢即低强度渗碳钢(抗拉强度≤800MPa),如15Cr、20Cr、15Mn2、20Mn2等。
这类钢淬透性低,经渗碳、淬火与低温回火后心部强度较低且强度与韧性配合较差。
主要用于制造受力较小,强度要求不高的耐磨零件,如柴油机的凸轮轴、活塞销、滑块、小齿轮等。
这类钢渗碳时心部晶粒易于长大,特别是锰钢。
一、工作条件以及材料与热处理要求1.条件: 低速、轻载又不受冲击要求: HT200 HT250 HT300 去应力退火2.条件: 低速(<1m/s)、轻载,如车床溜板齿轮等要求: 45 调质,HB200-2503.条件: 低速、中载,如标准系列减速器齿轮要求: 45 40Cr 40MnB (5042MnVB) 调质,HB220-2504.条件: 低速、重载、无冲击,如机床主轴箱齿轮要求: 40Cr(42MnVB) 淬火中温回火HRC40-455.条件: 中速、中载,无猛烈冲击,如机床主轴箱齿轮要求: 40Cr、40MnB、42MnVB 调质或正火,感应加热表面淬火,低温回火,时效,HRC50-556.条件: 中速、中载或低速、重载,如车床变速箱中的次要齿轮要求: 45 高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火)7.条件: 中速、重载要求: 40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.8.条件: 高速、轻载或高速、中载,有冲击的小齿轮要求: 15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl38CrMoAl 渗氮,渗氮深度0.5mm,HV9009.条件: 高速、中载,无猛烈冲击,如机床主轴轮.要求: 40Cr、40MnB、(40MnVB)高频淬火,HRC50-55.10.条件: 高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮(20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好)要求: 20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬火,HRC56-62.18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体11.条件: 高速、重载、有冲击、模数<5要求: 20Cr、20Mn2B 渗碳、淬火、低温回火,HRG56-62.12.条件: 高速、重载、或中载、模数>6,要求高强度、高耐磨性,如立车重要螺旋锥齿轮要求: 18CrMnTi、20SiMnVB 渗碳、淬火、低温回火,HRC56-6213.条件: 高速、重载、有冲击、外形复杂的重要齿轮,如高速柴油机、重型载重汽车,航空发动机等设备上的齿轮.要求: 12Cr2Ni4A、20Cr2Ni4A、18Cr2Ni4WA、20CrMnMoVBA(锻造→退火→粗加工→去应力→半精加工→渗碳→退火软化→淬火→冷处理→低温回火→精磨)渗碳层深度1.2-1.5mm,HRC59-62.14.条件: 载荷不高的大齿轮,如大型龙门刨齿轮要求: 50Mn2、50、65Mn 淬火,空冷,HB≤24115.条件: 低速、载荷不大,精密传动齿轮.要求: 35CrMO 淬火,低温回火,HRC45-5016.条件: 精密传动、有一定耐磨性大齿轮.要求: 35CrMo 调质,HB255-302.17.条件: 要求抗磨蚀性的计量泵齿轮.要求: 9Cr16Mo3VRE 沉淀硬化18.条件: 要求高耐磨性的鼓风机齿轮.要求: 45 调质,尿素盐浴软氮化.19.条件: 要求耐、保持间隙精度的25L油泵齿轮。
齿轮渗碳淬火变形原因及控制措施研究摘要:齿轮零件在前期加工期间若是遭受到热处理变形作用,将会导致其获取的精度遭受到严重的影响,一旦出现变形即使是使用校直及磨齿等先进的修形技术也难以达到恢复的效果。
尤其是齿轮在遭受到渗碳淬火之后会出现变形情况,具有较大的变形量,该种变形无法通过控制来实现,并且变形过大,也会增加磨削成本及磨削量,对齿轮制造精度会造成极大的影响,承载能力显著降低,寿命也会随之而下降。
本文着重分析齿轮渗碳淬火变形原因,并提出合理化的变形控制措施。
关键词:齿轮渗碳淬火;变形原因;控制措施前言:在制造硬齿面汽车齿轮期间,目前所使用的主流工艺是渗碳淬火,但是在使用之后不得不面对的问题便是出现变形情况,会对齿轮的加工质量造成极大的影响。
有相关的研究报告显示,之所以会导致碳淬火齿轮出现变形,与锻造质量、原材料质量、齿轮的结构设计、毛坯预备热处理有直接关系,并且以上几种因素之间彼此也会出现相互影响的情况,进而增加了上述因素的控制难度。
现如今,在汽车齿轮制造中控制变形量已经成为一项需要解决的重难点问题。
一、齿轮渗碳淬火变形原因(一)渗碳件变形原因渗碳低碳钢,经过对原始相结构进行分析可知,由少量珠光体组织及铁素体共同来构成,经过对整个体积的占比情况进行了解可知,铁素体量的占比高达80%,当加温到AC1以上温度之后,珠光体会向奥氏体进行转变。
当温度为900℃时,铁素体会向奥氏体进行转变。
当渗碳的温度为920℃-940℃时,零件表面的奥氏体区碳浓度的升高度为0.6%-1.2%,碳浓度比较高的奥氏体区碳浓度会增加至0.6%-1.2%,当奥氏体的温度冷却到600-650℃时,会向索氏体及珠光体进行转变[1]。
当低碳奥氏体处于心部区时,若是在900℃的高温下会将其转变为铁素体,当冷却到550℃时,会全部转变完成。
比容增大的过程是心部奥氏体向铁素体进行转变的过程,而通过对表层奥氏体冷却情况进行探究可知,可将热缩量增加变化的整个过程呈现出来,在冷却期间,在生成心部铁素体时,会遭受到表层高碳奥氏体区的压力影响[2]。
齿轮材料热处理方式及其要求正确选择齿轮固然很重要,但如果没有选择好适宜的热处理,那将是前功尽弃,可以说材料选择是前提,热处理方法得当是关键。
一、齿轮热处理方式与其性能特性1、调质处理:调质处理使材料获得优良的综合性能,这种热处理常常用于中碳钢和中碳合金钢,如45#、40Cr或40MnB材料,如果齿轮受到的冲击应力和齿面接触应力不是很大的情况下,这种热处理是适宜的,这种材料强韧性使得齿轮齿根抗弯曲能力强,抗疲劳能力也是优良的。
但是调质处理齿轮齿面硬度不够,耐磨性偏差。
2、调质处理+表面淬火:这种热处理方式补充单一调质处理的不足,使齿轮齿面硬度得到提高,耐磨性也随之增强,但是另一个问题仍未解决,就是中碳钢和中碳合金钢材料经过处理后,其冲击韧性尚不能令人满意,在高冲击应力的场合下仍不宜使用。
表面淬火有两种工艺:火焰淬火和高频淬火。
3、正火+渗碳淬火回火这种热处理是针对低碳合金渗碳钢(如20CrMnTi、20CrNiMo等)而使用的,正火是用以改善原材料组织,便于齿轮粗加工;渗碳使齿面含碳量提高,在其后淬火回火中获得高硬度的回火马氏体组织,以提高齿轮的耐磨性。
同时齿轮心部在淬火回火中获得低碳回火马氏体,强度高、韧性好,不仅可以承受高的载荷、大的冲击应力,而且抗疲劳性能也十分优异。
这种热处理也不是没有缺点,首先齿轮在渗碳淬火回火还要精加工,硬度过高会给精加工带来了困难;其次,渗碳淬火回火为了得到回火马氏体,回火温度低(200-300℃),热处理应力未能完全消除,在以后的使用中会逐渐释放造成齿轮微小变形,所以不能用于精密传动的齿轮。
这里的渗碳淬火回火,也包含碳氮共渗淬火回火。
4、调质+渗氮这种热处理适合于渗氮钢和含铬渗碳钢,如28CrMoAl、20Cr2Ni4、38CrMoAl、42CrMo。
氮化后不需要淬火,齿轮尺寸稳定,不需要精加工,克服了渗碳淬火回火残留应力导致日后变形的缺点,所以特别适合精密传动的齿轮,有些容易发生粘着磨损(胶合磨损)材料也适合氮化,氮化后材料抗胶合性能变得非常优异。
256管理及其他M anagement and other齿轮渗碳、渗氮硬化表面耐磨性研究李晓喆(太重煤机有限公司,山西 太原 030032)摘 要:在工业化、现代化的过程中,机械传动系统已经逐渐成为现代工业不可缺少的重要技术核心。
作为机械设备的核心构件,齿轮的耐磨性是确保传动系统正常可靠工作的重要指标。
而渗碳与渗氮热处理工艺是当前表面硬化技术中的热点问题,本文分析了不同齿轮表面硬化技术的优缺点,通过渗碳与渗氮热处理加工后的齿轮耐磨性能比较分析,确定了渗氮气体处理方式在低载荷变速齿轮处理温度、耐磨性能方面的优势。
关键词:变速齿轮;渗碳加工;渗氮加工;表面硬化;耐磨性中图分类号:TG156.8;U463.2 文献标识码:A 文章编号:11-5004(2018)06-0256-2传动系统是现代机械工业中的核心机械构件,而齿轮则是增速传动系统中的关键部件。
现代机械中大多数的能量传达都是通过齿轮组来实现的,包括工业减速设备、变速齿轮组等。
而我国齿轮制造工业也在中国现代工业腾飞的过程中,保持了快速发展的态势。
在种类丰富的众多产品中,变速齿轮具有安全性高、结合性好、稳定性强、性价比高等多种有点,在通用机械设备中具有不可替代的作用[1]。
在这种产品发展环境下,必须不断提高变速齿轮的加工制造工艺,提高产品的使用寿命,才能为齿轮制造业的发展提供充足的动力支持。
1齿轮表面强化技术1.1 渗碳技术渗碳热处理工艺能够提高齿轮产品的表面硬度,增强齿轮的耐受摩擦性能,而齿轮工件的基质部分仍然可以保持板条状马氏体组织结构,能够确保齿轮具有较强的韧性,确保变速齿轮本身的物理力学性能指标较高。
所以在渗碳热处理加工的齿轮工件使用过程中,可以耐受较高的荷载力。
传统的渗碳工艺温度保持在930摄氏度,生产工艺的整体周期较长,生产效率相对较低未下。
而在现代工艺的发展环境下,高温渗碳技术为现代齿轮制造提供了新的技术支持,可以有效提高齿轮生产工艺的效率。
齿轮轴渗碳热处理工艺研究电圆锯主要用于切割钢件,渗碳齿形轴是电圆锯中的重要零件。
由于渗碳齿轮轴在工作中需承受转矩、冲击及磨损,因此要求具有较高的硬度、耐磨性和疲劳强度极限,一般采用低碳合金钢制造。
经实际验证,20CrMnTi材料热处理性能优于20CrMo,但存在着变形现象,为此进行分析变形产生的根本原因,并采取控制措施,为解决其它渗碳淬火零件的变形提供参考。
1 材料选用电圆锯齿轮轴最初选用20CrMo材料,技术要求为表面硬度HV(10)680~820,有效硬化层深0.2~0.5。
实际经热处理加工后表层至芯部过渡区及芯部硬度偏低,检测芯部硬度为296HV(1),低于JB/T7516—1994标准规定的心部硬度值为30—45HRC要求。
用户经耐久试验测试,轮齿有早期磨损现象,齿面呈剥落状裂纹。
分析认为心部硬度低是由于心部未淬透,心部组织中铁素体量太多,使得表面渗碳硬化层与心部的过渡区太陡。
在高的交变应力作用下,表面与心部交界处产生裂纹,逐渐扩展,容易产生深层剥落现象。
因此20CrMo材料渗碳淬火处理无法满足性能要求。
为改进淬透性,材料变更为20CrMnTi,热处理工艺采用原20CrMo材料使用的工艺。
经实际热处理加工后验证各项指标均符合要求。
总体反映20CrMnTi 材料热处理性能优于20CrMo。
2 变形形式及原因2.1 变形形式渗碳齿轮轴的热处理指标均合格,但在啮合检测时径向综合总偏差Fi″严重超差,结合齿圈径向跳动Fr检测得出:热处理过程存在严重变形,通过100件试验件热处理前后数据收集的状态分析,其变化趋势无规律可循。
2.2 原因分析渗碳齿轮轴经渗碳淬火后的变形是齿轮在热处理过程中产生的,但变形产生的根本原因,主要取决于材料、形状及整个工艺过程的质量。
因此要控制好热处理变形,不仅要在热处理时控制,而且要在齿轮的结构设计、材料的选用以及热前热后的制造过程都需要采取有效措施才能较理想的控制齿轮轴变形。
20CrMnMo齿轮渗碳淬火对渗碳质量影响论文摘要: 20CrMnMo齿轮渗碳淬火,受成分、设备、工艺和冷却方式影响。
生产实践证明,在保证炉子的保温、密封、排气良好的情况下,通过对工艺参数的优化改进,选择专用淬火油,可得到性能优良的淬火齿轮。
一、前言齿轮是我们日常生活中接触到的较多的机械产品,它的性能的好坏对产品的机械性能起着重要作用。
齿轮在渗碳淬火过程中,可能出现的问题很多,主要表现在以下几个方面:淬火后硬度不够、渗层深度不够、淬火后心部硬度过高、变形大、油淬后表面光亮度不够甚至开裂。
影响淬火质量的因素有很多,比如原材料成分、热处理工艺以及淬火后的冷却过程。
本文主要论述以上几个方面对齿轮渗碳淬火质量的影响。
二、材料成分对齿轮渗碳淬火质量的影响2.1 材料成分对心部硬度的影响20CrMnMo齿轮的主要合金元素是Cr、Mn和Mo元素。
Mo和Cr元素可以大大降低渗碳层中贝氏体形成的敏感性,Mn元素可以提高淬透性。
虽然Mn元素对提高心部淬透性来说是最经济有效的元素,但是Mn含量过多会产生如淬透性带失控等问题,淬透性越高,畸变量越大,因此要严格控制合金元素含量。
2.2 材料成分对内氧化的影响在热处理期间,在合金表面的下方形成氧化物的现象称为内氧化。
在气体渗碳中,Mn和Cr是容易与介质中的氧原子发生氧化的元素,所形成的氧化物会导致钢表层的合金元素流失,Mo元素则对内氧化的影响较小。
对于Mn元素,它的流失会导致淬透性降低,以及表层中非马氏体组织(在渗碳淬火件表面中经常出现连续或不连续的网状或块状黑色组织,此处恰好不是表层压应力最大的区域,被公认是由于内氧化而贫化合金元素导致形成屈氏体类组织,也被成为非马氏体组织)的形成;Cr元素的损失则使渗层中碳化物的形成变得困难。
只要表面转变为马氏体组织,较浅的表面氧化对疲劳特性无明显影响,而严重的氧化会因从奥氏体中消耗大量的合金元素而降低其淬透性,导致形成其它一些非马氏体组织(如屈氏体、珠光体组织),这些组织会降低表面压应力,对疲劳性能不利。
常州机电职业技术学院毕业设计(论文)作者:王慧学号:20921209系部:模具技术系专业:材料成型与控制技术(热处理)题目:20CrMnTi减速机齿轮的渗碳淬火指导者:陈宁评阅者:2013年 3 月毕业设计(论文)中文摘要热处理工艺是金属材料工程的重要组成部分。
现代工业的飞速发展对机械零部件的要求愈来愈高,因此通过热处理可以改变材料的加工艺性能,充分发挥材料的潜力,提高工件的使用寿命。
为获得理想组织性能,保证零件在生产过程中的质量,稳定性和使用寿命,就必须从工件的特点、要求和技术条件,正确选择材料;再根据生产规模、现场条件、热处理设备提出几种可行的热处理方案,最后确定出一种最佳方案。
20CrMnTi钢具有晶粒细、渗碳淬火性能良好、工艺性能成熟可靠且成本低廉等优点,目前生产量大致占渗碳齿轮钢的70% ,齿轮在使用过程中,担负着传递动力的任务,在冲击、交变应力等作用下以齿根断裂和齿面接触疲劳为主要失效形式,因此齿轮钢应有良好的强韧性、耐磨性以承受冲击、弯曲和接触应力;此外,还要求变形小、精度高,噪声低。
本设计便是对20CrMnTi减速机齿轮热处理工艺进行详细的说明,从选材下料到热处理工艺路线,以及最后的质量检验、可能产生的缺陷及预防措施等,都进行逐一分析,尽可能的将整个过程详尽的展现出来,从而对大家有所帮助。
关键词:20CrMnTi;减速机齿轮;渗碳淬火;缺陷毕业设计(论文)外文摘要Title: 20CrMnTi Reducer Gear Carburizing and QuenchingAbstract:Heat treatment technology of metallic materials is an important part of the project. The rapid development of modern industry of machinery parts and components of the increasingly high demand, so the heat treatment can change the material and process performance, give full play to the potential, improve the service life of the workpiece. In order to obtain the ideal organizational performance, guarantee the components in the production process quality, stability and service life, must from the characteristics of the workpiece, requirements and technical conditions, proper selection of materials; then according to the scale of production, site conditions, heat treatment equipment and puts forward several feasible heat treatment scheme, finally determine a kind of optimum scheme.20CrMnTi steel has fine grain size, good performance, carburizing and quenching process is mature and reliable performance and low cost, the current production capacity accounted for roughly70% of carburized gear steel, gear during use, charged with the transmission of dynamic task, in shock, alternating stress under the action of taking root fracture and tooth surface contact fatigue as the main the failure forms of gear steel, therefore, should have good strength and toughness, abrasion resistance to withstand impact, bending and contact stress; in addition, also called little deformation, high precision, low noise.This is designed for20CrMnTi reducer gear heat treatment process in detail, from material selection under the expected heat treatment technology route, as well as the final quality inspection, the possible defects and preventive measures and so on, are analyzed and explained, as far as possible the whole process detailed show hill, thus all of you to help.Keywords:20CrMnTi; Reducer gear;carburizing and quenching; defect目录毕业设计(论文)中文摘要 (I)毕业设计(论文)外文摘要 ................................................................... I I 目录 (IV)第一章绪论 (1)1.1 减速机齿轮的应用 (1)1.2 减速机齿轮的作用 (4)1.3 齿轮用钢的分类与生产 (5)1.4 国内外汽车齿轮发展现状 (6)1.5 减速机齿轮的性能要求 (9)1.6 加工工艺性能要求 (9)1.7 材料的选择 (10)第2章热处理工艺选择 (11)2.1 预备热处理的工序位置 (11)2.2 最终热处理的工序位置 (11)2.3 最终热处理工艺方法选择 (11)第三章热处理工艺特性对齿轮质量和寿命的影响 (12)3.1 淬透性 (12)3.2 变形开裂倾向 (12)3.3 淬硬性 (12)第四章20CrMnTi钢的基本性质 (13)4.1 钢的化学成分和力学性能 (13)4.2 含碳量及合金元素作用 (14)4.3汽车变速箱变速齿轮的热处理工艺设计 (16)4.3.1 服役条件 (16)4.3.2 失效形式 (16)4.3.3 性能要求 (17)第五章20CrMnTi变速齿轮加工工艺 (18)5.1 减速机齿轮常用的加工工艺路线 (18)5.2 各种工艺路线的分析 (18)5.2.1 等温正火 (18)5.2.2 渗碳+淬火+回火 (18)5.2.3 喷丸处理 (20)5.2.4 检验 (20)第六章热处理后的金相组织 (21)6.1 20CrMnTi等温正火后金相组织 (21)6.2 20CrMnTi经渗碳后淬火、回火处理金相组织 (21)第七章质量控制与检验方法 (23)7.1 随炉试样检验 (23)7.1.1 表面硬度 (23)7.1.2 心部硬度 (23)7.1.3 有效硬化层深度 (23)7.1.4 表层组织 (24)7.2 齿轮热处理质量检验 (25)7.2.1 外观 (25)7.2.2 齿面硬度 (25)7.2.3 有效硬化层深度 (25)7.2.4 畸变 (26)第八章热处理工艺过程中的质量检验 (27)8.1 渗碳淬火后齿轮的检验项目、内容和要求 (27)8.2 渗碳齿轮的常见缺陷及防止措施 (28)8.3 渗碳淬火后畸变原因分析及解决措施 (29)8.3.1 渗碳淬火后畸变原因分析 (29)8.3.2 减小渗碳淬火齿轮畸变的措施 (32)结论 (35)致谢 (36)参考文献 (37)第一章绪论随着科学技术和工业生产的飞速发展,经济各个部门迫切需要各种各样质量优、性能好、效率高、能耗低、价格廉的机械产品。