第7章 超音速翼型和机翼的气动特性(1)
- 格式:pptx
- 大小:2.87 MB
- 文档页数:4
超音速翼型气动力特性研究摘要:本文研究方程为0.3(1)zx x =±-的轴对称超音速翼形在马赫数为2,攻角分别为0°,2°情形下的气动力特性,基于对翼型进行离散化处理得到该翼型的物理参数及气动力的近似解,并逐步减小空间步长x ∆来提高解的精度。
在步长数分别为5、20、50及攻角为0°、2°的条件下,计算求得翼型头部斜激波后的流动参数,并由此求解各分区相应参数,列出:表面压力Cp 分布曲线Cp -x ,及表面密度、温度分布曲线ρ/ρ∞-x 、T/T ∞-x 。
在不同条件下得出的轴向力Ca 、法向力Cn 、升力Cl 、阻力Cd 及绕头部顶点俯仰力矩Cm 的表格。
最终分析了编程计算的准确性与精度,分析了压力系数、温度、密度沿该翼型的分布特性,并分析了不同攻角对该翼型气动特性的影响。
问题描述已知方程为0.3(1)zx x =±- 的薄翼形,求该翼型在来流马赫数为2,攻角分别为0°,2°情形下的受力情况。
对x 范围(0,1)内分别按5等份、20等份和50等份进行离散计算,得到表面压力Cp 分布曲线Cp -x ,表面密度、温度分别曲线ρ/ρ∞、T/T ∞ 。
计算得出出轴向力Ca 、法向力Cn 、绕头部顶点俯仰力矩Cm 及升力Cl 、阻力Cd 。
计算方案:(一)计算思路:超音速来流以一定攻角遇到类似于楔形体的机翼前缘,在上下面都有可能产生附体斜激波,要是攻角过大也有可能不产生附体斜激波,这里首先需要根据斜激波的θβ-关系曲线图来作出判断。
经判断,如果顶点处产生斜激波,即使用斜激波前后的马赫数、密度、温度、压强计算公式计算出顶点斜激波后的各项物理参数。
接着,根据翼型的形状可知,气流在通过膨胀波之后会经过一系列的向外的转折角,根据普朗特-迈耶膨胀波理论,超音速气流经过每一个折角都会产生膨胀波。
根据数值计算的基本原理,计算机不能处理连续曲线上随x值变化而连续变化的折角,所以在计算之前必须对翼型的几何结构进行离散化处理。
超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。
超音速飞机的机翼平面形状及特点一、机翼平面形状1.1 简介超音速飞机的机翼平面形状是指机翼在平面上的几何形状,其设计直接影响到飞机的空气动力性能,对于超音速飞行来说尤为重要。
1.2 矩形平面形状在早期的超音速飞机设计中,矩形平面形状曾被广泛使用。
矩形机翼具有简单的几何形状,易于制造,但在超音速飞行时会产生较大的阻力,限制了飞机的速度及性能。
1.3 翼展锥度平面形状随着超音速飞机技术的不断发展,翼展锥度平面形状逐渐成为主流设计。
翼展锥度机翼呈锥形,即从根部到翼尖逐渐变细。
这种设计能够减小阻力,在超音速飞行时具有更好的空气动力性能。
1.4 变后掠平面形状一些超音速飞机还采用了变后掠平面形状,即机翼在根部与翼尖的后掠角不同。
这种设计可以根据飞行状态在不同的速度段获得更佳的空气动力性能。
二、特点2.1 较小的翼展比超音速飞机的机翼平面形状通常具有较小的翼展比。
这有利于减小机身与机翼的等效体积,降低阻力,并且有助于降低材料重量,提高飞机的载荷能力。
2.2 锥形机翼锥形机翼的特点是在超音速飞行时能够减小激波阻力,提高升阻比,使飞机具有更好的空气动力性能。
大多数超音速飞机都采用了锥形机翼设计。
2.3 合理的后掠角后掠角是指机翼在纵向平面上与机身的夹角,超音速飞机的机翼平面形状需要具有合理的后掠角来降低阻力,并且在超音速飞行时保持稳定的飞行姿态。
合理的后掠角设计能够使飞机在超音速飞行时具有更好的空气动力性能。
2.4 薄型翼型超音速飞机的机翼平面形状通常采用较薄的翼型。
薄型翼型能够减小阻力,提高升阻比,提高飞机的速度和性能。
结语超音速飞机的机翼平面形状具有独特的设计特点,包括翼展锥度、较小的翼展比、合理的后掠角和薄型翼型等。
这些特点使得超音速飞机在超音速飞行时具有更好的空气动力性能,为飞机的高速飞行提供了重要的技术支持。
随着科学技术的不断进步,相信超音速飞机的机翼平面形状设计将会不断完善,为飞机的超音速飞行带来更加优异的性能表现。
高超声速飞行的气动热特性分析在现代航空航天领域,高超声速飞行技术正逐渐成为研究的焦点。
高超声速飞行是指飞行器的速度超过 5 倍音速,在这种极端条件下,气动热问题成为了制约飞行器性能和安全性的关键因素。
当飞行器以高超声速飞行时,空气与飞行器表面之间的剧烈摩擦会产生大量的热量,导致飞行器表面温度急剧升高。
这种高温不仅会对飞行器的结构材料造成严重的损伤,还会影响飞行器的气动特性和飞行性能。
首先,来看看高超声速飞行中的热流分布特点。
在飞行器的前端,如机头、机翼前缘等部位,由于空气受到强烈的压缩和阻滞,热流密度极高,形成所谓的“热斑”区域。
而在飞行器的侧面和后缘,热流密度相对较低,但整体的热量累积仍然不容忽视。
飞行器的外形设计对气动热特性有着显著的影响。
尖锐的前缘可以有效地减少激波的强度,从而降低热流的产生。
而光滑的表面有助于减少气流的分离和摩擦,降低热量的生成。
例如,采用流线型的外形能够减少空气阻力,同时也能在一定程度上降低气动加热的程度。
材料的选择在应对高超声速气动热问题中至关重要。
传统的金属材料在高温下容易软化甚至熔化,无法满足高超声速飞行的要求。
因此,新型的耐高温材料,如陶瓷基复合材料、碳/碳复合材料等,逐渐成为研究和应用的热点。
这些材料具有出色的耐高温性能和机械强度,能够在极端的热环境中保持稳定。
高超声速飞行中的气动热还会引起气流的化学变化。
高温使得空气中的分子发生解离和化学反应,产生新的物质和能量传递过程。
这进一步增加了气动热问题的复杂性,需要在理论分析和实验研究中加以考虑。
在实验研究方面,风洞试验是研究高超声速气动热特性的重要手段。
通过在风洞中模拟高超声速飞行的条件,可以测量飞行器表面的热流、温度等参数,为理论分析和数值模拟提供验证数据。
然而,风洞试验也存在一些局限性,比如难以完全模拟真实的飞行环境和长时间的加热过程。
数值模拟在高超声速气动热研究中发挥着越来越重要的作用。
通过建立数学模型和运用计算流体力学(CFD)方法,可以预测飞行器在高超声速飞行时的气动热分布和流场特性。
超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。
航空器的气动特性与优化设计在现代航空领域,航空器的性能和安全性在很大程度上取决于其气动特性和优化设计。
气动特性是指航空器在空气中运动时所受到的空气动力的特性,而优化设计则是为了实现更出色的气动性能、提高飞行效率和安全性。
让我们先了解一下什么是航空器的气动特性。
简单来说,当航空器在空气中飞行时,空气会对其产生各种力和力矩,比如升力、阻力、俯仰力矩、偏航力矩和滚转力矩等。
升力是让航空器能够克服重力飞起来的关键力量,它通常产生于机翼的上下表面压力差。
而阻力则是阻碍航空器前进的力量,包括摩擦阻力、压差阻力和诱导阻力等。
机翼的形状对于气动特性有着至关重要的影响。
常见的机翼形状有平直翼、后掠翼、前掠翼等。
平直翼结构简单,低速性能好,但高速时阻力较大。
后掠翼在高速飞行时能有效减小阻力,提高飞行速度。
前掠翼则具有更好的机动性,但在结构和材料方面要求较高。
除了机翼,机身的形状也会影响气动特性。
一个流线型的机身可以减少空气的阻力,提高飞行效率。
另外,发动机的安装位置、进气道和尾喷管的设计等,都会对航空器的气动性能产生影响。
了解了气动特性,接下来谈谈优化设计。
优化设计的目标是在满足各种约束条件的前提下,尽可能地提高航空器的性能。
这包括减小阻力、增加升力、提高稳定性和操纵性等。
在优化设计过程中,数值模拟是一种非常重要的手段。
通过计算机软件,可以对航空器的流场进行模拟和分析,从而预测其气动性能。
设计师可以根据模拟结果对设计进行调整和改进。
风洞试验也是不可或缺的环节。
在风洞中,航空器模型可以接受不同风速和气流条件的测试,获取准确的气动数据。
这些数据对于验证和改进设计具有重要的意义。
另外,材料的选择也对气动特性和优化设计有影响。
轻质高强的材料不仅可以减轻航空器的重量,提高燃油效率,还能在一定程度上改善气动性能。
在实际的优化设计中,需要综合考虑多个因素。
比如,在追求高速性能的同时,也要保证低速时的起降性能;在提高升力的同时,要注意控制阻力的增加;在增强机动性的同时,要确保稳定性不受影响。