vivado按键消抖原理
- 格式:docx
- 大小:3.49 KB
- 文档页数:2
按键在按下的过程中通常会产生一段时间的抖动,为了消除这种抖动,一般采取两种方法。
一种为硬件消抖,另一种为软件消抖。
硬件消抖是利用了RS锁存器的相关原理。
如下图所示,开关在B处时,5处为低电平,1处为高电平。
根据与非门“有零出一”的特点,6处为高电平,即2处为高电平。
所以此时3处为低电平。
当开关从B拨到A时,5处变为高电平,一旦1处出现低电平,输出将一直为高电平。
(读者不妨自己假设一下)。
开关在A处时,情况类似。
软件消抖主要是通过延时跳过按键抖动的阶段,检测稳定阶段的情况。
下面是代码。
library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity sw_debounce_module isPort ( clk: in STD_LOGIC;rst: in STD_LOGIC;switch : in STD_LOGIC_VECTOR (1downto0);led : out STD_LOGIC_VECTOR (1downto0));end sw_debounce_module;architecture Behavioral of sw_debounce_module issignal tmp : STD_LOGIC_VECTOR (1downto0);signal cnt : INTEGER range0to1000000;constant max : INTEGER :=500000;beginprocess(clk,rst,switch(1),switch(0))beginif(rst = '1') thentmp(1downto0)<="00";cnt <= 0;elseif(switch(0)='1')thenif(cnt <max and clk='1')thencnt <=cnt+1;elsif(cnt = max) thencnt <= 0;end if;if(switch(0)='1')thentmp(0)<=not tmp(0);end if;end if;if(switch(1)='1')thenif(cnt < max and clk='1') thencnt<=cnt+1;elsif(cnt = max) thencnt <= 0;end if;if(switch(1)='1')thentmp(1)<=not tmp(1);end if;end if;end if;end process;led(1downto0)<=tmp(1downto0);end Behavioral;由于时钟频率为50MHZ,延时500000周期即为10ms。
按键消抖1功能概述按键开关是各种电子设备不可或缺的人机接口,如电脑的键盘等。
实际应用中,按键开关通常为机械式弹性开关。
当机械点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定接通,断开时也不会马上断开,在闭合和断开的瞬间均伴随有一连串的抖动。
为保证系统及时正确识别,必须对这种情况作出相应处理。
我们称之为按键消抖。
按键消抖可分为硬件消抖和软件消抖。
硬件消抖的原理是在信号输入系统之前消除抖动干扰,在按键较少的情况下比较适宜。
如果按键较多,则使用软件消抖。
软件消抖的实质在于降低键盘输入端口的采样频率,将高频抖动略去。
需要注意的是,软件消抖需要占据一定的系统资源。
尽管硬件消抖和软件消抖能实现按键消抖功能,串行处理的方式都存在一定的局限性,显得不那么完美。
而硬件资源丰富的FPGA系统采用并行处理的模式,利用硬件来减轻软件工作量,通过硬件加速软件消抖处理,即可做到软件消抖并行化,因而在按键消抖处理方面具备非常明显的优势。
优秀的设计程序应该是用最简单的代码(架构、信号)实现功能。
在本例中,我们的只需要用4个信号界定,并用很短的代码即可。
下面我们先来看看功能要求:在系统设计中,消除按键抖动的方法五花八门,无论是硬件电路和软件设计都十分成熟。
在本项目中,我们将用Verilog语言给出具体实现过程,设计一个程序来检查键值,有效滤除按键抖动区间20 ms的毛刺脉冲。
2 设计思路一般按键所用开关为机械弹性开关,由于机械触点的弹性作用,每个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。
因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。
抖动时间的长短由按键的机械特性决定,一般为5 ms~10 ms。
1图1 按键抖动过程示意当系统检测出按键闭合后,执行一个延时程序,产生5ms~10ms的延时;前沿抖动消失后,再一次检测键的状态;如果仍保持闭合状态电平,则确认为真正有键按下。
当检测到按键释放后,也要给5ms~10ms的延时,待后沿抖动消失后才能转入该键的处理程序。
Verilog按键消抖的理解按键在按下时会产生抖动,释放时也会产生抖动,所以在设计键盘扫描程序时必须考虑按键的消抖,我们一般只考虑按下时的抖动,而放弃对释放时抖动的消抖。
抖动时间一般为20ms左右。
按下的最终结果是低电平'在单片机设计的的按键去抖思路是:检测到按下时延时20ms,再检测,如果状态仍为按下,贝U确认是按下的;如果状态为弹起的,则确认是干扰,无按键按下。
图1 按键抖动特性有一个概念要理一下,按键按下时会有抖动,也就是说我们其实只按一次,但是实际产生的“ 按下” 却是许多次的,这些许多次集中在这20ms 里。
我们按的只是一次,而实际却产生了许多次,那么就必须滤除其他的次数。
单片机为了得到真正的“ 按下”,通过延时20ms,把其他的“按下” (也就是抖动)给滤除了。
然后再次判断是否有按下,因为有的时候干扰很大。
而在FPGA中,基于下面的程序,理解如下:在这个程序里检测按键是否按下的方法是脉冲边沿检法。
而在单片机里是判断是否为低电平的方法(那么在FPGA中可不可以也用这个方法呢?)第一次检测到后,启动20ms 计数器,时间到后再检测。
这里的检测方法跟脉冲边沿检测法有异曲同工之处,FPGA过20ms检测按键是否按下,存储检测到的值,并且按位取反与前一个20ms检测的值相与,得到一个值,如果为1,则判断按键按下,否则则无按下。
所以跟单片机按键扫描的原理是一样的,不同的是检测方法不一样。
图2 FPGA 按键的理解示意图其中key_an 寄存器的功能是检测第一次的 “按 下”,是ent 的启动标志位。
通过也能滤除干扰信 号。
led_etrl是确实有按键按下的信号,维持一个时钟周期。
特权同学的Verilog 键盘扫描程序// 说明:当三个独立按键的某一个被按下后,相应的LED 被点亮;//再次按下后,LED 熄灭,按键控制 LED 亮灭 modulesw_debounce( clk,rst_n, sw1_n,sw2_n,sw3_n,下的JS生 谨产汞 按时彼伺隔勿吧时间轴110 UCi 111] 边沿唸迴注检测到"m 零汁数器并启动⑷矶的 时间计数 tn in no 110led_d1,led_d2,led_d3);input clk; // 主时钟信号,50MHzinput rst_n; // 复位信号,低有效input sw1_n,sw2_n,sw3_n; // 三个独立按键,低表示按下output led_d1,led_d2,led_d3; // 发光二极管,分别由按键控制// ----------------------------------------------reg[2:0] key_rst;always @(posedge clk or negedge rst_n)if (!rst_n) key_rst。
按键消抖的原理一、引言在电子设备中,按键是常见的输入方式。
然而,由于按键的机械结构,当按下或松开按键时,会产生机械弹跳现象,导致信号出现多次跳变,这就是所谓的“按键抖动”现象。
为了避免这种现象对电路造成干扰,需要进行按键消抖处理。
二、什么是按键消抖?按键消抖是指在接收到按键信号后,在一定时间内只处理一次信号,并且保证该信号为有效信号。
其目的是消除因机械结构引起的多次跳变信号。
三、按键消抖的原理1. 机械弹跳原理在了解按键消抖原理之前,需要先了解机械弹跳原理。
当按下或松开一个开关时,由于接触面积有限和金属表面不完全平整等因素影响,开关触点会发生不稳定震荡,并在短时间内反复接通和断开。
这种现象称为“机械弹跳”。
2. 软件处理原理软件处理原理是通过程序来实现对按键状态进行检测和判断的方式。
具体实现方法包括:轮询法、中断法、计时法等。
(1)轮询法轮询法是指通过循环检测按键状态的方式来实现按键消抖。
具体实现方法为:在主程序中设置一个循环,不断检测按键状态,当检测到按键被按下时,进行一定的延时后再次检测按键状态,如果依然是按下状态,则判断为有效信号。
(2)中断法中断法是指通过外部中断来实现对按键状态进行检测和判断的方式。
具体实现方法为:将按键连接到微控制器的外部中断引脚上,在程序中设置好相应的中断服务程序,当检测到外部中断信号时,进入相应的中断服务程序进行处理。
(3)计时法计时法是指通过定时器来实现对按键状态进行检测和判断的方式。
具体实现方法为:当检测到按键被按下时,启动定时器并开始计数,在一定时间内只处理一次信号,并保证该信号为有效信号。
四、硬件处理原理硬件处理原理是通过使用电路元件来实现对按键消抖的方式。
具体包括RC滤波器、Schmitt触发器、反相器等。
1. RC滤波器RC滤波器是将电容和电阻组合在一起,利用电容的充放电特性实现对信号的滤波。
当按键被按下时,由于电容的充放电时间常数较长,可以使机械弹跳信号被滤除。
按键消抖的原理和基于verilog的消抖设计按键开关是各种电子设备不可或缺的人机接口。
在实际应用中,很大一部分的按键是机械按键。
在机械按键的触点闭合和断开时,都会产生抖动,为了保证系统能正确识别按键的开关,就必须对按键的抖动进行处理。
在系统设计中,有各种各样的消除按键抖动的设计方法,硬件电路和软件设计都很成熟。
不过我们这里要从另外一个角度来讨论按键的消抖,并给出一个用verilog给出一个具体的实现。
首先,看一个普通的机械按键的触点在闭合与断开时的波形(用示波器抓取)。
下面的四张图都是按键在闭合的时候抓到的波形。
可以看到两个明显的趋势:1. 按键在几个us之内就可以达到稳定状态,从高电平转换到底电平;2. 在高电平转换到低电平的过程中,触点有非常明显的抖动。
下面的两张图是按键在断开的时候抓到的波形。
也可以看到两个明显的趋势:1. 按键的变化趋势比较缓慢,从低电平变为高电平需要大概10~20ms的时间;2. 按键断开时没有闭合时那么大的抖动下面两张图是用手迅速闭合按键然后就断开时,按键的输出波形。
在处理按键抖动的程序中,必须同时考虑消除闭合和断开两种情况下的抖动。
所以,对于按键消抖的处理,必须按最差的情况来考虑。
我们从上面的图上可以看到,按键输出的信号的跳变时间(上升沿和下降沿)最大是在20ms左右。
按键一次闭合最短的时间大概是120ms 左右。
如果我们把按键的输出做为一个时钟域(时钟频率未知,但信号的slow rate是已知的,既最大20ms左右)的信号,用另外一个时钟来采集这个按键的输出,则就可以把按键的消抖归结为一个最基本的CDC问题来处理。
而问题的核心是如何确定采集时钟的频率。
假设采集时钟的周期小于20ms,那么,采集时钟就有可能两次采到按键断开时的不。
按键消抖原理
按键消抖原理是指通过某种方法在按键被按下或松开时,消除或减少按键的抖动现象,使输入信号得到稳定的识别和处理。
在实际应用中,按键在被按下或松开时,由于机械结构的原因,往往会引起按键的不稳定状态,表现为按键在短时间内多次触发开关。
这种按键抖动不仅会导致输入信号的波动,还可能对系统造成误操作或不良影响。
为了解决按键抖动问题,常用的按键消抖原理主要有以下几种:
1. 软件延时消抖:通过在程序中设定一个适当的延时时间,当按键被按下或松开后,延时一段时间再读取按键状态,以判断按键是否稳定。
如果经过延时后按键状态仍然相同,则可以认为按键已经稳定按下或松开,从而减少抖动的影响。
2. 硬件滤波消抖:通过在按键电路上设计滤波器或添加电容元件,可以对按键信号进行滤波处理,去除短时间内的干扰信号,使输入信号更加稳定。
常用的滤波电路包括RC滤波电路、OTA滤波电路等。
3. 状态改变检测消抖:在按键电路中,通过检测按键的状态变化来判断按键是否按下或松开。
当按键在短时间内发生多次状态变化时,只会认为按键状态发生了一次改变,从而忽略了抖动现象。
这种方式适用于按键状态改变的速度较慢的情况。
通过以上的按键消抖原理,可以有效地减少按键抖动现象,提
高按键输入的可靠性和稳定性。
在实际应用中,可以根据具体情况选择适合的原理和方法来实现按键消抖,以满足不同的需求。
verilog按键消抖原理(原创版)目录1.Verilog 简介2.按键消抖的概念3.按键消抖的实现原理4.实际应用中的按键消抖设计5.总结正文【1.Verilog 简介】Verilog 是一种硬件描述语言,主要用于数字系统硬件的描述、模拟和验证。
在数字电路设计和 FPGA 开发领域,Verilog 被广泛应用。
通过Verilog,设计人员可以对硬件电路进行建模、模拟和验证,以确保设计满足性能要求。
【2.按键消抖的概念】按键消抖,又称按键去抖,是一种在按键输入过程中消除误触发的技术。
在实际应用中,按键输入可能会受到噪声、抖动等因素的影响,导致误触发。
按键消抖的目的就是消除这些干扰,确保按键输入的准确性。
【3.按键消抖的实现原理】按键消抖的实现原理主要有两种:软件消抖和硬件消抖。
(1)软件消抖:软件消抖是通过程序算法实现的。
在按键触发时,程序会检测按键触发信号是否满足一定的条件,例如连续触发次数、触发时间间隔等。
如果满足条件,则认为这是一个有效的按键触发,否则不予响应。
(2)硬件消抖:硬件消抖是通过硬件电路实现的。
硬件消抖电路通常包括滤波器、延迟器等组件。
当按键触发信号输入时,滤波器会滤除噪声,延迟器会消除触发信号的抖动,从而保证输出信号的稳定性。
【4.实际应用中的按键消抖设计】在实际应用中,按键消抖设计需要考虑多种因素,如按键触发信号的噪声、抖动特性,系统的响应速度等。
为了实现高效、可靠的按键消抖,设计人员需要对这些因素进行综合考虑,选择合适的消抖方案。
【5.总结】按键消抖是一种重要的技术,可以有效消除按键输入中的误触发,提高系统的稳定性和可靠性。
fpga按键消抖原理fpga按键消抖原理___________________FPGA按键消抖是一种用于处理按键输入信号的技术,它可以有效地降低噪声对按键信号的影响,从而确保按键输入的正确性。
## 一、什么是fpga按键消抖FPGA按键消抖是一种应用于处理外部输入的技术,它可以有效地减少按键输入的误差,同时防止因由噪声或触发时间过长等原因导致的误操作,从而保证操作系统的稳定性和正确性。
## 二、fpga按键消抖的原理FPGA按键消抖的原理是:当用户按下一个按钮时,FPGA会连续采集多个采样点,并判断采样点的平均值,如果采样值与平均值相差不大,则认为是有效的输入;如果采样点的平均值与采样值相差较大,则认为采样点受到了噪声干扰,此时不认为是有效的输入。
此外,FPGA还会根据按钮被按下的时间来决定是否应该将其作为有效输入:如果用户在一定的时间内多次重复按下一个按钮,FPGA会自动将其作为无效输入,从而避免重复操作。
## 三、fpga按键消抖的应用FPGA按键消抖在实际应用中最常用于处理用户输入,它可以有效地避免由于噪声或触发时间过长而导致的误差。
此外,FPGA也可以用于处理传感器输出,例如测量传感器的输出信号、光学传感器的输出信号等。
## 四、fpga按键消抖的注意事项在使用FPGA进行按键消抖时,应该注意以下几点:1. FPGA采样点的数量要适当:采样点的数量不宜过多或过少,要根据实际情况适当调整。
2. FPGA采样点的间隔要适当:采样点之间的间隔应该尽可能小,以便能够有效地减少噪声对信号的影响。
3. FPGA采样点的平均值要适当:采样点的平均值应该尽可能小,以便能够有效地减少噪声对信号的影响。
4. FPGA采样时间要适当:FPGA在采样信号时应该尽可能快,以便能够有效地减少噪声对信号的影响。
## 五、总结FPGA是一种常用的电子设备,它可以有效地处理外部输入信号,从而避免因由噪声或触发时间过长而导致的误差。
按键消抖原理
按键消抖是指在按下按键后,由于机械原因或者信号干扰等因素导致按键在短时间内出现多次开关状态变化的现象,这种现象会给电子系统带来干扰和误判。
为了避免这种情况的发生,常常采用按键消抖技术。
按键消抖的原理是在按键输入电路中添加一个延时电路和滤波电路,可以在按键按下后延迟一段时间后再检测按键状态,同时通过滤波电路去除掉抖动信号,从而保证按键的稳定性和可靠性。
延时电路可以采用RC延时电路或者数字延时电路,其作用是在按键按下后,延迟一段时间再检测按键状态,这段时间一般为几毫秒至几十毫秒不等。
这样可以保证按键状态稳定后再进行后续处理,避免了抖动信号的影响。
滤波电路可以采用RC滤波电路或者数字滤波电路,其作用是去除掉按键抖动信号,只保留按键真实的状态信号。
这样可以保证按键状态的准确性和可靠性。
总之,按键消抖技术是保证电子系统稳定和可靠运行的重要技术手段。
- 1 -。
简单的说,进入了电子,不管是学纯模拟,还是学单片机,DSP、ARM等处理器,或者是我们的FPGA,一般没有不用到按键的地方。
按键:人机交互控制,主要用于对系统的控制,信号的释放等。
因此在这里,FPGA上应用的按键消抖动,也不得不讲!一、为什么要消抖动在按键被按下的短暂一瞬间,由于硬件上的抖动,往往会产生几毫秒的抖动,在这时候若采集信号,势必导致误操作,甚至系统崩溃;同样,在释放按键的那一刻,硬件上会相应的产生抖动,会产生同样的后果。
因此,在模拟或者数字电路中,我们要避免在最不稳定的时候采集信号,进行操作。
对此一般产用消抖动的原理。
一般可分为以下几种:(1)延时(2)N次低电平计数(3)低通滤波在数字电路中,一般产用(1)(2)种方法。
后文中将详细介绍。
二、各种消抖动1. 模拟电路按键消抖动对于模拟电路中,一般消抖动用的是电容消抖动或者施密特触发等电路,再次不做具体介绍。
2. 单片机中按键消抖动对于单片机中的按键消抖动,本节Bingo根据自己当年写过的单片机其中的一个代码来讲解,代码如下所示:针对以上代码,消抖动的顺序如下所示:(1)检测到信号(2)延时5ms,消抖动(3)继续检测信号,确认是否被按下a) 是,则开始等待释放b) 否,则返回0,退出(4)延时5ms,消抖动(5)确认,返回按下信号,退出当然在单片机中也可以循环计数来确认是否被按下。
Bingo认为如此,太耗MCU 资源,因此再次不做讲述。
3. FPGA中的按键消抖动对于FPGA中的消抖动,很多教科书上都没有讲述。
但Bingo觉得这个很有必要。
对于信号稳定性以及准确性分析,按键信号必须有一个稳定的脉冲,不然对系统稳定性有很大的干扰。
FPGA入门系列实验教程——按键消抖控制LED亮灭1.实验任务实现按键控制LED亮灭。
通过这个实验,掌握采用Verilog HDL语言编程实现按键控制LED亮灭及按键消抖方法。
2.实验环境硬件实验环境为艾米电子工作室型号EP2C8Q208C8增强版开发套件。
软件实验环境为Quartus II8.1开发软件。
3.实验原理当独立按键key1按下后,相应的LED被点亮;再次按下后,LED做翻转输出,即LED熄灭,从而实现按键控制LED亮灭。
本实验对按键进行了消抖处理。
作为机械开关的按键,操作时,机械触点的弹性及电压突跳等原因,在触点闭合或开启的瞬间会出现电压抖动,实际应用中如果不进行处理将会造成误触发。
按键去抖动的关键在于提取稳定的低电平状态,滤除前沿、后沿抖动毛刺。
按键消抖处理一般有硬件和软件两种方法。
软件消抖是检测到有触发后,延时一段时间后再检测触发状态,如果与之前检测到的状态相同,则认为有按键按下;如果没有则认为是误触发。
硬件就是加去抖电路。
4.实验程序module key_debounce(rst_n,clk,key,led);input rst_n;input clk;input key;output led;//通过降采样对key的输入做低通滤波,将其高频分量滤除,得到low_sw值reg[17:0]cnt;always@(posedge clk)if(!rst_n)cnt<=18'd0;elsecnt<=cnt+1'b1;wire sample_pulse=cnt==18'h3ffff;reg low_sw;always@(posedge clk)if(!rst_n)low_sw<=1'b1;else if(sample_pulse)low_sw<=key;//在整个low_sw(active_low)有效过程中取一个控制量作为led的控制信号//本实例中使用low_sw的下降沿reg low_sw_r;//将low_sw信号锁存一个时钟周期,延时不是真的“锁存”always@(posedge clk)low_sw_r<=low_sw;wire led_ctrl=low_sw_r&(!low_sw);reg led;always@(posedge clk or negedge rst_n)if(!rst_n)led<=1'b0;else if(led_ctrl)led<=~led;endmodule5.实验步骤(1)建立新工程项目:打开Quartus II软件,进入集成开发环境,点击File→New project wizard建立一个工程项目key_debounce。
为什么要进行按键消抖按键消抖通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。
因而在闭合及断开的瞬间均伴随有一连串的抖动,为了不产生这种现象而作的措施就是按键消抖。
按键的抖动对于人类来说是感觉不到的,但对单片机来说,则是完全可以感应到的,而且还是一个很"漫长"的过程,因为单片机处理的速度在"微秒"级,而按键抖动的时间至少在“毫秒"级。
一次按键动作的电平波形如下图。
存在抖动现象,其前后沿抖动时间一般在5ms-10ms之间。
由于单片机运行速度非常快,经过A时刻的时候会检测到低电平判断按键被按下。
当到了B时刻的时候,单片机同样会检测到高电平,误以为松开按键,然后又到了C时刻检测到低电平,判断到按键被按下。
周而复始,在5-1Oms内可能会出现很多次按下的动作,每一次按键的动作判断的次数都不相同。
按键闭合或者释放稳定时再读取按键的状态。
硬件消抖电路硬件消抖一般有两种实现方式:ORS触发器O电谷滤波RS触发器利用RS触发器来吸收按键的抖动。
一旦有键按下,触发器立即翻转,触电的抖动便不会再对输出产生影响,按键释放时也一样。
RS触发电路消抖电路图如下。
电容滤波将电容并联在按键的两端,利用电容的放电的延时特性。
将产生抖动的电平通过电容吸收掉。
从而达到消抖的作用,电容消抖电路图如下图所示。
3V3Keyl6Slsw-PBzzLcι'O.IuFGND总结实际上,在没有MCU的情况下,对按键进行消抖通常是通过硬件消抖电路来实现。
而在嵌入式开发中,大多数情况下都是通过程序来实现按键消抖。
简单说就是加合适的延迟,显然这实现成本要比硬件电路方式低得多。
按键消抖原理
按键消抖通俗来说就是在按下或松开按键时,由于机械性能的限制,会出现短时间内多次开关状态的变化,这种现象称为按键抖动。
对于需要按键精准响应的电子设备而言,按键抖动会给正常使用带来很大的干扰。
按键消抖的原理是通过软件算法实现。
一般来说,消抖分为两个阶段:第一阶段叫做消除抖动,第二阶段叫做确认有效。
具体做法是在按键按下时,先等待一段时间(一般为几毫秒),然后读取按键的状态。
如果读取到的状态与第一次读取到的状态相同,就确认按键是有效的;如果读取到的状态与第一次不同,则重新进行第一阶段的消抖处理。
按键消抖的实现方法有多种,其中比较常见的是基于中断处理的方法和基于定时器的方法。
基于中断处理的方法是指在按键按下时,通过中断函数来响应按键事件,并进行消抖处理;基于定时器的方法是指通过定时器设定一定时间,在这段时间内进行按键状态的检测和消抖处理。
无论采用哪种方法,按键消抖的原理都是一样的。
综上所述,按键消抖是通过软件算法实现的,可以有效地消除按键抖动对电子设备的干扰。
在实际应用中,需要根据实际情况选择合适的消抖方法和参数,以达到最佳的按键响应效果。
- 1 -。
实验5 按键消抖1. 实验目的1. 掌握QuartusII的硬件描述语言设计方法2. 了解同步计数器的原理及应用3. 设计一个带使能输入、进位输出及同步清零的增1四位N (N<16)进制同步计数器2. 准备知识在按键使用的过程中,常常遇到按键抖动的问题,开关在闭合(断开)的瞬间,不能一接触就一直保持导通(断开),因为开关的机械特性,重要经历接触-断开-再接触-再断开,最终稳定在接触位置,这就是开关的抖动,即虽然只是按下按键一次然后放掉,结果在按键信号稳定前后,竟出现了一些不该存在的噪声,这样就会引起电路的误动作。
在很多应用按键的场合,要求具有消抖措施。
按键抖动与开关的机械特性有关,其抖动期一般为5-10ms。
图5.1 按键电平抖动示意图按键的消除抖动分为硬件消除抖动和软件消除抖动。
硬件消除抖动一般采用滤波的方法,通常在按键两端并联一个1~10u左右的电容,有时这样也不能完全消除按键的抖动。
软件消除抖动的方法有多种,常用的是延时扫描和定时器扫描。
延时扫描其原理为:检测到按键操作后延时一端时间(如10ms)后,再检测是否为仍然为同样的按键操作状态,如果相同,就认为是进行了按键操作,然后对该操作进行相应的处理。
定时器扫描的原理是:每隔一端时间(几毫秒)扫描一次键盘,如果连续两次(或3次)的所获得的按键状态相同,就输出按键状态,然后再对这种按键状态进行处理,这里的扫描时间间隔和连续判断按键状态的次数是有关系的,一般总时间要大于按键的抖动期。
如果总时间太长,则感觉按键迟钝,太短可能不能完全消除抖动,要根据实际的情况合适的选择。
在实际电路设计中,经常采用的是软硬件相结合对按键进行消除抖动的处理方法。
本实验采用的方法:实验箱按键的硬件电路是共阳极电路,按下按键时输出到FPGA管脚的电平为低电平,松开按键时为高电平。
我们采用5ms的定时器扫描FPGA管脚电平,如果连续3次为低电平时,存储连续按键状态的次数CNT的值加1,直到该计数值等于10(或再大一些),就不再累加(防止长按该值溢出而重新计数),此时认为按键已稳定,输出按键操作标志;在该过程中,一旦FPGA管脚电平为低电平就对CNT复位清零并同时对按键操作标志位复位,即一个异步复位。
按键消抖的原理引言按键消抖是电子设备中常见的一种技术处理方式,用于解决按键在按下或松开时可能出现的多次触发的问题。
本文将介绍按键消抖的原理、常见的实现方法以及应用场景。
什么是按键消抖?当我们按下或松开一个物理按键时,由于按键弹性或机械性能的原因,按键可能会在短时间内多次切换状态。
这种多次切换状态的现象被称为按键抖动。
按键消抖的目的是通过软件或硬件的方式,保证在按下或松开一个按键时,系统只识别一次按键操作,而不是多次。
按键消抖的原理按键消抖的原理是通过延时和状态稳定来处理按键信号。
通常情况下,按键的信号变化是非常快速的,因此需要通过延时来等待按键信号稳定。
延时的时间设置要根据按键的特性及使用环境而定,一般情况下,10毫秒的延时已经足够。
具体的按键消抖原理如下: 1. 监测按键状态:通过采集按键的电压信号或连接处的电流变化,检测按键的状态。
2. 检测按键抖动:将检测到的按键状态与先前的状态进行比较,判断是否出现按键抖动。
3. 延时处理:当检测到按键状态发生变化时,延时一段时间,等待按键信号稳定。
这段时间的长短要根据按键的特性和使用环境来决定。
4. 状态稳定判断:在延时过后,再次检测按键的状态,如果按键状态仍然保持稳定,则判断为有效的按键操作。
常见的按键消抖实现方法为了实现按键消抖,有多种方法可供选择,下面介绍几种常见的实现方式:软件消抖软件消抖是通过编程的方式来实现按键消抖的。
具体步骤如下: 1. 监测按键状态:在软件中定时采集按键状态。
2. 判断按键状态变化:将采集到的按键状态与先前的状态进行比较,判断是否出现按键抖动。
3. 延时处理:在检测到按键状态变化后,延时一段时间,等待按键信号稳定。
这段时间的长短要根据按键的特性和使用环境来决定。
4. 状态稳定判断:在延时过后,再次检测按键的状态,如果按键状态仍然保持稳定,则判断为有效的按键操作。
硬件消抖硬件消抖是通过电路设计来实现按键消抖的。
按键消抖的原理按键消抖是指在按键被按下或松开时,因按键触点的弹性以及机械结构原因,导致按键信号在短时间内频繁抖动,从而产生多次触发信号的现象。
为了有效避免按键抖动对系统带来的干扰和误操作,需要进行按键消抖处理。
按键消抖的原理主要包括硬件消抖和软件消抖两种方式。
硬件消抖是通过在按键电路中添加外部元件实现的。
常见的硬件消抖方式包括使用电容、电感或者滤波器等元件,通过延迟、滤波或者稳定电平等方式来消除按键抖动信号。
电容消抖的原理是利用电容的充放电特性,将抖动的信号通过电容进行延时处理,从而产生稳定的按键触发信号。
电感消抖则是利用电感的滤波特性,通过电感对抖动信号进行滤波处理,从而获得稳定的按键信号。
而滤波器消抖则是通过在电路中加入滤波器元件,对抖动信号进行滤波处理,使得按键信号变得稳定可靠。
硬件消抖的优点是简单可靠,但缺点在于需要占用额外的电路资源和成本,且对于信号干扰抑制能力有一定的限制。
软件消抖是通过程序算法来实现的,常见的软件消抖方式包括延时消抖、状态机消抖和计数器消抖等。
延时消抖的原理是在按键按下后通过一个设定的延时时间来判断按键的有效触发,若在延时时间内未出现抖动信号,则判定为有效触发信号。
状态机消抖是通过设定按键的状态机来判断有效触发信号,只有在按键状态经过一定的稳定转换后才判断为有效触发。
计数器消抖则是通过设定一个计数器,在计数器计数达到一定次数后才判断为有效触发信号。
软件消抖的优点是不需要额外的硬件资源,可灵活性高,但缺点在于需要占用系统的处理器资源和对于时间精度的要求较高。
在实际应用中,通常会结合硬件消抖和软件消抖来实现按键的稳定触发。
例如在按键电路中加入电容滤波器来消除抖动信号,同时在系统程序中采用延时消抖或状态机消抖算法来进一步确保按键信号的稳定可靠。
这样既能保证按键信号的稳定触发,又能兼顾系统的资源和成本。
综上所述,按键消抖是通过硬件或者软件手段对按键信号进行处理,消除由按键触点的弹性抖动引起的干扰信号,从而获得稳定的按键触发信号。
基于verilog按键消抖设计关于键盘的基础知识,我就以下面的一点资料带过,因为这个实在是再基础不过的东西了。
然后我引两篇我自己的博文,都是关于按键消抖的,代码也正是同目录下project里的。
这两篇博文都是ednchina的博客精华,并且在其blog 首页置顶多日,我想对大家会很有帮助的。
键盘的分类键盘分编码键盘和非编码键盘。
键盘上闭合键的识别由专用的硬件编码器实现,并产生键编码号或键值的称为编码键盘,如计算机键盘。
而靠软件编程来识别的称为非编码键盘。
在单片机组成的各种系统中,用的最多的是非编码键盘。
也有用到编码键盘的。
非编码键盘有分为:独立键盘和行列式(又称为矩阵式)键盘。
按键在闭合和断开时,触点会存在抖动现象:从上面的图形我们知道,在按键按下或者是释放的时候都会出现一个不稳定的抖动时间的,那么如果不处理好这个抖动时间,我们就无法处理好按键编码,所以如何才能有效的消除按键抖动呢?让下面的两篇博文日志给你答案吧。
经典的verilog键盘扫描程序拿到威百仕( VibesIC )的板子后就迫不及待的开始我的学习计划,从最基础的分频程序开始,但看到这个键盘扫描程序后,直呼经典,有相见恨晚的感觉,还想说一句:威百仕( VibesIC ),我很看好你!WHY?待我慢慢道来,这个程序的综合后是0error,0warning。
想想自己编码的时候那个warning是满天飞,现在才明白HDL设计有那么讲究了,代码所设计的不仅仅是简单的逻辑以及时序的关系,更重要的是你要在代码中不仅要表现出每一个寄存器,甚至每一个走线。
想想我写过的代码,只注意到了前者,从没有注意过后者,还洋洋自得以为自己也算是个高手了,现在想来,实在惭愧啊!学习学习在学习,这也重新激发了我对HDL设计的激情,威百仕给了我一个方向,那我可要开始努力喽!废话说了一大堆,看程序吧:(本代码经过ise7.1i综合并下载到SP306板上验证通过)//当三个独立按键的某一个被按下后,相应的LED被点亮;再次按下后,LED 熄灭,按键控制LED亮灭`TImescale 1ns/1nsmodule keyscan(clk,rst_n,sw1_n,sw2_n,sw3_n,//outputled_d3,led_d4,led_d5);input clk; //主时钟信号,48MHzinput rst_n; //复位信号,低有效input sw1_n,sw2_n,sw3_n; //三个独立按键,低表示按下output led_d3,led_d4,led_d5; //发光二极管,分别由按键控制// ---------------------------------------------------------------------------reg [19:0] cnt; //计数寄存器always @ (posedge clk or negedge rst_n)if (!rst_n) //异步复位cnt <= 20'd0;elsecnt <= cnt + 1'b1;reg [2:0] low_sw;always @(posedge clk or negedge rst_n)if (!rst_n)low_sw <= 3'b111;else if (cnt == 20'hfffff) //满20ms,将按键值锁存到寄存器low_sw中low_sw <= {sw3_n,sw2_n,sw1_n};// ---------------------------------------------------------------------------reg [2:0] low_sw_r; //每个时钟周期的上升沿将low_sw信号锁存到lo w_sw_r中always @ ( posedge clk or negedge rst_n )if (!rst_n)low_sw_r <= 3'b111;elselow_sw_r <= low_sw;//当寄存器low_sw由1变为0时,led_ctrl的值变为高,维持一个时钟周期wire [2:0] led_ctrl = low_sw_r[2:0] & ( ~low_sw[2:0]);reg d1;reg d2;reg d3;always @ (posedge clk or negedge rst_n)if (!rst_n)begind1 <= 1'b0;d2 <= 1'b0;d3 <= 1'b0;endelsebegin //某个按键值变化时,LED将做亮灭翻转if ( led_ctrl[0] ) d1 <= ~d1;if ( led_ctrl[1] ) d2 <= ~d2;if ( led_ctrl[2] ) d3 <= ~d3;endassign led_d5 = d1 ? 1'b1 : 1'b0; //LED翻转输出assign led_d3 = d2 ? 1'b1 : 1'b0;assign led_d4 = d3 ? 1'b1 : 1'b0;endmodule也许初看起来这段代码似乎有点吃力,好多的always好多的wire啊,而我们通常用得最多的判断转移好像不是主流。
实 验 报 告实验日期: 学 号:姓 名:实验名称:消抖电路总 分:一、实验概述运用LPM 原件定制DFF 触发器,并调用LPM 定制的DFF 触发器,用VHDL 语言的元件例化实现消抖电路并了解其工作原理。
二、实验原理 1、触发器原理触发器是一种可存储1位二进制码的逻辑电路,是构成各种时序电路的最基本逻辑单元。
触发器有一对互补输出端,输出状态不仅与当前输入有关,还与前一输出状态有关。
触发器有两个稳定状态,在一定的外界信号作用下会发生状态翻转。
2、消抖电路原理脉冲按键与电平按键通常采用机械式开关结构,其核心部件为弹性金属簧片。
按键信号在开关拨片与触电接触后经多次弹跳才会稳定,而在按键过程中,可能出现了多个脉冲。
因此需要根据实际情况进行按键消抖处理以提取稳定脉冲,在按键过程中提取稳定的电平状态,通过对抖动脉冲多次检测信号按键电平值,并提取一前一后两个信号按键电平值来进行比较,以此来获取开关状态。
输出一个周期的脉冲时,要求前一次检测到的电平信号为低电平,后一次检测到的电平信号为高电平时。
3、结构图:三、实验设计时钟信号 元件记忆当前的按键信号电平 元件记忆上一次按键信号电平 两次按键的电平进行比较 脉冲信号1、LPM元件定制DFF触发器(1)设置lpm_ff元件选择Installed Plug-Ins→Storage→lpm_ff项。
(2)LPM元件定制步骤,设置输入data为1位,clock为时钟信号,类型为D 型。
(3)添加异步清零和异步置1。
(4)aclr异步清零且高电平有效,aset异步置1且高电平有效,二者无效时,q输出由clock上升沿触发更新为data。
(5)调出其vhd文件添加至消抖电路的工程中。
(6)仿真验证并下载。
功能仿真波形分析参数:end time 为2.0ns,grid size为100ns;信号:alcr 异步清零且高电平有效,二进制;aset异步置1且高电平有效,二进制;二者无效,q(二进制)输出由clock(二进制)上升沿触发更新为data(二进制)。
verilog按键消抖原理
摘要:
1.按键消抖的原理
2.按键消抖的方法
3.基于Verilog 的按键消抖设计
4.结论
正文:
一、按键消抖的原理
按键消抖是指在按键输入过程中,由于按键机械特性和电路特性的影响,导致按键在按下或松开时,信号电平会在一段时间内发生抖动。
为了消除这种抖动,需要采用一定的方法来确认按键输入的稳定性,这就是按键消抖。
二、按键消抖的方法
常见的按键消抖方法有以下几种:
1.硬件消抖:通过硬件电路实现消抖,如使用滤波器、RC 电路等。
2.软件消抖:通过软件算法实现消抖,如使用计数器、计时器等。
3.结合硬件和软件消抖:既使用硬件电路,也使用软件算法来实现消抖。
三、基于Verilog 的按键消抖设计
基于Verilog 的按键消抖设计可以分为以下几个步骤:
1.输入信号处理:对输入的按键信号进行采样,并转化为数字信号。
2.计数器:使用计数器来统计按键信号的持续时间,以判断按键是否稳定。
3.状态判断:根据计数器的计数值来判断按键是按下还是松开。
4.输出信号处理:将判断结果输出,以控制其他电路或设备。
四、结论
按键消抖是电子设备中常见的一种技术,它可以有效地消除按键输入过程中的抖动,提高系统的稳定性和可靠性。
vivado按键消抖原理
按键消抖是指在数字电路中,当按键按下或释放时,由于按键机械开关的特性,会导致电路出现不稳定的信号状态。
这种不稳定状态可能会导致错误的触发,例如出现多次触发或漏触发。
因此,为了确保按键信号的稳定性和可靠性,需要进行按键消抖处理。
按键消抖的原因主要有两个方面。
首先,按键机械开关的接触面存在微小的弹跳现象,当按键按下或释放时,接触面会在短时间内反复接触和分离,导致电路信号出现多次变化。
其次,由于电路中存在的噪声干扰,也会使得按键信号产生抖动。
为了解决按键消抖问题,可以采用硬件和软件两种方法。
硬件方法主要通过添加滤波电路或使用稳定的按键开关来消除按键弹跳现象。
滤波电路可以通过RC电路或者使用专用的按键消抖芯片来实现。
而软件方法主要通过在数字电路中添加按键消抖算法来处理按键信号。
在Vivado中,按键消抖可以通过使用状态机来实现。
状态机是一种用于描述系统行为的模型,可以根据输入信号的状态变化来改变系统的状态和输出。
在按键消抖中,可以使用状态机来检测按键信号的变化,并根据一定的状态转换规则来消除按键弹跳现象。
具体实现时,可以将按键信号作为输入,将按键状态和输出作为状
态机的状态和输出。
当按键信号发生变化时,状态机会根据一定的状态转换规则进行状态转换,并输出消抖后的按键信号。
常用的状态转换规则包括按键按下时状态转换为按下状态,按键释放时状态转换为释放状态,以及连续按键时状态不变。
在Vivado中,可以使用Verilog或VHDL等硬件描述语言来编写状态机代码。
首先,需要定义状态机的输入、输出和状态变量,并初始化各个变量的初始值。
然后,需要编写状态转换规则和输出逻辑,根据输入信号的状态变化来改变状态和输出。
最后,需要将状态机代码综合生成对应的逻辑电路,并进行仿真和验证。
总结起来,按键消抖是数字电路设计中常见的问题,为了确保按键信号的稳定性和可靠性,需要进行按键消抖处理。
在Vivado中,可以使用状态机来实现按键消抖,通过定义状态转换规则和输出逻辑,消除按键弹跳现象。
通过合理的设计和验证,可以实现按键消抖的功能,并提高数字电路的可靠性和稳定性。