金属部品常见不良现象
- 格式:ppt
- 大小:10.24 MB
- 文档页数:40
金属使用过程中遇到的问题和障碍金属在使用过程中可能会遇到多种问题和障碍,这些问题涉及到金属的性质、制造、应用和环境等方面。
以下是一些常见的问题和障碍:1. 腐蚀:金属在潮湿、酸性或碱性环境中容易发生腐蚀,导致金属失去强度和结构完整性。
腐蚀问题需要通过使用抗腐蚀材料、表面涂层或防护措施来解决。
2. 疲劳裂纹:金属在受到交变负载或振动时可能发生疲劳裂纹,降低了金属的寿命。
工程设计中需要考虑到疲劳寿命,并采取相应的设计和工艺措施。
3. 变形和塑性失效:高温或高负荷条件下,金属可能会发生变形或塑性失效,导致部件形状改变或失效。
合适的材料选择、冷热处理等工艺可以缓解这些问题。
4. 热膨胀:金属在受热时会发生膨胀,这可能导致在温度变化较大的环境中出现问题。
合理设计和使用合适的材料可以减轻热膨胀带来的问题。
5. 电化学腐蚀:在电解质存在的条件下,金属可能受到电化学腐蚀,尤其是在一些特殊工业环境中。
合适的防护措施和材料选择是解决这类问题的关键。
6. 应力腐蚀裂纹:在特定环境和应力条件下,金属可能发生应力腐蚀裂纹,导致失效。
控制应力、选择抗应力腐蚀裂纹的材料是解决这类问题的方法。
7. 金属疲劳:在循环加载条件下,金属可能经历多次应力加载导致疲劳。
通过充分了解工作条件、合理设计和定期检测可以减缓金属疲劳引起的问题。
8. 可焊性问题:一些金属在焊接过程中可能出现可焊性问题,如裂纹、气孔等。
适当的焊接工艺和预热措施可以减少这些问题。
9. 环境影响:金属在特殊环境中,如强酸、强碱、高温、高湿等条件下,可能受到影响,导致性能下降或失效。
解决这些问题通常需要综合考虑材料的选择、设计工艺、表面处理、环境管理等方面的因素,以确保金属在使用过程中具有良好的性能和寿命。
铸造制品主要缺陷有偏析、气孔、缩孔与缩松、夹杂、裂纹、冷隔及其他缺陷。
1偏析偏析——在铸件中出现化学成分不均匀的现象。
偏析使铸件的性能不均匀,严重时会造成废品。
偏析可分为两大类:微观偏析和宏观偏析。
晶内偏析(又称枝晶偏析)——是指晶粒内各部分化学成分不均匀的现象,是微观偏析的一种。
凡形成固溶体的合金在结晶过程中,只有在非常缓慢的冷却条件下,使原子充分扩散,才能获得化学成分均匀的晶粒。
在实际铸造条件下,合金的凝固速度较快,原子来不及充分扩散,这样按树枝状方式长大的晶粒内部,其化学成分必然不均匀。
为消除晶内偏析,可把铸件重新加热到高温,并经长时间保温,使原子充分扩散。
这种热处理方法称为扩散退火。
密度偏析(旧称比重偏析)——是指铸件上、下部分化学成分不均匀的现象,是宏观偏析的一种。
当组成合金元素的密度相差悬殊时,待铸件完全凝固后,密度小的元素大都集中在上部,密度大的元素则较多地集中在下部。
为防止密度偏析,在浇注时应充分搅拌或加速金属液冷却,使不同密度的元素来不及分离。
宏观偏析有很多种,除密度偏析之外,还有正偏析、逆偏析、V形偏析和带状偏析等。
偏析金相组织见图1:图1边部灰色处为反偏析区2气孔金属在凝固过程中,气体的溶解度急剧降低,在戮度很大的固态金属中难以逸出而滞留于熔体内形成气孔。
与缩孔缩松的形态不同,气孔一般呈圆形、椭圆形或长条形,单个或成串状分布,内壁光滑。
孔内常见气体有H2、CO、H2O、CO2等。
按气孔在铸锭中出现的位置分为内部气孔、皮下气孔和表面气孔。
气孔的存在减少了铸锭的有效体积和密度,经加工后虽可被压缩变形,但难以焊合,结果造成产品的起皮、起泡、针眼、裂纹等缺陷。
气孔形态金相组织见图2:图2浇铸时由模底和模壁产生的气体来不及逸出而沿结晶方向形成气孔3缩孔与缩松金属在凝固过程中,发生体积收缩,熔体不能及时补充,而在最后凝固的地方出现收缩孔洞,称为缩孔或缩松。
容积大而集中的缩孔称为集中缩孔,细小而分散的缩孔称为缩松,其中出现在晶界和枝晶间借助于显微镜观察的缩松称为显微缩松。
各种材料的常见缺陷各种材料的常见缺陷材料是人类生产、生活中不可或缺的重要基础,包括各种金属、非金属、聚合物等。
然而,无论何种材料,都会存在一些缺陷,这些缺陷会影响到材料的性能和寿命。
下面将介绍各种材料的常见缺陷。
1. 金属材料的常见缺陷(1) 气孔:指金属材料中存在的气体空腔。
气孔的存在会影响材料的强度和韧性,同时也会引起材料的腐蚀。
产生气孔的原因可能是材料熔化温度不足、气体未能完全排出等。
(2) 针孔:指金属材料内部存在的细小孔隙。
针孔虽然很小,但会导致材料在受力时出现脆性断裂。
(3) 夹杂物:指金属材料中未能完全溶解的杂质。
夹杂物会影响材料的强度和塑性,同时也会引起材料的腐蚀。
(4) 结构不均匀:指金属材料内部结构不均匀的缺陷。
这可能是由于金属加工不当或热处理不均匀等原因造成的。
结构不均匀会导致材料发生变形、疲劳等现象。
2. 非金属材料的常见缺陷(1) 孔洞:指非金属材料中的空腔。
孔洞的存在降低了材料的强度和韧性,同时也会引起材料的腐蚀。
(2) 杂质:指非金属材料中存在的不纯物质。
杂质会影响材料的物理、化学性质,导致材料的强度下降和易脆断。
(3) 晶界:指非金属材料晶粒之间的边界。
晶界可以降低材料的强度和韧性,引起材料的疲劳。
(4) 孪晶:指非金属材料中存在的晶体缺陷,使晶体发生旋转或翻转。
孪晶会导致非金属材料的脆性增加。
3. 聚合物材料的常见缺陷(1) 孔洞:指聚合物材料中存在的微小空腔。
孔洞会导致聚合物材料的强度和韧性下降。
(2) 气泡:指聚合物材料中存在的气体泡沫。
气泡会减低聚合物材料的密度,同时也会影响聚合物材料的强度和韧性。
(3) 假晶:指聚合物材料中存在的结晶缺陷。
假晶会导致聚合物材料变得易脆。
(4) 分子链断裂:指聚合物材料中分子链的断裂。
分子链断裂会导致聚合物材料的塑性下降。
总之,无论何种材料,都存在一些缺陷,这些缺陷会影响材料的性能和寿命。
因此,在材料的生产和使用过程中,必须严谨控制和处理有关缺陷,以使材料的性能更加优越,满足各种工业和生活方面的要求。
部分金属材料中常见的缺陷一. 锻件中的常见缺陷及产生的原因:锻件中的缺陷主要来源于两个方面:一种是由铸锭中缺陷引起的缺陷;另一种是锻造过程及热处理中产生的缺陷。
1.1锻件中常见的缺陷类型有:1.1.1缩孔;1.1.2缩松;1.1.3夹杂物;1.1.4裂纹;1.1.5折叠;1.1.6白点。
1.2 锻件中常见缺陷产生的原因及常出现的部位:1.2.1缩孔:它是铸锭冷却收缩时在头部形成的缺陷,锻造时因切头量不足而残留下来,多见于轴类锻件的头部, 具有较大的体积,并位于横截面中心, 在轴向具有较大的延伸长度。
1.2.2缩松:它是在铸造凝固收缩时形成的孔隙和孔穴, 在锻造过程中因变形量不足而未被消除, 缩松缺陷多出现在大型锻件中。
1.2.3夹杂物: 根据其来源或性质夹杂物又可分为: 内在非金属夹杂物、外来非金属夹杂物、金属夹杂物。
内在非金属夹杂物是铸锭中包含的脱氧剂、金属元素等与气体的反产物,尺寸较小,常被熔液漂浮,挤至最后凝固的铸锭中心及头部。
外来非金属夹杂物是冶炼、浇注过程中混入的耐火材料或杂质,故常混杂于铸锭下部,偶然落入的非金属夹杂则无确定位置。
金属夹杂物是冶炼时加入合金较多且尺寸较大,或者浇注时飞溅小粒或异种金属落入后又未被全部熔化而形成的缺陷。
1.2.4裂纹:锻件中裂纹形成的原因很多,按形成的原因,裂纹的种类可大致分为以下几种:1.2.4.1因冶炼缺陷(如缩孔残余)在锻造时扩大形成的裂纹。
1.2.4.2锻件工艺不当(如加热、加热速度过快、变行不均匀、变行过大、冷却速度过快等)而形成的裂纹。
1.2.4.3热处理过程中形成的裂纹:如淬火时加热温度较高,使锻件组织粗大淬火时可能产生裂纹;冷却不当引起的开裂,回火不及时或不当,由锻件内部残余力引起的裂纹。
1.2.5折叠:热金属的凸出部位被压折并嵌入锻件表面形成的缺陷,多发生在锻件的内圆角和尖角处。
折叠表面是氧化层,能使该部位的金属无法连接。
1.2.6白点:锻件中由于氢的存在所产生的小裂纹称为白点。
钢铁材料常见缺陷及其产生原因随着工业的发展,钢铁材料在现代生产中扮演着重要的角色,然而,由于制造过程中各种因素的影响,钢铁材料常常会出现各种不同的缺陷,这些缺陷不仅会影响到材料的性能,还会影响到整个工业制造的安全可靠性,因此,对于钢铁材料常见缺陷及其产生原因的研究尤为重要。
一、夹杂物夹杂物是钢铁材料常见的缺陷之一,夹杂物是指非金属物质或金属物质在钢铁材料中嵌入的细小零散物质,在材料测试中,夹杂物体现出来就是材料断口上能够清晰的看到夹杂物的痕迹。
夹杂物会对钢铁材料的性能造成严重影响,如:导致脆性断裂、降低材料的延展性以及韧性等。
夹杂物的产生原因有很多种,其中常见的有:1. 生产过程中的污染:在钢铁生产过程中,可能因为各种原因,引入了一些杂质物质,从而进一步导致了杂质进入钢铁材料中。
2. 溶液成分不均匀:在钢铁的溶液中,可能存在成分不均匀的现象,这也会导致一些杂质物质的产生。
3. 结晶不完整:钢铁材料在冷却过程中,如结晶不完整,也会在材料中产生一些夹杂物。
二、气孔随着钢铁材料的发展,气孔的产生已经得到了有效的控制,然而,仍然有不少的气孔存在,它们会对钢铁材料的性能造成很大的影响,如:导致表面缺陷、破坏焊接或者表面处理的效果等。
气孔的产生原因有很多种,其中常见的有:1. 气泡未完全排出:在钢铁的铸造过程中,气泡未完全排出,热固态的过程中,逐渐成为气孔。
2. 易氧化元素的存在:在钢铁的冶炼过程中,如硅、锰等易氧化的元素,若存在在钢铁中,会在钢铁冷却时容易吸收氧气而产生气泡。
3. 处理不当:在钢铁材料加工中,如果加工的温度不够稳定,或者加工后没有进行合适的气体排放处理,也会在材料中产生气孔。
三、裂缝裂缝是钢铁材料常见的缺陷之一,绝大多数情况下都会影响到钢铁材料的性能与使用寿命,从而带来不必要的经济损失。
裂缝的产生原因有很多种,其中常见的有:1. 加工中的过度拉伸:在加工钢铁材料的过程中,如过度的拉伸,也会使材料出现裂缝现象。
引起失效的常见缺陷铸态金属组织缺陷铸态金属常见的组织缺陷有缩孔、疏松、偏忻、内裂纹、气泡和白点等。
1.缩孔金属在冷凝过程中由于体积的收缩而在铸锭或铸件心部形成管状(或喇叭状)或分散的孔洞,称为缩孔。
缩孔的相对体积与与液态金属的温度、冷却条件以及铸件的大小等有关。
液态金属的温度越高,则液体与固体之间的体积差越大,而缩孔的体积也越大。
向薄壁铸型中浇注金属时,型壁越薄、则受热越快,液态金属越不易冷却,在刚浇完铸型时,液态金属的体积也越大,金属冷凝后的缩孔也就越大。
2.疏松在急速冷却的条件下浇注金属,可避免在铸锭上部形成集中缩孔,但此时液体金属与固态金属之间的体积差仍保持一定的数值,虽然在表面上似乎已经消除了大的缩孔,可是有许多细小缩孔即疏松,分布在金属的整个体积中。
钢材在锻造和轧制过程中,疏松情况可得到很大程度的改善,但若由于原钢锭的疏松较为严重、压缩比不足等原因,则在热加工后较严重的疏松仍会存在。
此外,当原钢锭中存在着较多的气泡,而在热轧过程中焊合不良,或沸腾钢中的气泡分布不良,以致影响焊合,亦可能形成疏松。
疏松的存在具有较大的危害性,主要有以下几种:(1)在铸件中,由于疏松的存在,显著降低其力学性能,可能使其在使用过程中成为疲劳源而发生断裂。
在用作液体容器或管道的铸件中,有时会存在基本上相互连接的疏松,以致不能通过水压试验,或在使用过程中发生渗漏现象;(2)钢材中如存在疏松,亦会降低其力学性能,但因在热加工过程中一般能减少或消除疏松,故疏松对钢材性能的影响比铸件的小;(3)金属中存在较严重的疏松,对机械加工后的表面粗糙度有一定的影响。
3.偏析金属在冷凝过程中,由于某些因素的影响而形成的化学成分不均匀现象称为偏析。
偏析分为晶内偏析、晶间偏析、区域偏析、比重偏析。
由于扩散不足,在凝固后的金属中,便存在晶体范围内的成分不均匀现象,即晶内偏析。
基于同一原因,在固溶体金属中,后凝固的晶体与先凝固的晶体成分也会不同,即晶间偏析。