完全平方公式因式分解
- 格式:ppt
- 大小:490.50 KB
- 文档页数:34
因式分解学案:用完全平方公式进行因式分解学案导语因式分解是数学中的重要内容之一,它有助于我们研究多项式的性质和解决实际问题。
在因式分解中,完全平方公式是一项非常有用的工具。
本学案将重点介绍如何使用完全平方公式进行因式分解,并结合一些实际例子来帮助学生更好地理解和掌握。
一、什么是完全平方公式完全平方公式是一种用于因式分解的工具,它能够将一个二次多项式分解为两个完全平方的乘积。
完全平方公式的一般形式为:$a^2+2ab+b^2=(a+b)^2$其中,$a$和$b$为任意实数。
二、应用完全平方公式进行因式分解的步骤使用完全平方公式进行因式分解的步骤如下:1. 首先,观察多项式是否符合完全平方公式的形式。
即判断多项式中是否存在两个项的和的平方。
2. 如果存在两个项的和的平方,将多项式化简为完全平方形式。
3. 将多项式因式分解为两个完全平方的乘积。
下面通过具体的例子来详细说明应用完全平方公式进行因式分解的步骤。
例子1:将多项式$x^2+6x+9$进行因式分解。
解:观察多项式,我们发现其中的三项的和构成了一个完全平方。
$x^2+6x+9$可以化简为$(x+3)^2$。
因此,多项式$x^2+6x+9$的因式分解为$(x+3)(x+3)$。
例子2:将多项式$x^2-10x+25$进行因式分解。
解:观察多项式,我们发现其中的三项的和构成了一个完全平方。
$x^2-10x+25$可以化简为$(x-5)^2$。
因此,多项式$x^2-10x+25$的因式分解为$(x-5)(x-5)$。
通过以上两个例子,我们可以发现,完全平方公式能够帮助我们将一个二次多项式分解为两个完全平方的乘积,从而简化计算和分析的过程。
三、完全平方公式在实际问题中的应用完全平方公式不仅仅是一种数学工具,它也有着广泛的应用。
下面通过一个实际问题来展示完全平方公式的应用。
问题:一块长方形的草坪,长为$x+5$米,宽为$x$米。
假设整个草坪是用来修剪的,修剪时只修剪草坪周边的一段宽度为$x$米的土地。
完全平方公式因式分解
完全平方公式即(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解等)。
完全平方公式:
两数和的平方,等于它们的平方和加上它们的的积的2倍。
(a+b)²=a²﹢2ab+b²
两数差的平方,等于它们的平方和减去它们的积的二倍。
﹙a-b﹚²=a²﹣2ab+b²
扩展:
掌握用完全平方公式因式分解的特征.
(1)完全平方式:形如的多项式称为完全平方式.
(2)完全平方公式:公式中的a,b不仅可以表示数字、_____, 也可以是_____.
(3)公式的特征:左边由三项组成,其中有两项分别是某两个数(或式)的平方,另一项是上述两数(或式)的_____,符号可正可负;右边是两项和(或差)的平方.
【解析】
完全平方公式:.公式中的a,b,不仅可以表示数字、单项式,也可以是多项式.
(公式的特征:左边由三项组成,其中有两项分别是某两个数(或式)的平方,另一项是上述两数(或式)的乘积的倍,符号可正可负;右边是两项和(或差)的平方. 【答案】
(2)单项式,多项式.(3)乘积的倍.。
⽤完全平⽅公式来因式分解的特点:
⽤完全平⽅公式来因式分解的特点:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a -b)2
1)多项式是三项式
2)有两项都为正且能够写成平⽅的形式
3)另⼀项是刚才写成平⽅项两底数乘积的2倍,但这⼀项可以是正,也可以是负
4)等号右边为两平⽅项底数和或差的平⽅。
判断下列各式是不是完全平⽅式,并说出理由。
练习:1、 判断下列各式是不是完全平⽅式,并说出理由。
(1)a2-4a+4 (2 )x2+4x+4y2
(3 )4a2+2ab+ b2 (4 )a2-ab+b2
(5 )x2-6x-9 (6 )a2+a+0.25
2、将下列各式分解因式:
1、x2+6x+9
2、4x2-20x+25
3、25x4+10x2+1
4、-x2-4y2+4xy
5、 3ax2+6axy+3ay2
⼩结:我学到了如何将完全平⽅式分解因式,遇到三项式中有两项符号相同且能化成平⽅的形式,另⼀项为这两个数的积的2⼩结:
倍的形式,如果能化成平⽅项是负的,⾸先将负号提取再分解。
第⼆项是正的就是两数的和的平⽅,第⼆项是负的就是两数差的平⽅。
要注意有公因式可提取的先提取公因式,然后再分解,同时根据第⼆项的符号来选⽤合适的公式。
因式分解完全平方公式例题因式分解是数学中一个重要的概念,完全平方公式是因式分解中的一个常用方法。
在这篇文章中,我们将介绍完全平方公式的基本原理,并用例题加以说明。
完全平方公式是指一个二次三项式的平方能够被因式分解为两个平方的和或差。
这个公式的应用范围广泛,不仅在代数中有用,还在实际问题中有很多应用。
完全平方公式的一般形式是(a + b)^2 = a^2 + 2ab + b^2,其中a 和b是任意实数。
这个公式可以简单地证明,我们可以用分配律展开(a + b)^2,得到a^2 + ab + ab + b^2,然后合并相同项,即得到a^2 + 2ab + b^2。
使用完全平方公式的基本步骤是,首先将待因式分解的二次三项式写成完全平方的形式,然后根据公式进行因式分解。
下面我们通过一些例题来说明完全平方公式的应用。
例题1:将x^2 + 6x + 9进行因式分解。
解:我们看到这个三项式的第一项是x的平方,第二项是2倍x的系数,第三项是3的平方,符合完全平方公式的形式。
所以我们可以将这个三项式写成(x + 3)^2的形式。
因此,x^2 + 6x + 9 = (x + 3)^2。
例题2:将4x^2 - 12x + 9进行因式分解。
解:我们可以先将这个三项式除以4,得到x^2 - 3x + 9/4。
然后我们观察x^2和9/4,可以发现这两个项的平方能够得到x^2和9/4,而-3x这个项正好是2倍x乘以-3/2的结果。
所以我们可以将这个三项式写成(x - 3/2)^2的形式。
因此,4x^2 - 12x + 9 = (2x - 3)^2。
例题3:将x^2 - 4x + 4进行因式分解。
解:我们可以将这个三项式写成(x - 2)^2的形式。
因此,x^2 - 4x + 4 = (x - 2)^2。
通过以上例题,我们可以看到完全平方公式在因式分解中的应用。
当我们遇到二次三项式时,如果我们能够将其写成完全平方的形式,就可以直接使用完全平方公式进行因式分解。
因式分解的五个公式导读a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a& ...因式分解有哪些公式?因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)平方差公式:a²-b²=(a+b)(a-b)推导过程:a²-b²=a²+ab-(b²+ab)=a(a+b)-b(a+b)=(a+b)(a-b)说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。
应该问哪些方法!常见的有:(1)提取公因式法(2)公式法(3)十字相乘法(4)分组分解法……因式分解的方法因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)因式分解原则:1.因式分解因子是多项式的常数变形,要求方程的左边必须是多项式。
运用完全平方公式分解因式完全平方公式是指一个二次多项式的平方可以进行因式分解成两个一次多项式之和,并且这两个一次多项式都是该二次多项式的根。
设二次多项式为$ax^2+bx+c$,其中$a\neq0$。
根据完全平方公式,可以将其因式分解为$(px+q)^2$的形式,其中$p$和$q$分别表示两个一次多项式的系数。
根据完全平方公式进行因式分解的步骤如下:1. 计算二次项的系数:$p=\sqrt{a}$。
2. 计算常数项的系数:$q=\frac{b}{2\sqrt{a}}$。
3. 将一次项表示为$p$和$q$的线性组合:$bx=c(q+px)$。
这一步是将一次项表示为两个一次多项式的和的形式。
对于一个给定的二次多项式,如果其平方形式与完全平方公式的形式相同,则可以直接确定因式分解。
否则,需要对二次多项式进行平方操作,然后根据完全平方公式进行因式分解。
下面以两个例子来说明完全平方公式的应用。
例子1:将$4x^2+4x+1$进行因式分解。
步骤1:计算二次项的系数:$p=\sqrt{4}=2$。
根据以上步骤,可以将$4x^2+4x+1$分解为$(2x+1)^2$。
例子2:将$9x^2-12x+4$进行因式分解。
步骤1:计算二次项的系数:$p=\sqrt{9}=3$。
根据以上步骤,可以将$9x^2-12x+4$分解为$(3x-2)^2$。
除了完全平方公式,还可以使用差平方公式和平方差公式进行因式分解。
差平方公式是指一个二次多项式可以进行因式分解成两个一次多项式之差的平方,并且这两个一次多项式都是该二次多项式的根。
平方差公式是指一个二次多项式可以进行因式分解成两个一次多项式的平方差的形式,并且这两个一次多项式都是该二次多项式的根。
完全平方公式、差平方公式和平方差公式是进行因式分解的重要工具。
在解决实际问题中,常常会遇到需要进行因式分解的情况。
因此,熟练掌握这些公式的应用是很重要的。
完全平方公式推导公式
完全平方公式是一种用于因式分解的数学公式,用于将一个二次多项式因式分解为两个一次多项式的乘积。
假设我们有一个二次多项式 ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
完全平方公式的表达式为:
ax^2 + bx + c = (mx + n)^2。
其中 m 和 n 是实数。
要推导完全平方公式,我们可以按照以下步骤进行:
1. 将二次项系数 a 除以 2,并记为 m,即 m = b/2a。
2. 将 m 带入完全平方公式的形式中得到 (mx + n)^2。
3. 展开 (mx + n)^2,得到 mx^2 + 2mnx + n^2。
4. 将 mx^2 + 2mnx + n^2 与原始的二次多项式 ax^2 + bx +
c 进行比较,得到以下等式:
ax^2 + bx + c = mx^2 + 2mnx + n^2。
通过比较系数,我们可以得到以下结果:
a = m.
b = 2mn.
c = n^2。
5. 根据以上结果解出 n,得到n = √c。
6. 将 n 带入 b = 2mn 中,解出 m,得到m = b/2√c。
因此,我们得到了完全平方公式的推导过程,即:
ax^2 + bx + c = (mx + n)^2。
其中 m = b/2a,n = √c。
这就是完全平方公式的推导过程,它可以帮助我们将二次多项式因式分解为两个一次多项式的乘积。