河北省武邑中学高中数学 均匀随机数的产生教案教案 新人教A版必修3
- 格式:doc
- 大小:384.00 KB
- 文档页数:5
均匀随机数的产生
1、教学任务分析
(1)通过本节课的学习让学生知道如何利用计算器或计算机Excel软件产生均匀随机数,并会利用随机模拟方法估计未知量.
(2)通过本节课学习让学生学会建立严格的几何模型来解决多元的几何概型问题。
(3)这是概率必修章节的最后一个知识点,前面已经学过了(整数值)随机数的产生和用蒙特卡罗模拟方法估计概率值.本节的主要思路是对照前面学过的知识让学生自主思考、设计方案。
(4)用随机模拟法估计未知量.例3是圆周率的估计,例4则是不规则平面图形面积的估计.
(5)建立严格的几何模型,解决例1中涉及到的两元几何概型问题.
2.教学重点与难点
重点:
(1) 均匀随机数的产生,设计模型并运用随机模拟法估计未知量;
(2) 转化为严格的几何概型再分析上述问题.
难点:
(1) 如何设计随机模拟法;(2) 如何转化为严格的几何概型问题.
3.教学流程
4.教学情境设计。
3.3.2 均匀随机数的产生教材分析本节内容是数学必修三第三章 概率 3.3.2均匀随机数的产生, 本节课在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用.通过对本节课例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。
课时分配本节内容用1课时的时间完成,主要讲解利用计算器(计算机)产生均匀随机数的方法;利用均匀随机数解决具体的有关概率的问题。
教学目标重 点: 掌握[0,1]上均匀随机数的产生及[a,b ]上均匀随机数的产生。
学会采用适当的随机模拟法去估算几何概率。
难 点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。
知识点:通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法。
能力点:利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率。
教育点:通过随机模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养逻辑 思维能力和探索创新能力。
自主探究点:在信息技术环境下,通过算法解决大量重复模拟试验中的数据统计问题,得出问题的解的估计值,并由此进一步体会随机模拟方法、算法思想以及从特殊到一般的数学研究过程。
易错易混点:在计算器上用rand()产生(0,1)之间的随机数不是什么难事,但产生任意区间(a,b )上的 随机数涉及线性变换,这是学生不易处理的问题,容易出错。
教具准备 多媒体课件一、引入新课复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?(4)列举几个简单的几何概型例子?【师生活动】(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.(3)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A (4)几何概型例子:长3米的绳子被剪刀随机剪一次,问两段长度都不小于1米的概率?在这个几何概型中,随机剪绳子可以抽象成数学模型:从区间(0,3)中随机取一个数,由此引出今天的学习的内容,均匀随机数。
3.3.2均匀随机数的产生授课日期: 姓名: 班级: 一、学习目标1.知识与技能:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率2.进一步体会几何概型的意义2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、学习重难点重点:均匀随机数的产生,设计模型并运用随机模拟方法估计未知量.难点:如何把未知量的估计问题转化为随机模拟问题.三、学法指导1.通过对本节知识的探究与学习,感知用图形解决概率问题的方法;阅读教材137—140页完成导学案 2.小班完成100%,重点班完成90%,平行班完成80%。
四、知识链接1.几何概型的特点:⑴⑵2.在几何概型中, P(A)=五、学习过程A问题1:我们常用的是[0,1]上的均匀随机数,阅读教材137页了解利用计算器产生0~1之间的均匀随机数的方法.(一) 利用随机模拟的方法估计几何概型中随机事件的概率值;B例1:假如你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作的时间是在早上7:00~8:00,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?解法一:几何概型法解法二:随机模拟法(二)利用随机模拟方法估计几何图形的面积B例2:在如右图所示的正方形盘子中随机的撒一把豆子,用随机模拟的方法估计圆周率的值。
B例3:利用随机模拟方法计算由y=1和y=x2 所围成的图形的面积.六、达标训练B1. 甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。
求二人能会面的概率。
3.2.2 (整数值)随机数的产生一、教学目标:1、知识与技能:(1)了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法;(2)能用模拟的方法估计概率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。
二、重点与难点:重点:随机数的产生;难点:利用随机试验求概率.三、教学过程(一)、引入情境:历史上求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢?我们可以用随机模拟试验,代替大量的重复试验,节省时间.本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率.(二)、产生随机数的方法:1.由试验(如摸球或抽签)产生随机数例:产生1—25之间的随机整数.(1)将25个大小形状相同的小球分别标1,2, …,24, 25,放入一个袋中,充分搅拌(2)从中摸出一个球,这个球上的数就是随机数2.由计算器或计算机产生随机数由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,而叫伪随机数由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。
(三)、利用计算器怎样产生随机数呢?例1: 产生1到25之间的取整数值的随机数.解:具体操作如下:第一步:MODE—→MODE—→MODE—→1—→0—→第二步:25—→SHIFT—→RAN#—→+—→0.5—→=第三步:以后每次按“=”都会产生一个1到25的取整数值的随机数.工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,“0”表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;第二步是把计算器中产生的0.000~0.999之间的一个随机数扩大25倍,使之产生0.000—24.975之间的随机数,加上“+0.5”后就得到0.5~25.475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。
河北武邑中学教师课时教案备课人授课时间课题3.3.2均匀随机数的产生课标要求会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率教学目标知识目标(1)通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;(2)掌握利用计算器(计算机)产生均匀随机数的方法;(3)会利用均匀随机数解决具体的有关概率的问题(4)理解随机模拟的基本思想是用频率估计概率技能目标1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯.2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力.情感态度价值观通过本节的学习,自觉养成动手、动脑的良好习惯,养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力.重点掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率.难点利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.教学过程及方法问题与情境及教师活动学生活动一、导入新课1、复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?2、在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生.二、新课讲授:提出问题(1)请说出古典概型的概念、特点和概率的计算公式?(2)请说出几何概型的概念、特点和概率的计算公式?(3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢?(4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数.(5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数.教学过程及方法问题与情境及教师活动学生活动 (6)[a,b]上均匀随机数的产生.活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导.讨论结果:(1)在一个试验中如果a.试验中所有可能出现的基本事件只有有限个;(有限性)b.每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classicalmodels of probability),简称古典概型.古典概型计算任何事件的概率计算公式为:P(A)=基本事件的总数数所包含的基本事件的个A.(2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.几何概型的概率公式:P(A)=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A.(3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得到所求事件的概率,对于几何概型应当也可.(4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数),方法如下:试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.(5)a.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.b.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数.(6)[a,b]上均匀随机数的产生:利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随教学过程及方法问题与情境及教师活动学生活动三、例题讲解:例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利用计算机产生B是0—1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A是0—1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A>B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算.解法一:1.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.2.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷键,则在A2—A50,B1—B50的数均为[0,1]之间的均匀随机数.用A列的数加7表示父亲离开家的时间,B列的数加6.5表示报纸到达的时间.这样我们相当于做了50次随机试验.3.如果A+7>B+6.5,即A-B>-0.5,则表示父亲在离开家前能得到报纸.4.选定D1格,键入“=A1-B1”;再选定D1,按Ctrl+C,选定D2—D50,按Ctrl+V.5.选定E1格,键入频数函数“=FREQUENCY(D1:D50,-0.5)”,按Enter键,此数是统计D列中,比-0.5小的数的个数,即父亲在离开家前不能得到报纸的频数.6.选定F1格,键入“=1-E1/50”,按Enter键,此数是表示统计50次试验中,父亲在离开家前能得到报纸的频率.教学过程及方法问题与情境及教师活动学生活动解法二:(见教材138页)例 2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值.解法1:(见教材139页)解法2:(1)用计算机产生两组[0,1]内均匀随机数a1=RAND(),b1=RAND().(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2.(3)数出落在圆x2+y2=1内的点(a,b)的个数N1,计算π=NN14(N代表落在正方形中的点(a,b)的个数).点评:可以发现,随着试验次数的增加,得到圆周率的近似值的精确度会越来越高,利用几何概型并通过随机模拟的方法可以近似计算不规则图形的面积.例3 利用随机模拟方法计算下图中阴影部分(y=1和y=x2所围成的部分)的面积.四、课堂练习:教材140页练习:1、2教学小结均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.课后反思。
河北省武邑中学高中数学(整数值)随机数(random numbers)的产生教案新人教A版必修3一、导入新课:复习上一节课的内容:(1)古典概型.我们将具有①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.(2)古典概型计算任何事件的概率计算公式: P (A )=基本事件的总数数所包含的基本事件的个A .本节课我们学习(整数值)随机数的产生二、新课讲解: 1提出问题(1)在掷一枚均匀的硬币的试验中,如果没有硬币,你会怎么办?(2)在掷一枚均匀的骰子的试验中,如果没有骰子,你会怎么办?(3)随机数的产生有几种方法,请予以说明.(4)用计算机或计算器(特别是TI 图形计算器)如何产河北武邑中学教师课时教案学过程及方法①由试验产生的随机数:例如我们要产生1—10之间的随机数,可以把意地抽出其中一张,这张纸上的数就是随机数.这种产生随机数的方法比较直观,不过当随机数的量比较大时,就不方便,因为速度太慢.②用计算机或计算器(特别是TI图形计算器)产生随机数:利用计算机程序算法产生,具有周期性(周期很长),具有类似随机数性质,称为伪随机数.在随机模拟时利用计算机产生随机数比较方便.2.介绍各种随机数的产生.(1)计算器产生随机数下面我们介绍一种如何用计算器产生你指定的两个整数之间的取整数值的随机数.例如,要产生1—25之间的取整数值的随机数,按键过程如下:以后反复按键,就可以不断产生你需要的随机数.同样地,我们可以用0表示反面朝上,1表示正面朝上,利用计算器不断地产生0,1两个随机数,以代替掷硬币的试验.按键过程如下:河北武邑中学教师课时教案教学过程及方法问题与情境及教师活动学生活动上面我们用计算机或计算器模拟了掷硬币的试验,我们称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗(Monte Carlo)方法.三,例题讲解例6:天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?活动:这里试验出现的可能结果是有限个,但是每个结果的出现不是等可能的,所以不能用古典概型求概率的公式.用计算器或计算机做模拟试验可以模拟下雨出现的概率是40%.解:课本132页本例题的目的是要让学生体会如何利用模拟的方法估算概率.解决步骤:(1)建立概率模型:模拟每一天下雨的概率为40%,有很多方以体现下雨的概率为40%.(2)进行模拟实验,可以用Excel软件模拟的结果(模拟20个):可用函数“RANDBETWEEN(1,20)”.学生活动教学小结(1)了解随机数的概念;(2)利用计算机产生随机数,并能直接统计出频数与频率.。
高一数学专用学案 3.3.2 均匀随机数的产生学而不思则罔,思而不学则殆【学习目标】1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率2.进一步体会几何概型的意义【知识回顾】1.几何概型的特点:⑴⑵2.在几何概型中,P(A)= —————————————————————————3.甲、乙两辆货车停靠站台后卸货时间分别是6小时和4小时,求有一辆货车停靠站台是必须等待一段时间的概率。
【探索新知】1.如何用计算器能产生[0,1]之间的均匀随机数,怎样产生[2,10]之间的均匀随机数呢?2.写出用计算器产生[a,b]之间的均匀随机数的过程【例题学习】1.认真阅读研究例2、例3、例4,完成下列问题:①例2中如何用随机模拟的方法计算事件A的概率②在例3中是怎样用计算器随机模拟方法求π的近似值的③仿照例3中用计算器随机模拟方法写出解题过程【巩固练习】1.甲、乙两辆货车停靠站台后卸货时间分别是6小时和4小时,用随机模拟方法求有一辆货车停靠站台是必须等待一段时间的概率。
2.如图,在长为4宽为2的矩形中有一以矩形为直径的半圆,试用随机模拟法计算半圆的面积,并估计π的近似值3.P137练习T3【拓展提高】1.已知地铁列车每10分钟一班,在车站停1分钟,求乘客到达站台立即上车的概率2.箱子里装有5个黄球,5个白球,现在有放回的去球,求取出的是黄球的概率。
如果是用计算机模拟该试验,请写出算法3.利用随机模拟的方法近似计算图形的面积:y = x²+1与y = 6围成的图形的面积。
【总结归纳】【作业预习】1.作业:习题3.3 A组T3 B组T12.预习:回顾第三章内容,并加以复习小结。
wenjian§3.3.2 均匀随机数de产生一、教材分析本节在学生已经掌握几何概型de基础上,来学习解决几何概型问题de又一方法,本节课de教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑de习惯,对于学生辩证思想de进一步形成,具有良好de作用.通过对本节例题de模拟试验,认识用计算机模拟试验解决概率问题de方法,体会到用计算机产生随机数,可以产生大量de随机数,又可以自动统计试验de结果,同时可以在短时间内多次重复试验,可以对试验结果de随机性和规律性有更深刻de认识.二、教学目标1、知识与技能:(1)了解均匀随机数de概念;(2)掌握利用计算器(计算机)产生均匀随机数de方法;(3)会利用均匀随机数解决具体de有关概率de问题.2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识de形成,学会应用数学知识来解决问题,体会数学知识与现实世界de联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题de方法,自觉养成动手、动脑de良好习惯。
3、情感态度与价值观:本节课de主要特点是随机试验多,学习时养成勤学严谨de学习习惯。
三、重点难点教学重点:掌握[0,1]上均匀随机数de产生及[a,b]上均匀随机数de产生.学会采用适当de随机模拟法去估算几何概率.教学难点:利用计算器或计算机产生均匀随机数并运用到概率de实际应用中.四、课时安排1课时五、教学设计(一)导入新课思路1在古典概型中我们可以利用(整数值)随机数来模拟古典概型de问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型de试验呢?引出本节课题:均匀随机数de产生.思路2复习提问:(1)什么是几何概型?(2)几何概型de概率公式是怎样de?(3)几何概型de特点是什么?这节课我们接着学习下面de内容,均匀随机数de产生.(二)推进新课、新知探究、提出问题(1)请说出古典概型de概念、特点和概率de计算公式?(2)请说出几何概型de概念、特点和概率de计算公式?(3)给出一个古典概型de问题,我们除了用概率de计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样de处理方法呢?(4)请你根据整数值随机数de产生,用计算器模拟产生[0,1]上de均匀随机数.(5)请你根据整数值随机数de产生,用计算机模拟产生[0,1]上de均匀随机数.(6)[a,b]上均匀随机数de产生.wenjian 1。
河北省武邑中学高中数学均匀随机数的产生教案教案新人教A版必修3
河北省武邑中学高中数学均匀随机数的产生教案教案新人教A版必
学
过
程
及
方
法
(6)[a,b]上均匀随机数的产生.
活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导.
讨论结果:
(1)在一个试验中如果
a.试验中所有可能出现的基本事件只有有限个;(有限性)
b.每个基本事件出现的可能性相等.(等可能性)
我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.
古典概型计算任何事件的概率计算公式为:P(A)
=
基本事件的总数
数
所包含的基本事件的个
A
.
(2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何
区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.
几何概型的基本特点:
a.试验中所有可能出现的结果(基本事件)有无限多个;
b.每个基本事件出现的可能性相等.
几何概型的概率公式:P(A)
=
)
(
)
(
面积或体积
的区域长度
试验的全部结果所构成
面积或体积
的区域长度
构成事件A
.
(3)我们可以用计算机或计算器模拟试验产生整数值随机数来近似地得
到所求事件的概率,对于几何概型应当也可.
(4)我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1
之间的均匀随机数(实数),方法如下:
试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟.
(5)a.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随
机产生的[0,1]之间的均匀随机数.
b.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷
键,则在A2—A50, B1—B50的数均为[0,1]之间的均匀随机数.
(6)[a,b]上均匀随机数的产生:
利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,
然后利用伸缩和平移变换,X=X*(b-a)+a就可以得到[a,b]上的均匀随机数,试验结果是[a,b]内任何一实数,并且是等可能的.
学
过
程
及
方
法
三、例题讲解:
例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?
活动:用计算机产生随机数模拟试验,我们可以利用计算机产生0—1之间的均匀随机数,利用计算机产生B是0—1的均匀随机数,则送报人送报到家的时间为B+6.5,利用计算机产生A是0—1的均匀随机数,则父亲离家的时间为A+7,如果A+7>B+6.5,即A>B-0.5时,事件E={父亲离家前能得到报纸}发生.也可用几何概率的计算公式计算.
解法一:1.选定A1格,键入“=RAND()”,按Enter键,则在此格中的数是随机产生的[0,1]之间的均匀随机数.
2.选定A1格,按Ctrl+C快捷键,选定A2—A50,B1—B50,按Ctrl+V快捷
键,则在A2—A50,B1—B50的数均为[0,1]之间的均匀随机数.用A列的数加7表示父亲离开家的时间,B列的数加6.5表示报纸到达的时间.
这样我们相当于做了50次随机试验.
3.如果A+7>B+6.5,即A-B>-0.5,则表示父亲在离开家前能得到报纸.
4.选定D1格,键入“=A1-B1”;再选定D1,按Ctrl+C,选定D2—D50,按
Ctrl+V.
5.选定E1格,键入频数函数“=FREQUENCY(D1:D50,-0.5)”,按Enter
键,此数是统计D列中,比-0.5小的数的个数,即父亲在离开家前不能得到报纸的频数.
6.选定F1格,键入“=1-E1/50”,按Enter键,此数是表示统计50次试
验中,父亲在离开家前能得到报纸的频率.
学
过
程
及
方
法
解法二:(见教材138页)
例 2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法
估算圆周率的值.
解法1:(见教材139页)
解法2:(1)用计算机产生两组[0,1]内均匀随机数a1=RAND(),b1=RAND
().
(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2.
(3)数出落在圆x2+y2=1内的点(a,b)的个数N1,计算π=
N
N
1
4
(N代表落在正方形中的点(a,b)的个数).
点评:可以发现,随着试验次数的增加,得到圆周率的近似值的精确度会
越来越高,利用几何概型并通过随机模拟的方法可以近似计算不规则图
形的面积.
例3 利用随机模拟方法计算下图中阴影部分(y=1和y=x2所围成的部
分)的面积.
四、课堂练习:教材140页练习:1、2
教
学
小
结
均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.
课
后
反
思。