苏科初中数学八年级上册《3.0第三章 勾股定理》教案 (7)
- 格式:doc
- 大小:51.29 KB
- 文档页数:4
勾股定理八年级数学(上)2.1 (苏科版)一、教学目标:1.知识目标:(1)经历探索发现并验证勾股定理的过程,进一步发展学生的推理能力;(2)理解并掌握勾股定理,会初步运用勾股定理解决一些简单的数学问题和实际问题.2.能力目标:(1)1.让学生经历“探索—发现—猜想—验证—应用”的学习过程,并体会“特殊—一般—特殊”的数学思想方法;(2)通过定理的证明过程体会数学的数形结合思想。
3.情感目标:(1)在探索勾股定理的过程中,让学生体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.通过获得成功的经验和克服困难的经历,增进数学学习的信心.(2)使学生在定理探索的过程中,感受数学之美,探究之趣.(3)通过了解我国古代辉煌的数学成就,体会勾股定理的文化价值,激发学生的爱国热情,激励学生发奋学习.二、教学重点、难点:经历探索和验证勾股定理的过程,会利用两边求三角形的另一边长;拼图法验证勾股定理三、教学方法与教学手段:以学生为主体的讨论探索法、多媒体辅助教学四、教学过程:(一)欣赏图片,激发兴趣师:(展示图片)2002年国际数学家大会在我国北京召开,它是世界上最高水平的数学科学学术会议。
(新图片)这就是本届大会的会徽。
它有什么特殊含义呢?此图被称为“赵爽弦图”,是我国汉代数学家赵爽在证明勾股定理时用到的,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。
本节课我们也来探索勾股定理(板书课题)首先,我们来了解什么叫勾、股、弦。
请大家阅读第二章引言的第一句话,然后说出此图中的勾、股、弦。
(黑板上的图)1.等腰直角三角形三边的关系许多伟大的科学成就都是在看似平淡无奇的现象中发现和研究出来的。
(展示图片)相传2500年前,毕达哥拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。
我们也来观察一下,你有什么发现?他发现了这样一个图形,并从这一图形发现了等腰直角三角形三边的关系。
苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2一. 教材分析《苏科版数学八年级上册》第三单元《勾股定理的简单应用》是学生在学习了勾股定理之后的一个应用部分。
这部分内容主要让学生通过实际问题,运用勾股定理解决生活中的问题,培养学生的数学应用能力。
教材通过丰富的例题和练习题,让学生在解决实际问题的过程中,加深对勾股定理的理解和记忆。
二. 学情分析八年级的学生已经学习了勾股定理,对勾股定理的基本概念和运用有一定的了解。
但是,对于一些生活中的实际问题,如何运用勾股定理来解决,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能:让学生掌握勾股定理的基本概念,能够运用勾股定理解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 教学重难点1.重点:让学生能够运用勾股定理解决实际问题。
2.难点:如何引导学生将实际问题与勾股定理相结合,提高学生的数学应用能力。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生在解决问题的过程中,运用勾股定理,提高学生的数学应用能力。
同时,采用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。
六. 教学准备1.准备相关的实际问题,用于课堂上引导学生解决。
2.准备PPT,用于展示问题和引导学生思考。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生的思考,引出本节课的主题。
例题:一块直角三角形的木板,两条直角边的长度分别是3分米和4分米,那么这块木板的最大面积是多少?2.呈现(10分钟)呈现PPT,展示问题,引导学生思考如何解决这个问题。
3.操练(10分钟)学生独立思考,尝试解决PPT上的问题。
教师巡回指导,解答学生的疑问。
初二勾股定理教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初二勾股定理教案标题:初中数学教案:勾股定理一、教学目标:1.了解勾股定理的概念和原理;2.能够灵活运用勾股定理解决相关问题;3.培养学生的数学思维能力和解决问题的能力。
探索勾股定理中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
第三章勾股定理教学目标:1.能进一步运用勾股定理及方程解决问题教学重点:勾股定理与数形结合思想的应用教学难点:能应用勾股定理,直角三角形的判定条件解决一些实际问题.教学流程:一、知识梳理:1.勾股定理:直角三角形两条直角边.2.勾股定理逆定理:如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形.3.满足a2+b2=c2的三个数a、b、c,称为勾股数.4.三角形的三边长分别为a、b、c,且满足等式:(a+b)2-c2=2ab,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形5.若△ABC的边长分别为6、8、10,则它的最长边上的高为.6.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米7.如图所示,CE、CF分别是△ABC的内角∠ACB,外角∠ACD的平分线,若EF=10,则22CFCE =.二、典例研究:1.如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为()A. 4 B. 8 C. 10 D. 52.“中华人民某某国道路交通管理条理”规定:小汽车在城市街路上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪”正前方30米处,过了2秒后,测得“小汽车”与“车速检测仪”间的距离变为50 米,这辆“小汽车”超速了吗?三、课堂反馈:1.下列三角形中,是直角三角形的是()A.三角形的三边满足关系a+b=cB.三角形的三边长分别为32、42、52C.三角形的一边等于另一边的一半D.三角形的三边长为7、24、252.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或333.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D 点在距A点多远处时,水渠的造价最低?最低造价是多少?4.折叠长方形ABCD的一边AD,点D落在BC边的F处,已知AB=8cm,BC=10cm,求EC的长.四、拓展提高:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.五、课堂小结:本节课你回顾了哪些知识点?教学反思。
第三章 勾股定理小结与思考教学过程:一、自主学习1.图中= ,y = ,= 。
2.在锐角三角形ABC 中,AD ⊥BC ,AD =12,AC =13,BC =14. 则AB=____3.直角边长为1的等腰直角三角形的面积= ,周长= ,斜边上的高、中线分别是 、 。
4.一个三角形三边的比为3:4:5,它的周长是60cm ,这个三角形的面积= cm 。
二、合作探究问题1.如图 ,一个梯子AB 长7.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为4.5米,梯子滑动后停在DE 的位置上,测得BD 长为1.5求梯子顶端A 下落了多少米?问题2. 如图,在直角梯形ABCD 中,AB //CD ,AD ⊥CD ,AB =1cm ,AD =2cm ,CD =4cm ,求线段BC 的长.理解勾股定理及其逆定理体会数形结合思想、方程思想等。
股定理求直角三角形的边长,会判断一个三角形是否是直 第1题图 D C A B问题3.如图,等边三角形ABC 的边长是6cm ,求△ABC 的面积(保留3个有效数字)。
拓展:1. 若△ABC 的三边a 、b 、c ,满足c b a c b a 108650222++=+++,那么△ABC 是( ).A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形2.直角三角形周长为2+6,斜边上中线长是1,求直角三角形的面积。
3..阅读下列题目的解题过程:已知a 、b 、c 为的三边,且满足,试判断的形状。
解:2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从 步开始出现错误(请写出该步的代号);(2)错误的原因为: ;(3)本题正确的结论为: 。
4.如图,在ΔABC 中,AB=BC=2,︒=∠90ABC ,D 是BC 的中点,且它关于AC 的对称点是D ′,求线段BD ′的长。
勾股定理与平方根复习(1)
教学课题:勾股定理与平方根复习(1)课型复习
本课题教时数: 2 本教时为第1 教时
教学重点与难点:勾股定理及其应用,平方根及立方根
教学方法与手段:采用启发讨论式方法;多媒体与传统媒体相结合
教学过程:教师活动学生活动设计意图
一、知识要点
1、勾股定理:在一个直角三角形中,两直角边的平方和等
于斜边的平方。
2、勾股定理的应用:在一个直角三角形中,知道其中的任
意两边都可以求第三边。
①c2=a2+b2;②a2=c2-b2;③b2=c2-a2。
3、直角三角形的识别(勾股定理的逆定理):如果三角形
的三边长a、b、c满足a2+b2 =c2,那么这个三角形是直
角三角形。
(这是判定一个三角形是直角三角形的又一种方
法)
4、平方根的定义:一般地,如果一个数的平方等于a,那
么这个数叫做a的平方根。
也称二次方根,也就是说,如
果2=a,那么就叫做a的平方根。
5、平方根的性质:①一个正数有两个平方根,它们互为相
反数;②0的平方根是0,记作0 ;③负数没有平方根。
6、开平方的定义:求一个数a的平方根的运算,叫做开平
方。
7、算术平方根的定义:正数a有2个平方根,其中正数a
的正的平方根,也叫做a的算术平方根。
公式:( a )2=a (a
≥0),a2 =a (a≥0) ,a2 =-a(a≤0)。
8、立方根的定义:一般地,如果一个数的立方等于a,这
学生思考回
答
通过回忆,
在已学的
基础上进
一步提升,
规范已有
知识.。