第6章其它荷载与作用分析
- 格式:ppt
- 大小:1008.00 KB
- 文档页数:15
第六章竖向荷载(恒载+活载)作用下框架内力计算第一节框架在恒载作用下的内力计算本设计用分层法计算内力,具体步骤如下:①计算各杆件的固端弯矩②计算各节点弯矩分配系数③弯矩分配④调幅并绘弯矩图⑤计算跨中最大弯矩、剪力和轴力并绘图一、恒载作用下固端弯矩计算(一)恒载作用下固端弯矩恒载作用下固端弯矩计算(单位:KN·m) 表6.1弯矩图恒载作用下梁固端弯矩计算统计表6.2(二)计算各节点弯矩分配系数用分层法计算竖向荷载,假定结构无侧移,计算时采用力矩分配法,其计算要点是:①计算各层梁上竖向荷载值和梁的固端弯矩。
②将框架分层,各层梁跨度及柱高与原结构相同,柱端假定为固端。
③计算梁、柱线刚度。
对于柱,假定分层后中间各层柱柱端固定与实际不符,因而,除底层外,上层柱各层线刚度均乘以0.9修正。
有现浇楼面的梁,宜考虑楼板的作用。
每侧可取板厚的6倍作为楼板的有效作用宽度。
设计中,可近似按下式计算梁的截面惯性矩:一边有楼板:I=1.5Ir两边有楼板:I=2.0Ir④计算和确定梁、柱弯矩分配系数和传递系数。
按修正后的刚度计算各结点周围杆件的杆端分配系数。
所有上层柱的传递系数取1/3,底层柱的传递系数取1/2。
⑤按力矩分配法计算单层梁、柱弯矩。
⑥将分层计算得到的、但属于同一层柱的柱端弯矩叠加得到柱的弯矩。
(1)计算梁、柱相对线刚度图6.1 修正后梁柱相对线刚度(2)计算弯矩分配系数结构三层=5.37÷(5.37+1.18)=0.820①梁μB3C3μ=5.37÷(5.37+3.52+1.18)=0.533C3B3=3.52÷(5.37+3.52+1.18)=0.350μC3D3=3.52÷(3.52+1.18)=0.749μD3C3=1.18÷(5.37+1.18)=0.180②柱μB3B2=1.18÷(5.37+3.52+1.18)=0.117μC3C2=1.18÷(3.52+1.18)=0.251μD3D2结构二层①梁μ=5.37÷(1.18+1.18+5.37)=0.695B2C2=5.37÷(1.18+1.18+5.37+3.52)=0.477μC2B2μ=3.52÷(1.18+1.18+5.37+3.52)=0.313 C2D2=3.52÷(1.18+1.18+3.52)=0.5986 μD2C2=1.18÷(1.18+1.18+5.37)=0.1525②柱μB2B3μ=1.18÷(1.18+1.18+5.37)=0.1525B2B1=1.18÷(1.18+1.18+5.37+3.52)=0.105 μC2C3μ=1.18÷(1.18+1.18+5.37+3.52)=0.105 C2C1=1.18÷(1.18+1.18+3.52)=0.2007 μD2D3μ=1.18÷(1.18+1.18+3.52)=0.2007D2D1结构一层=5.37÷(1.18+1+5.37)=0.711①梁μB1C1=5.37÷(1.18+1+5.37+3.52)=0.485 μC1B1=3.52÷(1.18+1+5.37+3.52)=0.318 μC1D1=3.52÷(1.18+1+3.52)=0.618μD1C1=1.18÷(1.18+1+5.37)=0.156②柱μB1B2=1÷(1.18+1+5.37)=0.133μB1B0=1.18÷(1.18+1+5.37+3.52)=0.107μC1C2=1÷(1.18+1+5.37+3.52)=0.090μC1C0μ=1.18÷(1.18+1+3.52)=0.207D1D2μ=1÷(1.18+1+3.52)=0.175D1D0(三)分层法算恒载作用下弯矩恒载作用下结构三层弯矩分配表6.3B C D上柱偏心弯矩分配系数0固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配14.650 -13.883 226.915 20.861 -251.346 84.509 -112.810 二次分配14.512 -14.512 228.818 21.278 -250.096 105.707 -105.707恒载作用下结构二层弯矩分配表6.40.768 12.717 -28.301↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配 6.931 4.431 -4.607 308.811 46.295 47.232 -385.113 169.804 -113.072 -92.837二次分配 5.901 3.401 -9.302 300.595 44.486 45.423 -390.504 191.416 -105.826 -85.591恒载作用下结构一层弯矩分配表6.52.127 9.081 -7.935↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次二次7.030 5.338 -12.368 267.469 35.352 22.097 -324.919 357.349 -46.247 -15.172 -295.930图6.2 弯矩再分配后恒载作用下弯矩图(KN·m)(四)框架梁弯矩塑性调幅为了减少钢筋混凝土框架梁支座处的配筋数量,在竖向荷载作用下可以考虑竖向内力重分布,主要是降低支座负弯矩,以减小支座处的配筋,跨中则应相应增大弯矩。
第六章路面结构的力学分析1.引言路面结构是指在路面上铺设的各种材料和层次,用来承受车辆荷载和环境荷载,并提供平稳、安全的行车路面。
路面结构的力学分析是研究路面结构在荷载作用下产生的应力和变形,以及结构的强度和稳定性。
2.车辆荷载车辆荷载是指行驶在路面上的车辆对路面产生的力和压力。
车辆荷载可包括静载荷和动载荷。
静载荷是指车辆停在路面上时对路面的作用力,动载荷是指车辆行驶时对路面的作用力。
车辆荷载可以通过车辆轴重、车辆类型、车速等参数来计算。
3.路面材料的特性路面材料的特性包括强度、刚度、抗裂性、耐久性等。
强度是指材料抵抗破坏的能力,刚度是指材料对应力的响应程度,抗裂性是指材料抵抗裂缝的能力,耐久性是指材料抵抗气候和环境影响的能力。
路面材料的选择应考虑车辆荷载、气候条件和交通流量等因素。
4.路面结构的力学模型路面结构的力学模型可分为弹性模型和塑性模型。
在弹性模型中,路面结构被假设为弹性体,能够在荷载作用下产生弹性变形,但不会导致结构破坏。
弹性模型的分析可通过有限元法等数值方法进行。
在塑性模型中,路面结构被假设为塑性体,能够在荷载作用下产生塑性变形,可能导致结构破坏。
塑性模型的分析可通过弹塑性理论和强度理论等方法进行。
5.路面结构的承载力路面结构的承载力是指其能够承受的最大荷载。
路面结构的承载力分析可通过确定路面结构的应力和变形,并比较其与材料的强度和变形能力。
当路面结构的应力超过材料的强度或变形超过材料的变形能力时,路面结构可能产生破坏。
6.路面结构的稳定性路面结构的稳定性是指其在荷载作用下保持平稳和不发生破坏的能力。
路面结构的稳定性分析可通过确定路面结构的变形和结构的弯曲、剪切和压实情况,以及土壤的支撑条件。
7.实例分析以城市道路的路面结构为例进行实例分析。
首先,通过调查和测量确定车辆荷载、路面材料和路面结构的参数。
然后,进行路面结构的力学分析,计算路面结构的应力和变形。
最后,比较计算结果与路面材料的强度和变形能力,评估路面结构的承载力和稳定性。
第六章框架在竖向荷载作用下的内力分析(采用弯矩二次分配法)6.1 计算方法和荷载传递路线1. 计算方法框架结构在竖向荷载作用下的内力计算采用力矩分配法,因为框架结构对称,荷载对称;又属于奇数跨,故在对称轴上梁的截面只有竖向位移(沿对称轴方向)没有转角。
对称截面可取为滑动端。
弯矩二次分配法是一种近似计算方法,即将各节点的不平衡弯矩同时作分配和传递,并以两次分配为限。
(取一榀横向框架)2. 荷载传递路线2700对于边跨板,为7.2 m×4.5m,由于7.2/4.5<3.0 所以按双向板计算对于中跨板,为 4.5m×2. 7m,由于 4.5/2.7 〈3.0 所以按双向板计算6.2 竖向荷载计算5.2.1 A-B(C-D) 轴间框架梁板传至梁上的三角形或梯形荷载等效为均布荷载。
1. 屋面板传载恒载: 5.0 ×4.5/2 ×(1-2 ×0.312+0.313) ×2=18.85kN/m活载:0.5 ×4.5/2 ×(1-2 ×0.312+0.313) ×2=1.89kN/m2. 楼面板传荷载恒载: 3.99 ×4.5/2 ×(1-2 × 0.31 2+0.31 3) ×2=15.08kN/m活载: 2.0 ×4.5/2 ×(1-2 ×0.312+0.313) ×2=7.56kN/m3. 梁自重: 5.46 kN/mA-B(C-D) 轴间框架梁均布荷载为:屋面梁:恒载=梁自重+板传荷载=5.46 kN/m+18.85 kN/m=24.31 kN/m 活载=板传荷载=1.89 kN/m楼面梁:恒载=梁自重+板传荷载=5.46 kN/m+15.08 kN/m=20.54 kN/m 活载=板传荷载=7.56 kN/m5.2.2 B-C 轴间框架梁1. 屋面板传载恒载: 5.0 ×2.4/2 ×5/8 ×2=8.44kN/m活载:0.5 ×2.7/2 ×5/8 ×2=0.84kN/m2. 楼面板传荷载恒载: 3.99 ×2.7/2 ×5/8 ×2=6.73kN/m活载: 2.0 ×2.7/2 ×5/8 ×2=4.22kN/m3. 梁自重: 3.9kN/mB-C 轴间框架梁均布荷载为:屋面梁:恒载=梁自重+板传荷载=3.9 kN/m+8.44kN/m=12.34kN/m 活载=板传荷载=0.84kN/m楼面梁:恒载=梁自重+板传荷载=3.9 kN/m+6.73kN/m=10.63kN/m 活载=板传荷载=4.22kN/m6.3 框架计算简图g=24.31KN/m g=12.34KN/m g=24.31KN/m(q=1.89KN/m)2700框架计算简图6.4. 梁固端弯矩梁端弯矩以绕杆端顺时针为正,反之为负。
第6章 其他荷载与作用 教学提示:本章介绍了由于温度变化、基础不均匀沉降或构件自身发生收缩或徐变在结构上引起的变形和内力,阐述了爆炸以及水的浮力对结构的影响,并给出了相应的计算公式;进一步探讨了各种动荷载:离心力、制动力的计算方法并对预应力的施加介绍了各种方法。
教学要求:学生应了解各种特殊荷载与作用产生的条件和对结构的影响,熟知各种荷载与作用的取值和计算方法。
6.1 温度作用6.1.1 温度作用的概念当结构物所处环境的温度发生变化,且结构或构件的热变形受到边界条件约束或相邻部分的制约,不能自由胀缩时,就会在结构或构件内形成一定的应力,这个应力被称为温度应力,即温度作用,指因温度变化引起的结构变形和附加力。
温度作用不仅取决于结构物环境的温度变化,它还与结构或构件受到的约束条件有关。
在土木工程中所遇到的许多因温度作用而引发的问题,从约束条件看大致可分为两类。
第一类,结构物的变形受到其他物体的阻碍或支承条件的制约,不能自由变形。
现浇钢筋混凝土框架结构的基础梁嵌固在两柱基之间,基础梁的伸缩变形受到柱基约束,没有任何变形余地(图6.1)。
排架结构支承于地基,当上部横梁因温度变化伸长时,横梁的变形使柱产生侧移,在柱中引起内力;柱子对横梁施加约束,在横梁中产生压力(图6.2)。
图6.1 基础梁嵌固于柱基之间图6.2 排架结构受到支承条件的约束第二类,构件内部各单元体之间相互制约,不能自由变形。
简支屋面梁在日照作用下屋面温度升高,而室内温度相对较低,简支梁沿梁高受到不均匀温差作用,产生翘曲变形,在梁中引起应力。
大体积混凝土梁结硬时,水化热使得中心温度较高,两侧温度偏低,内外温差不均衡在截面引起应力,产生裂缝。
6.1.2 温度应力的计算结构物受温度变化的影响应根据不同结构类型和约束条件进行分类而分别计算。
一类是静定结构在温度变化时能够自由变形,结构物无约束应力产生,故无内力。
但由于任何荷载与结构设计方法·122· ·122· 材料都具有热胀冷缩的性质,因此静定结构在满足其约束的条件下可自由地产生变形,这时应考虑结构的这种变形是否超过允许范围。
《工程结构荷载与可靠度分析》李国强(第四版)课后习题答案第一章荷载类型1、荷载与作用在概念上有何不同?荷载:是由各种环境因素产生的直接作用在结构上的各种力。
作用:能使结构产生效应的各种因素总称。
2、说明直接作用和间接作用的区别。
将作用在结构上的力的因素称为直接作用,将不是作用力但同样引起结构效应的因素称为间接作用,如温度改变,地震,不均匀沉降等。
只有直接作用才可称为荷载。
3、作用有哪些类型?请举例说明哪些是直接作用?哪些是间接作用?①随时间的变异分类:永久作用、可变作用、偶然作用②随空间位置变异分类:固定作用、可动作用③按结构的反应分类:静态作用、动态作用。
4、什么是效应?是不是只有直接作用才能产生效应?效应:作用在结构上的荷载会使结构产生内力、变形等。
不是。
第二章重力1、结构自重如何计算?将结构人为地划分为许多容易计算的基本构件,先计算基本构件的重量,然后叠加即得到结构总自重。
2、土的重度与有效重度有何区别?成层土的自重应力如何计算?土的天然重度即单位体积中土颗粒所受的重力。
如果土层位于地下水位以下,由于受到水的浮力作用,单位体积中,土颗粒所受的重力扣除浮力后的重度称为土的有效重度。
3、何谓基本雪压?影响基本雪压的主要因素有哪些?基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。
主要因素:雪深、雪重度、海拔高度、基本雪压的统计。
4、说明影响屋面雪压的主要因素及原因。
主要因素:风的漂积作用、屋面坡度对积雪的影响(一般随坡度的增加而减小,原因是风的作用和雪滑移)、屋面温度(屋面散发的热量使部分积雪融化,同时也使雪滑移更易发生)。
5、说明车列荷载与车道荷载的区别。
车列荷载考虑车的尺寸及车的排列方式,以集中荷载的形式作用于车轴位置;车道荷载则不考虑车的尺寸及车的排列,将车道荷载等效为均布荷载和一个可作用于任意位置的集中荷载形式。
第三章侧压力1.什么是土的侧压力?其大小与分布规律与哪些因素有关?土的侧向压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的土压力。