医学生专业生物化学课本知识点总结
- 格式:doc
- 大小:144.50 KB
- 文档页数:3
第一章蛋白质的结构与功能第一节蛋白质的分子组成1.主要组成元素:C(50%~55%), H(6%~7%), O(19%~24%) N,(13%~19%)S(0~4%)。
有些蛋白质还含有少量的磷和金属元素铁,铜等,个别蛋白质还含有碘。
其中蛋白质的含氮量比较稳定,平均为16%。
2.含氮量和蛋白质的计算公式:1gN = 6.25gPr3.蛋白质的基本组成单位:氨基酸。
(人体内有20种氨基酸参与蛋白质的合成,通常是L-a-氨基酸)4.结构通式:R-CH-COOH(其中R表示侧链基团)INH25.氨基酸的分类:(1)酸性氨基酸: 谷氨酸(GIu),天冬氨酸(Asp)(2)碱性氨基酸:精氨酸(Arg),赖氨酸(Lys),组氨酸(His)6.氨基酸具有的理化性质:(1)具有两性电离的性质。
其解离方式取决于其所处溶液的酸碱度。
所有的氨基酸都含有碱性的a-氨基和酸性a--羧基,可在酸性溶液中与质子(H+)结合带正电荷的阳离子(NH3+),也可在碱性溶液中与OH-结合,失去质子变成带负电荷的阴离子(-COO-)。
7.氨基酸的等电点:某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性电子,成电中性,该溶液的PH值为该氨基酸的等电点。
8.肽键:一分子氨基酸的a-羧基和一分子氨基酸的a-氨基脱水缩合形成的酰胺键,即-CO-NH-。
氨基酸戒肽键联结成多肽链,是蛋白质分子中的主要共价键,性质比较稳定。
9.多肽:十个以上和五十个以下的氨基酸残基。
10.谷胱甘肽(GSH):谷氨酸,半胱氨酸和组氨酸组成的三肽。
GSH的巯基(-SH)具有还原性,抗氧化作用强。
第二节蛋白质的分子结构1.蛋白质的一级结构(1)概念:氨基酸的排列顺序(2)主要化学键:二硫键(-S-S-)(3)结构特点:结构各不相同,一级结构是蛋白质空间构象和特异生物学功能的基础。
2.二级结构(1)概念:多肽链的局部有规则重复的主链构象。
(2)主要类型:A.参与肽键形成的6个原子在同一个平面。
医学生物化学知识点医学生物化学是医学专业的重要基础学科之一,主要研究生物体内的生物大分子结构和功能、代谢途径以及相关的调控机制。
本文将介绍一些医学生物化学中常见的知识点,帮助读者更好地理解这门学科的重要内容。
1. 蛋白质蛋白质是生物体内最重要的大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着各种重要的功能,如结构支持、酶催化、免疫调节等。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,通过这些结构可以确定蛋白质的功能和作用机制。
2. 碳水化合物碳水化合物是生物体内重要的能量来源,也是细胞膜的主要组成成分。
碳水化合物包括单糖、双糖和多糖三种类型,通过糖酵解和糖异生途径可以转化为ATP分子,为生命活动提供能量。
3. 脂质脂质是生物体内的重要结构物质,包括甘油三酯、磷脂和固醇等多种类型。
脂质在细胞膜的组成中发挥重要作用,同时还参与能量存储和细胞信号传导等生物过程。
4. 核酸核酸是生物体内负责遗传信息传递的大分子,包括DNA和RNA两种类型。
DNA携带着细胞的遗传信息,通过遗传密码决定生物体的生长发育和功能表现;而RNA则参与蛋白质的合成和调控过程,是蛋白质合成的重要组成部分。
5. 酶酶是生物体内催化化学反应的生物催化剂,具有高度选择性和效率。
酶通过调节化学反应的活化能,加速生物体内代谢过程,参与碳水化合物、脂质、蛋白质等生物分子的合成和分解过程。
总结:医学生物化学知识点涉及到生物体内的各种组织和大分子的结构、功能、代谢途径和调控机制。
通过学习这些知识点,可以更好地理解生命的本质和机理,为医学研究和诊断治疗提供理论基础和实践指导。
希望本文所介绍的医学生物化学知识点对读者有所启发和帮助。
医学生物化学重要考点梳理生物化学是医学生物学的重要组成部分,它研究生物体内各种化学成分的组成、结构和功能以及它们的相互作用关系。
对于医学生物化学的学习,我们需要了解一些重要的考点,以便更好地掌握和应用这门学科知识。
本文将对医学生物化学中的重要考点进行梳理。
一、氨基酸和蛋白质1. 氨基酸的结构和分类氨基酸是构成蛋白质的基本单位,它们由一个中心碳原子、一个羧基、一个氨基和一个侧链组成。
根据侧链的性质,氨基酸可分为极性氨基酸、非极性氨基酸和特殊氨基酸。
2. 蛋白质的结构层级蛋白质的结构层级包括一级结构、二级结构、三级结构和四级结构。
一级结构指的是氨基酸的线性排列顺序,二级结构指的是蛋白质中氨基酸的局部空间排布模式,三级结构指的是整个蛋白质分子的立体构型,四级结构指的是由多个蛋白质亚单位组成的复合物。
3. 蛋白质的功能蛋白质具有多种功能,包括酶的催化作用、结构支持、运输和存储、抗体的免疫作用等。
了解蛋白质的功能有助于我们理解生命活动的机理。
二、酶和酶动力学1. 酶的性质和分类酶是生物体内的催化剂,可以加速化学反应的速率。
酶根据其催化反应的类型可分为氧化还原酶、转移酶、水解酶、异构酶等。
2. 酶的底物和产物结合方式酶与底物结合形成酶底物复合物,经过催化反应生成酶产物复合物,然后释放产物。
酶底物结合方式包括酶亲和力、酶底物复合物的稳定性等。
3. 酶动力学参数酶动力学参数包括酶的最大催化速率(Vmax)、酶的底物浓度为一半时的催化速率(Km)以及酶的催化效率(kcat/Km)等。
了解这些参数有助于研究酶的催化机理以及制定相应的抑制剂。
三、代谢途径和能量转化1. 糖酵解途径糖酵解是生物细胞中糖类代谢的重要途径,它将葡萄糖分解成乳酸或丙酮酸,同时产生少量ATP。
了解糖酵解途径有助于我们了解能量的产生和利用过程。
2. 三羧酸循环三羧酸循环是生物体内能量产生的中心环节,它将葡萄糖、脂肪酸和氨基酸氧化分解,产生大量的还原能,主要以NADH和FADH2的形式存在。
生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
医疗生化知识点总结一、生物分子基础1. 蛋白质蛋白质是生物体的重要组成成分,是由氨基酸通过肽键连接而成的大分子化合物。
蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋和β-折叠)、三级结构(立体构象)和四级结构(多肽亚单位的组合)。
蛋白质的功能包括酶、激素、抗体、结构蛋白等。
2. 糖类糖类是生物体内重要的能量来源,包括单糖、双糖、多糖等。
糖类在生物体内参与能量代谢、细胞信号传导等生理过程。
3. 脂类脂类是生物体内的重要结构成分,包括甘油三酯、磷脂、胆固醇等。
脂类在细胞膜结构、能量储备、信号传导等方面发挥重要作用。
4. 核酸核酸包括DNA和RNA,是生物体内遗传信息的载体。
DNA包括双链DNA和单链DNA,RNA包括mRNA、tRNA、rRNA等。
核酸在遗传信息传递、蛋白质合成等生理过程中起重要作用。
二、细胞生物化学1. 细胞膜结构细胞膜由磷脂双分子层和蛋白质组成,具有选择性通透性。
细胞膜在维持细胞内外环境平衡、细胞信号传导等方面发挥重要作用。
2. 能量代谢能量代谢包括糖酵解、三羧酸循环和氧化磷酸化等过程,是细胞内产生能量的重要途径。
这些过程产生的ATP是细胞内的能量储备。
3. 细胞信号传导细胞信号传导包括细胞外信号(激素、生长因子等)通过受体与细胞内信号传导蛋白(G蛋白、酶联受体等)相互作用,最终调节细胞内的生理过程。
4. 细胞凋亡细胞凋亡是细胞自身程序性死亡,参与机体发育、免疫调节等生理过程。
细胞凋亡与肿瘤、神经退行性疾病等疾病的发生发展密切相关。
三、临床生化检测1. 血清生化指标血清生化指标包括血糖、血脂、肝功能指标、肾功能指标、电解质等,可以反映机体的代谢、排泄、内分泌等状况。
2. 酶学指标酶学指标包括丙氨酸氨基转移酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰转移酶(GGT)等,可以反映肝脏、心肌等组织损伤的程度。
3. 肿瘤标志物肿瘤标志物是一些特异性蛋白质,可以通过血清或尿液检测来辅助肿瘤的诊断、疗效评价和预后判断。
医学生物化学知识点医学生物化学是一门研究生物体内分子结构、功能和代谢过程的学科。
它是医学生物学和生物化学的交叉学科,对医学发展和临床实践具有重要的意义。
本文将介绍一些医学生物化学的基础知识点,包括蛋白质、核酸、糖类和代谢等方面。
一、蛋白质1.1 蛋白质的组成蛋白质由氨基酸组成,氨基酸分为20种常见氨基酸和一些稀有氨基酸。
其中,20种常见氨基酸可以分为两类,一类是疏水性氨基酸,一类是亲水性氨基酸。
1.2 蛋白质的结构蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
一级结构是指多肽链的氨基酸序列,二级结构是指蛋白质的局部空间排布方式,包括α螺旋和β折叠等形式,三级结构是指蛋白质整体的三维结构,四级结构是指由多个多肽链组合而成的复合物。
1.3 蛋白质的功能蛋白质是细胞的重要组成部分,具有多种功能,包括结构支持、酶催化、运输、信号传导等。
例如,肌动蛋白和微管蛋白是细胞骨架的主要组成部分,DNA聚合酶是参与DNA复制的关键酶。
二、核酸2.1 核酸的组成核酸是由核苷酸组成,核苷酸由碱基、糖和磷酸组成。
核酸可分为DNA和RNA两类,其中DNA是遗传信息的携带者,RNA参与蛋白质合成等生物过程。
2.2 核酸的结构DNA的结构是双螺旋结构,由两个互补链通过碱基配对而形成。
碱基配对规则是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
2.3 核酸的功能核酸具有储存、传递和表达遗传信息的功能。
DNA通过遗传物质的复制和遗传物质的转录过程,将遗传信息传递给下一代细胞。
RNA参与蛋白质合成的过程,是信息的中间传递者。
三、糖类3.1 糖类的分类糖类可以分为单糖、双糖和多糖三类。
单糖是最基本的糖单元,双糖由两个单糖分子通过糖苷键连接而成,多糖是由多个单糖分子组成。
3.2 糖类的功能糖类是细胞的重要能量来源,参与细胞的代谢过程。
此外,糖类还具有结构支持和细胞识别的功能。
例如,葡萄糖是主要的能量供应物质,胰岛素是调节血糖水平的重要激素。
引言概述:生物化学是研究生物体内化学成分的组成、结构、功能以及各种生物化学过程的机理的学科。
掌握生物化学的基本知识是理解生物体内各种生命现象的基础,也是进一步研究生物医学、生物工程等领域的必备知识。
本文将从分子生物学、酶学、代谢、蛋白质和核酸等五个方面,总结生物化学中必看的知识点。
正文内容:1.分子生物学1.1DNA的结构和功能1.1.1DNA的碱基组成1.1.2DNA的双螺旋结构1.1.3DNA的复制和转录过程1.2RNA的结构和功能1.2.1RNA的种类和功能区别1.2.2RNA的结构和特点1.2.3RNA的转录和翻译过程1.3蛋白质的结构和功能1.3.1氨基酸的结构和分类1.3.2蛋白质的三级结构和四级结构1.3.3蛋白质的功能和种类1.4基因调控1.4.1转录调控和翻译调控1.4.2基因的启动子和转录因子1.4.3RNA的剪接和编辑1.5遗传密码1.5.1遗传密码的组成和特点1.5.2密码子的解读和起始密码子1.5.3用户密码监测2.酶学2.1酶的分类和特点2.1.1酶的命名规则和酶的活性2.1.2酶的结构和功能2.1.3酶的催化机制2.2酶促反应动力学2.2.1酶反应速率和反应速率常数2.2.2酶的最适温度和最适pH值2.2.3酶的抑制和激活调节2.3酶的应用2.3.1酶工程和酶的改造2.3.2酶在医学和工业上的应用2.3.3酶和药物相互作用3.代谢3.1糖代谢3.1.1糖的分类和代谢路径3.1.2糖酵解和糖异生3.1.3糖的调节和糖尿病3.2脂代谢3.2.1脂的分类和代谢途径3.2.2脂肪酸的合成和分解3.2.3脂的调节和脂代谢疾病3.3氮代谢3.3.1氨基酸的合成和降解3.3.2尿素循环和氨的排出3.3.3蛋白质的降解和合成3.4核酸代谢3.4.1核酸的合成和降解途径3.4.2核酸的功能和结构特点3.4.3DNA修复和基因突变3.5能量代谢调节3.5.1ATP的合成和利用3.5.2代谢途径的调节和平衡3.5.3能量代谢和细胞呼吸4.蛋白质4.1蛋白质的结构和维持4.1.1蛋白质结构的层次和稳定性4.1.2蛋白质质量控制和折叠4.2蛋白质表达和合成4.2.1蛋白质的翻译和翻译后修饰4.2.2蛋白质的定位和运输4.2.3蛋白质合成的调节和失调4.3蛋白质与疾病4.3.1蛋白质异常与疾病的关系4.3.2蛋白质药物和治疗策略4.3.3蛋白质组学在疾病研究中的应用5.核酸5.1DNA的复制和修复5.1.1DNA复制的机制和控制5.1.2DNA损伤修复和维持稳定性5.1.3DNA重组和基因转座5.2RNA的合成和调控5.2.1RNA转录的调节和翻译5.2.2RNA剪接和编辑5.2.3RNA和疾病的关系5.3RNA干扰和基因沉默5.3.1RNA干扰机制和调控5.3.2RNA干扰在基因治疗中的应用5.3.3RNA沉默和抗病毒防御总结:生物化学是研究生物体内化学成分和生物化学过程的重要学科,掌握其中的关键知识点对于理解生命的本质和生物体的正常功能至关重要。
生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。
生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。
2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。
(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。
(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。
(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。
二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。
(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。
蛋白质的构象变化直接影响着蛋白质的功能。
2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。
其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。
三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。
(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。
2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。
(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。
医学生物化学重点总结第二章蛋白质的结构和功能第一节蛋白质分子组成一、组成元素:N为特征性元素,蛋白质的含氮量平均为16%.-----测生物样品蛋白质含量:样品含氮量×6.25二、氨基酸1.是蛋白质的基本组成单位,除脯氨酸外属L-α-氨基酸,除了甘氨酸其他氨基酸的α-碳原子都是手性碳原子。
2.分类:(1)非极性疏水性氨基酸:甘、丙、缬、亮、异亮、苯、脯,甲硫。
(2)极性中性氨基酸:色、丝、酪、半胱、苏、天冬酰胺、谷氨酰胺。
(3)酸性氨基酸:天冬氨酸Asp、谷氨酸Glu。
(4)(重)碱性氨基酸:赖氨酸Lys、精氨酸Arg、组氨酸His。
三、理化性质1.两性解离:两性电解质,兼性离子静电荷 +1 0 -1PH〈PI PH=PI PH〉PI阳离子兼性离子阴离子等电点:PI=1/2(pK1+pK2)2.紫外吸收性质:多数蛋白质含色氨酸、酪氨酸(芳香族),最大吸收峰都在280nm。
3.茚三酮反应:茚三酮水合物与氨基酸发生氧化缩合反应,成紫蓝色的化合物,此化合物最大吸收峰为570nm波长。
此反应可作为氨基酸定量分析方法。
四、蛋白质分类:单纯蛋白、缀合蛋白(脂、糖、核、金属pr)五、蛋白质分子结构1.肽:氨基酸通过肽键连接构成的分子肽肽键:两个氨基酸α氨基羧基之间缩合的化学键(—CO—NH—)2.二肽:两分子氨基酸借一分子的氨基与另一分子的羧基脱去一分子的水缩合成3.残基:肽链中的氨基酸分子因脱水缩合而残缺,故被称为氨基酸残基。
4.天然存在的活性肽:(1)谷胱甘肽GSH:谷,半胱,甘氨酸组成的三肽①具有还原性,保护机体内蛋白质或酶分子免遭氧化,使蛋白质或酶处于活性状态。
②在谷胱甘肽过氧化物酶催化下,GSH可还原细胞内产生的过氧化氢成为水,同时,GSH被氧化成氧化性GSSG,在谷胱甘肽还原酶作用下,被还原为GSH③GSH的硫基具有噬核特性,能与外源性的噬电子毒物(如致癌物,药物等)结合,从而阻断,这些化合物与DNA,RNA 或蛋白质结合,以保护机体(解毒)(2)多肽类激素及神经肽①促甲状腺激素释放激素TRH②神经肽:P物质(10肽)脑啡肽(5肽)强啡肽(17肽)常在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚合体。
生物化学基础知识整理总结一、生物化学的定义与重要性生物化学是研究生物体内化学过程和化学物质的学科,是生物学和化学的交叉学科。
它主要关注生物体如何通过化学反应来维持生命活动,包括能量转换、物质代谢、信息传递、基因表达等。
生物化学在医学、农业、食品科学、药物研发等领域都有广泛应用,对理解生命现象和开发新技术具有重要意义。
二、生物化学的主要知识点1. 蛋白质结构与功能蛋白质的基本单位:氨基酸。
通过肽键连接形成多肽链,再折叠成具有特定功能的蛋白质。
蛋白质的分类:酶、激素、抗体、结构蛋白等。
蛋白质的结构层次:一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠等)、三级结构(整体三维结构)、四级结构(多亚基蛋白质)。
举例:血红蛋白是一种含铁的蛋白质,具有四级结构,能够运输氧气。
2. 核酸结构与功能核酸的种类:DNA(脱氧核糖核酸)和RNA(核糖核酸)。
核酸的组成:核苷酸(由五碳糖、磷酸和含氮碱基组成)。
核酸的结构:一级结构(核苷酸序列)、二级结构(DNA双螺旋、RNA折叠等)、三级结构(空间构象)。
举例:DNA双螺旋结构通过碱基配对(A-T、G-C)维持稳定,实现遗传信息的传递。
3. 酶与催化作用酶的定义:具有催化功能的蛋白质或RNA。
酶的特性:高效性、专一性、可调节性。
酶的作用机制:降低化学反应的活化能,加快反应速率。
举例:唾液淀粉酶能催化淀粉水解为麦芽糖,帮助消化。
4. 细胞代谢能量代谢:通过糖酵解、柠檬酸循环和氧化磷酸化等过程产生ATP,为细胞提供能量。
物质代谢:包括糖代谢、脂代谢、氨基酸代谢等,维持细胞内外物质平衡。
举例:糖酵解过程中,葡萄糖被分解为丙酮酸,并产生少量ATP。
5. 信号转导信号转导的概念:细胞通过接收、传递和响应外界信号,调节生命活动的过程。
信号转导的途径:激素信号转导、神经信号转导、生长因子信号转导等。
举例:胰岛素通过与细胞膜上的受体结合,激活信号转导通路,调节血糖代谢。
6. 基因表达调控基因表达的概念:基因转录和翻译成蛋白质的过程。
医学生专业生物化学课本知识点总结医学生专业生物化学课本知识点总结生物化学重点蛋白质的元素组成:碳氢氧氮,测定的含氮量:除以16%=pr的含量,如氮5克pr为31.5克。
L-α-氨基酸其(脯!VD2麦角钙化醇VD3胆钙化醇,.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。
FH4:由叶酸衍生而来。
四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。
糖的无氧酵解代谢过程可分为四个阶段:1.活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2.裂解(磷酸丙糖的生成):一分子氨酸是一种L-α-亚氨基酸),,酸性氨基!酶促反应的特点:1.具有极高的催化效率:2.具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。
⑴绝对特异性:琥珀酸脱氢酶。
⑵相对特异性脂肪酶。
⑶立体异构特异性L-精氨酸酶。
酸:天门冬氨酸,谷氨酸;碱性氨基酸赖氨酸精氨酸组氨酸。
蛋白质的理化性质:1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。
在某一PH溶液中,蛋白质分子所带正、负电荷相等时,此时整个分H2OHHH磷酸萄葡糖变位酶OHHOH1磷酸葡萄糖(G-1-P)6磷酸葡萄糖(G-6-P)子呈电中性,此时的pH值称为蛋白质的等电点。
2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。
蛋白质分子表面的水化膜和表面所带的同性电荷是稳定蛋白质亲水溶胶的两个重要因素。
3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。
4.蛋白质的变性:在某些理化因素的作用下,破坏蛋白质分子的副键,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。
医学生物化学知识点总结医学生物化学是医学专业中的一门重要课程,它研究人体生命过程与生物分子之间的相互关系。
本文将就医学生物化学的若干知识点进行总结,以便读者深入理解该领域的重要概念和原理。
一、生物大分子的基本特征生物大分子包括蛋白质、核酸、多糖和脂类等。
它们都具有一定的结构特点和功能,其中蛋白质是最为复杂的一类大分子。
蛋白质由氨基酸组成,可以通过肽键连接在一起形成多肽链。
其功能多样,包括酶促反应、结构支持和信号传导等。
二、酶促反应与酶动力学酶是生物体内催化反应的生物催化剂,它能够加速反应速率并降低活化能。
酶的活性受到温度、pH值和底物浓度等因素的影响。
酶动力学研究酶催化速率与底物浓度之间的关系,包括酶动力学参数的测定和酶反应的速率方程等。
三、生物能量代谢与三大能量物质生物体内的能量代谢主要依赖于三大能量物质:葡萄糖、脂肪和蛋白质。
葡萄糖通过糖酵解和三羧酸循环产生三磷酸腺苷(ATP)作为细胞内的能量储备。
脂肪是最有效的能量储存物质,而蛋白质则在特定情况下被分解为氨基酸,供能使用。
四、核酸结构与遗传信息传递核酸是遗传信息的存储和传递分子,包括DNA和RNA。
DNA是双螺旋结构,由一条脱氧核糖核苷酸链和一条互补的链组成。
RNA分为信使RNA、核糖体RNA和转运RNA等多种类型,它们参与到蛋白质的合成过程中。
五、生物膜与细胞信号传导生物膜是细胞内外的分隔膜,具有选择性通透性。
磷脂是构成细胞膜的主要成分,它们通过疏水作用形成脂双层结构。
细胞信号传导则通过细胞膜上的受体、信号转导分子和效应器等组成的信号转导通路实现。
六、酸碱平衡与血液酸碱平衡调节酸碱平衡是维持机体内部环境稳定的重要生理过程,主要通过呼吸系统和肾脏来调节。
在血液中,酸碱平衡主要通过碳酸氢根离子和碳酸根离子之间的平衡来实现,而呼吸酸中毒和代谢性碱中毒则是常见的酸碱平衡紊乱疾病。
总结:通过对医学生物化学的知识点进行梳理和总结,我们深入了解了生物大分子的特征、酶促反应与酶动力学、生物能量代谢、核酸结构与遗传信息传递、生物膜与细胞信号传导以及酸碱平衡等内容。
医学生大二生物化学知识点生物化学是医学生在大二阶段需要学习的一门重要课程,它涉及了许多与生命活动相关的化学过程和分子结构。
本文将介绍一些医学生大二学习生物化学时需要掌握的知识点。
一、生物大分子1. 蛋白质:蛋白质是生物体内最重要的大分子,由氨基酸通过肽键连接而成。
医学生需要了解蛋白质的结构、分类和功能,例如酶、抗体等。
2. 糖类:糖类是提供能量的主要来源,同时也是构建细胞壁和细胞膜的重要组成部分。
医学生应了解各种不同类型的糖类,如单糖、双糖和多糖,以及它们的功能和代谢途径。
3. 脂类:脂类具有能量储存和细胞膜组成的重要作用。
医学生需要学习脂类的结构、分类和生理功能,如甘油三酯、磷脂等。
二、能量代谢1. 糖代谢:医学生需要了解葡萄糖的吸收、运输和利用方式,以及各种糖尿病的发生机制和治疗方法。
2. 脂肪代谢:了解脂肪的合成和降解途径,以及与肥胖和高血脂有关的疾病的发生机制。
3. 氨基酸代谢:了解氨基酸的合成和降解途径,以及与相关疾病(如苯丙酮尿症)的关联。
三、酶学1. 酶的分类:医学生需要熟悉酶的分类和命名规则,了解各类酶的催化作用和特征反应。
2. 酶动力学:学习酶的酶动力学参数,如酶的最大速率、米氏常数等,以及酶的调节方式。
四、代谢调节1. 激素调节:医学生需要了解各种激素对代谢的影响机制,如胰岛素、甲状腺素等。
2. 代谢疾病:学习与代谢相关的疾病,如糖尿病、肥胖症、高血脂等的发生机制和治疗方法。
五、核酸与蛋白质合成1. DNA结构与复制:医学生需要了解DNA的结构和复制过程,以及突变和DNA损伤修复的相关知识。
2. RNA和蛋白质合成:学习转录和翻译的过程,了解RNA的结构、功能和转运方式。
六、生物膜与细胞信号传导1. 细胞膜结构与功能:医学生需要了解细胞膜的结构和特点,以及与细胞信号传导有关的受体和离子通道。
2. 细胞信号传导:学习细胞内信号传导的机制,如G蛋白偶联受体和酪氨酸激酶等。
综上所述,医学生在大二阶段学习生物化学时,需要掌握生物大分子、能量代谢、酶学、代谢调节、核酸与蛋白质合成以及生物膜与细胞信号传导等各方面的知识点。
医学基础必备知识点总结一、生物化学基础1. 生物大分子的结构与功能(1)蛋白质:氨基酸的结构和分类,蛋白质的结构和功能(2)核酸:核苷酸的结构和分类,DNA和RNA的结构和功能(3)多糖:单糖、双糖、多糖的结构和功能2. 代谢(1)糖类代谢:糖原代谢、糖酵解、糖异生(2)脂类代谢:脂肪酸代谢、三酰甘油代谢、胆固醇合成和降解(3)蛋白质代谢:氨基酸代谢、蛋白质合成和降解3. 酶的作用与调控(1)酶的分类、结构和功能(2)酶的催化机理(3)酶的调控:激活和抑制二、细胞生物学基础1. 细胞的结构和功能(1)细胞膜和细胞器的结构和功能(2)细胞核的结构和功能(3)细胞质基质和细胞骨架2. 细胞信号传导(1)细胞外信号分子的作用机制(2)细胞膜受体和信号转导通路(3)细胞内信号分子的调控3. 细胞增殖和凋亡(1)细胞周期的调控(2)细胞分裂和有丝分裂(3)细胞凋亡的机制和调控三、遗传学基础1. 遗传物质的结构和功能(1)DNA的结构和功能(2)RNA的结构和功能(3)基因的结构和功能2. 遗传规律(1)孟德尔遗传定律(2)基因互作作用(3)基因突变和遗传病3. 分子遗传学(1)DNA复制、转录和翻译(2)基因表达调控(3)基因工程技术四、免疫学基础1. 免疫系统的组成(1)免疫细胞的类型和功能(2)淋巴器官的结构和功能(3)体液免疫和细胞免疫2. 免疫应答(1)免疫原和抗原(2)免疫记忆和免疫调节(3)免疫应答的调控机制3. 免疫病理学(1)变态反应和自身免疫(2)免疫缺陷和免疫调节失常(3)传染病和免疫药物五、病理学基础1. 病变的形成(1)病理生理学(2)病理化学(3)病理免疫学2. 病变的分类(1)炎症、变性、坏死、增生、肿瘤(2)先天性和后天性病变(3)原因及病理生理机制3. 病理诊断(1)临床病理(2)手术病理(3)尸体病理六、药理学基础1. 药物的作用机制(1)药物的靶点和药效学(2)药物的代谢和排泄(3)药物的作用时机和剂量效应关系2. 药代动力学(1)吸收、分布、代谢和排泄(2)药物的半衰期和生物利用度(3)药物的药效动力学3. 药物毒理学(1)药物的毒性和副作用(2)药物的致畸作用和致癌作用(3)药物的毒物学评价七、临床医学基础1. 临床诊断(1)病史、体格检查和实验室检查(2)医学影像学和病理检查(3)临床诊断的技巧和方法2. 临床治疗(1)药物治疗和手术治疗(2)物理治疗和康复治疗(3)生命支持和终末护理3. 临床预防(1)卫生保健和健康教育(2)疾病筛查和早期干预(3)免疫预防和环境预防八、公共卫生学基础1. 流行病学基础(1)流行病学研究的方法和原则(2)流行病学指标和参数(3)疫情调查和分析2. 卫生统计学基础(1)基本统计指标和方法(2)假设检验和回归分析(3)抽样调查和调查设计3. 卫生政策与管理(1)卫生制度和医疗资源管理(2)卫生政策和法规(3)卫生经济和社会医学以上内容基本概括了医学基础必备知识点,每一部分都是医学学习的重点和难点。
医学生物化学知识点详解医学生物化学是医学专业中非常重要的一门课程,它涉及到人体内各种生物分子的结构、功能和代谢过程。
本文将对医学生物化学中的一些重要知识点进行详细解析,帮助读者更好地理解和掌握这门学科。
1. 蛋白质结构与功能蛋白质是生物体内最重要的大分子,它们在细胞中扮演着各种重要的角色。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性排列所决定的,二级结构是由氢键形成的α-螺旋和β-折叠,三级结构是由蛋白质的二级结构之间的相互作用所决定的,四级结构是由多个蛋白质亚基之间的相互作用所决定的。
不同的蛋白质具有不同的功能,例如酶、抗体、激素等。
2. 糖代谢糖是生物体内最重要的能量来源之一,同时也是构成细胞壁和核酸的重要组成部分。
糖的代谢主要包括糖的降解和合成两个过程。
糖的降解主要通过糖酵解和三羧酸循环来产生能量,而糖的合成则主要通过糖异生途径来进行。
糖代谢的紊乱与多种疾病的发生密切相关,如糖尿病等。
3. 脂质代谢脂质是生物体内重要的能量存储物质,同时也是构成细胞膜的重要组成部分。
脂质的代谢主要包括脂肪酸的合成和降解、胆固醇的合成和降解以及脂质的转运等过程。
脂质代谢的紊乱与多种疾病的发生密切相关,如高血脂症等。
4. 核酸代谢核酸是生物体内存储和传递遗传信息的重要分子,包括DNA和RNA。
核酸的代谢主要包括核苷酸的合成和降解两个过程。
核苷酸的合成主要通过核苷酸合成途径来进行,而核苷酸的降解则主要通过核苷酸降解途径来进行。
核酸代谢的紊乱与多种遗传性疾病的发生密切相关,如遗传性代谢病等。
5. 酶与酶动力学酶是生物体内催化化学反应的重要分子,它们能够降低反应的活化能,从而加速反应速率。
酶的活性受到多种因素的影响,如温度、pH值、底物浓度等。
酶动力学研究酶的催化机理和酶的动力学参数,如酶的最大反应速率和底物浓度对反应速率的影响等。
6. 细胞信号转导细胞信号转导是细胞内外信息传递的过程,它调控了细胞的生长、分化、凋亡等重要生理过程。
医学生物化学重点总结第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a--羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。
等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。
三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链(R)的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸。
3,紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸,苯丙氨酸,或酪氨酸。
5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构。
DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构。
三、填空题1,核酸可分为DNA和RNA两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸,由戊糖、含氮碱基和磷酸3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA一级结构和二级结构有何异同?DNA RNA 一级结构相同点 1,以单链核苷酸作为基本结构单位2,单核苷酸间以3’,5’磷酸二脂键相连接3,都有腺嘌呤,鸟嘌呤,胞嘧啶一级结构不同点:1,基本结构单位2,核苷酸残基数目3,碱基4,碱基互补脱氧核苷酸几千到几千万胸腺嘧啶A=T,G≡C核苷酸几十到几千尿嘧啶A=U,G≡C 二级结构不同点:双链右手螺旋单链茎环结构4,叙述DNA双螺旋结构模式的要点。
生化课本知识点总结归纳1. 蛋白质蛋白质是生命活动中功能最为丰富的一类大分子化合物,是细胞的主要结构和功能单位。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、抗体、激素、载体等。
在生化课本中,学生需要了解蛋白质的组成、结构和功能,以及蛋白质的合成、降解和修饰等过程。
2. 核酸核酸是生物体内的重要大分子化合物,包括DNA和RNA。
在生化课本中,学生需要了解核酸的结构、功能和代谢途径。
此外,还需要了解DNA的复制、转录和翻译等过程,以及RNA的功能和合成过程。
3. 碳水化合物碳水化合物是生物体内的主要能量来源,也是细胞壁的主要组成成分之一。
在生化课本中,学生需要了解碳水化合物的结构、分类、代谢途径和生物学意义等知识点。
4. 脂质脂质是生物体内的重要大分子化合物,包括脂肪、磷脂和固醇等。
在生化课本中,学生需要了解脂质的结构、分类、功能和代谢途径,以及脂质在生物体内的生物学意义。
5. 酶酶是生物体内的重要催化剂,可以加快化学反应的速率,降低活化能。
在生化课本中,学生需要了解酶的结构、功能、酶促反应机制、酶与底物的结合方式、酶的特性和分类等知识点。
6. 代谢途径代谢途径是生物体内大量生化反应的有机组织,包括糖代谢途径、脂质代谢途径、蛋白质代谢途径和核酸代谢途径等。
在生化课本中,学生需要了解代谢途径的整体组织结构和相互关系,以及代谢途径中各种酶的作用和调节机制等知识点。
综上所述,生化课本的知识点涉及的内容非常丰富,需要学生具备扎实的化学和生物学基础,才能更好地理解和掌握其中的知识。
通过对生化知识点的总结归纳,可以帮助学生更好地理解生物化学的基本概念和原理,从而更好地应用于相关领域的学习和研究中。
生物化学知识点总结完整版生物化学是研究生物体在细胞、组织和器官水平上的化学过程的一门学科。
它涉及了生命体内物质的合成、降解和转化过程,以及这些过程对生命活动的调控和影响。
生物化学知识点包括了生物分子的结构及功能、生物体内的代谢过程、遗传信息的传递及表达等内容。
下面就对生物化学的一些重要知识点进行总结:一、生物分子的结构和功能1. 蛋白质:蛋白质是生物体内最丰富的一类生物大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着结构支持、酶催化、运输、信号传导等重要功能。
2. 碳水化合物:碳水化合物是生物体内最基本的能量来源,也是构成细胞壁、核酸、多糖等物质的重要成分。
3. 脂类:脂类是生物体内主要的能量储存物质,同时也是细胞膜的主要构成成分。
4. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA两类,它们负责存储遗传信息和传递遗传信息。
二、生物体内的代谢过程1. 糖代谢:糖代谢是生物体内重要的能量来源,包括糖原合成、糖原降解、糖酵解等过程。
2. 脂质代谢:脂质代谢包括脂肪酸的合成、分解和氧化,以及胆固醇的合成和降解。
3. 蛋白质代谢:蛋白质代谢包括蛋白质合成、降解和氨基酸的代谢。
4. 核酸代谢:核酸代谢包括核苷酸的合成和降解过程。
5. 能量代谢:生物体内能量的产生主要依靠有机物的氧化和磷酸化过程。
这些过程包括糖酵解、三羧酸循环和氧化磷酸化等。
三、遗传信息的传递和表达1. DNA的结构和功能:DNA是双螺旋结构,由脱氧核苷酸通过磷酸二酯键连接而成。
DNA负责存储遗传信息,并通过转录和翻译的过程进行表达。
2. RNA的结构和功能:RNA是单链结构,由核糖核苷酸通过磷酸二酯键连接而成。
RNA包括mRNA、tRNA和rRNA等,它们分别参与遗传信息的转录、转运和翻译。
3. 蛋白质合成的过程:蛋白质合成包括转录和翻译两个过程。
转录是指DNA的信息转录成RNA的过程,而翻译是指mRNA上的密码子与tRNA上的反密码子匹配,从而在核糖体上合成蛋白质的过程。
医学生物化学重点知识总结医学生物化学是医学专业的重要基础学科之一,掌握其中的重点知识对于医学生的研究和临床工作至关重要。
以下是医学生物化学的重点知识总结:1. 生物大分子- 生物大分子包括蛋白质、核酸、糖类和脂类。
- 蛋白质是生物体内功能最为复杂和多样的大分子,参与了生命活动的方方面面。
- 核酸是遗传物质的基本组成部分,包括DNA和RNA。
- 糖类是细胞内外的重要能源,也参与了调节生命活动的过程。
- 脂类是构成细胞膜的重要组分,具有能量储存和保护器官的功能。
2. 酶的机制- 酶是生物体内催化化学反应的蛋白质。
- 酶可以提高反应速率,但不参与反应本身。
- 酶的活性受到温度、pH值和底物浓度的影响。
- 酶的机制包括底物结合、反应过渡态形成和产物释放等步骤。
3. 能量代谢- 能量代谢是生物体维持生命活动所必需的过程。
- 能量代谢包括糖酵解、三羧酸循环和氧化磷酸化等步骤。
- 糖酵解将葡萄糖分解为乳酸或乙醛、丙酮酸等产物。
- 三羧酸循环将乙酰辅酶A氧化成二氧化碳和水,并产生ATP能量。
- 氧化磷酸化是最主要的能量产生过程,通过氧化底物产生大量ATP能量。
4. 遗传信息传递- 遗传信息在细胞内通过DNA和RNA传递。
- DNA包含遗传信息的编码,RNA参与转录和翻译过程。
- 转录是将DNA编码转换为RNA信息的过程。
- 翻译是将RNA信息转换为蛋白质的过程。
5. 蛋白质合成和降解- 蛋白质合成是细胞内将氨基酸通过肽键连接成多肽链的过程。
- 蛋白质降解是细胞内将蛋白质分解为氨基酸的过程。
- 蛋白质的合成和降解在细胞内保持动态平衡。
以上是医学生物化学的重点知识总结,希望对你的学习有所帮助。
请在确认过内容后使用该文档,如有疑问,请咨询专业教师或查阅相关资料。
生物化学重点蛋白质的元素组成:碳氢氧氮,测定的含氮量:除以16%= pr的含量,如氮5克pr为31.5克。
L-α-氨基酸其(脯氨酸是一种L-α-亚氨基酸),,酸性氨基酸:天门冬氨酸,谷氨酸; 碱性氨基酸赖氨酸精氨酸组氨酸。
蛋白质的理化性质:1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。
在某一PH溶液中,蛋白质分子所带正、负电荷相等时,此时整个分子呈电中性,此时的pH值称为蛋白质的等电点。
2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。
蛋白质分子表面的水化膜和表面所带的同性电荷是稳定蛋白质亲水溶胶的两个重要因素。
3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。
4.蛋白质的变性:在某些理化因素的作用下,破坏蛋白质分子的副键,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。
引起蛋白质变性的因素有:高温、高压涉及的化学键二硫键非共价键!蛋白质维持一级结构稳定的化学键:肽键,二硫键二级结构的主要形式:α-螺旋,β-折叠,β-转角,无规卷曲三级结构结构稳定因素:氢键、疏水键、范德华力、盐键,二硫键!DNA的二级结构①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则);④螺旋的稳定因素为氢键和碱基堆积力;⑤螺旋的螺距为3.4nm,直径为2nm。
!蛋白质的合成时与密码子AUG结合物质是甲硫氨酸反密码子CAU!核酸中核苷酸连接的化学键为3’,5’-磷酸二酯键,核苷中碱基与戊糖的连接键为N-C糖苷键! tRNA三叶草结构中的四个环:双氢尿嘧啶环,反密码子环,额外环,TψC环!维生素A的分类:维生素A的化学结构是含有脂环的不饱和一元醇A1视黄醇在海鱼肝脏A23-脱氢视黄醇淡水鱼,A2比A1在环上多一个双键,但其活性只有A1的一半,!.TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α-酮酸的氧化脱羧反应。
!黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物在小肠中被黄素激酶催化。
FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)!VD2麦角钙化醇VD3胆钙化醇,.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。
FH4:由叶酸衍生而来。
四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。
!酶促反应的特点:1.具有极高的催化效率:2.具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。
⑴绝对特异性:琥珀酸脱氢酶。
⑵相对特异性脂肪酶。
⑶立体异构特异性L-精氨酸酶。
3.酶的催化活性是可以调节的:4酶的不稳定性!结合酶的组成及功能:全酶由酶蛋白和铺因子,铺因子由铺酶和金属离子组成,金属离子的作用:1. 稳定构象:稳定酶蛋白催化活性所必需的分子构象;2. 构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心;3. 连接作用:作为桥梁,将底物分子与酶蛋白整合起来。
4传递电子。
酶蛋白具有专一性辅酶和辅基的作用:化学反应中传递电子质子或一些基团!酶的活性中心:与酶的活性直接相关的基团为酶的必需基团(结合基团和催化集团),必需基团集中存在形成具有一定空间结构的区域,特异地与底物结合,直接催化底物向产物转变,该区称为··! 酶促反应快的因素:底物浓度和酶的浓度(矩形双曲线)PH 温度(钟形曲线)抑制剂,激活剂。
!米氏方程:ν= Vmax[S]/(Km+[S])。
其中,Vmax为最大反应速度,Km为米氏常数。
⑶Km和Vmax的意义:①当ν=Vmax/2时,Km=[S]Km等于酶促反应速度达最大值一半时的底物浓度。
②当Km值越小,则酶与底物的亲和力越大;反之,则越小。
③反映激活剂与激动剂的存在④Km是酶的特征性常数。
⑤Km可用来判断酶的最适底物:Km值最小者,为该酶的最适底物。
⑥Km可用来确定酶活性测定时所需的底物浓度:⑦Vmax可用于酶的转换数的计算!不可逆性抑制剂:以共价键与酶的必需基团进行不可逆结合而使酶丧失活性。
1共价键2有机磷化物对胆碱酯酶3金属离子对硫基物的抑制作用。
!可逆性抑制剂:1以非共价键结合而使酶的活性降低或丧失2用透析超滤等物理方法将抑制剂除去后,酶的活性可以恢复,以此种抑制作用称为··!竞争性抑制作用的特点:1抑制剂与底物结构相似2竞争性占据酶的活性中心3抑制作用的强弱取决于抑制剂与底物的相对作用!磺胺药抑菌机理1属于可逆抑制2增加底物浓度抑制作用减弱3磺胺药与酶的活性中心基团结合抑制二氢叶酸合成酶!糖的无氧酵解:指葡萄糖或糖原在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子A TP。
糖的无氧酵解代谢过程可分为四个阶段: 1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子A TP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有OOHHHH2O3POCH2CH2OHOHHOHOOHOHHHH OHHCH2OHHOPO3H2磷酸己糖异构酶(G-6-P)6磷酸葡萄糖(F-6-P)6磷酸糖果两次底物水平磷酸化的放能反应,共可生成2×2=4分子A TP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
!糖无氧酵解的调节:关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受A TP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受A TP的变构抑制,肝中还受到丙氨酸的变构抑制。
!糖无氧酵解的生理意义: 1. 在无氧和缺氧条件下,作为糖分解供能的补充途径:⑴骨骼肌在剧烈运动时的相对缺氧;⑵从平原进入高原初期;⑶严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧。
2. 在有氧条件下,作为某些组织细胞主要的供能途径:如表皮细胞,红细胞及视网膜等,由于无线粒体,故只能通过无氧酵解供能。
糖的有氧氧化:葡萄糖或糖原在有氧条件下彻底氧化分解生成C2O和H2O,并释放出大量能量的过程称为糖的有氧氧化。
绝大多数组织细胞通过糖的有氧氧化途径获得能量。
此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可产生36/38分子A TP。
糖的有氧氧化代谢途径可分为三个阶段:1.葡萄糖经酵解途径生成丙酮酸:阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。
2.丙酮酸磷酸葡萄糖变位酶OOHOHHH OHHCH2OHHOHPO3H2OOHOHHHH OHHCH2OHHOPO3H2(G-1-P)磷酸葡萄糖1(G-6-P)6磷酸葡萄糖氧化脱羧生成乙酰CoA : 丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱羧生成(NADH+H+)和乙酰CoA 。
此阶段可由两分子(NADH+H+) 丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及六种辅助因子,即NAD+、FAD 、CoA 、TPP 、硫辛酸和Mg2+。
3.经三羧酸循环彻底氧化分解:生成的乙酰CoA 可进入三羧酸循环彻底氧化分解为CO2和H2O ,并释放能量合成A TP 。
一分子乙酰CoA 氧化分解后共可生成12分子A TP ,故此阶段可生成2×12=24分子A TP 。
三羧酸循环是指在线粒体中,乙酰CoA 首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程,由八步反应构成:(1)柠檬酸生成 在柠檬酸合成酶催化下,乙酰CoA 与草酰乙酸缩合生成柠檬酰CoA ,后再水解成柠檬酸和CoA ,此过程不可逆,是三羧酸循环的第一个限速步骤。
CH 3COSCoA COOH C +H 2O+CoASH+柠檬酸酰辅酶A 乙柠檬酸合 酶O=COOHCH 2C COOH HO CH 2COOHCH 2COOH草酰乙酸(2)柠檬酸转变为异柠檬酸 柠檬酸在乌头酸酶催化下,先脱水再水化反应生成异柠檬酸,为氧化脱羧做准备。
柠檬酸CHCOOH CCOOH CH 2COOHCHCOOHCHCOOH CH 2COOH异 柠檬酸顺 乌头 酸H 2OH 2OCHCOOH CH 2COOHCOOHC HO H HO(3)异柠檬酸氧化脱羧生成α-酮戊二酸 在异柠檬酸脱氢酶催化下,异柠檬酸脱氢后迅速脱羧生成α-酮戊二酸。
这是三羧酸循环第一次脱羧生成CO2的反应,使六碳化合物转变为五碳化合物,脱下的2H 由NAD +传递。
CCOOHCHCOOHCH 2COOHO 草酰琥珀酸COCOOHCH 2CH 2COOHNAD 异柠檬酸脱氢酶异柠檬酸脱氢酶+CO 2++NADH+H CHCOOHCHCOOH CH 2COOH O H α-酮 戊 二酸异柠檬酸(4)α-酮戊二酸氧化脱羧生成琥珀酰CoA α-酮戊二酸受α-酮戊二酸脱氢酶系催化,生成琥珀酰CoA 。
这是三羧酸循环的第二次脱羧,使五碳化合物转变为四碳化合物。
+CoA-SH NAD+CH 2COOHCH 2COSCoA+CO 2+NADH H++琥 珀 酰 CoA+COCOOH CH 2CH 2COOHα- 酮 戊 二酸脱氢酶系α-酮 戊 二酸(5)琥珀酰CoA 转变成琥珀酸 此反应由琥珀酰CoA 合成酶(也称琥珀酸硫激酶)催化,在H3PO4和GDP 存在下,琥珀酰CoA 生成琥珀酸。
琥珀酰CoA 高能硫酯基团的能量转移,使GDP 生成GTP 。