第五章 第2讲 圆周运动的规律及其应用
- 格式:ppt
- 大小:4.42 MB
- 文档页数:52
专题10.圆周运动的规律及应用备考必知:(1)描述匀速圆周运动的各物理量间的关系:rn fr r Tr v ππωπ222====,a=r v 2=2ωr . (2)向心力公式:F =ma =m v 2r =mr ω2=mr 4π2T 2,方向:指向圆心. 向心力是根据力的作用效果命名的,而不是一种特定的力(如重力),因此在分析物体的受力时,切记不可将向心力也作为物体的受力考虑在内。
如匀速圆周运动:合外力提供向心力,产生向心加速度,改变速度的方向,F 合=F 向=ma 向.如变速圆周运动:合外力并不指向圆心.沿半径方向(或沿法线方向)的合外力提供向心力,产生向心加速度,改变速度的方向,F 法=F 向=ma 向.沿切线方向的合外力产生切向加速度,改变速度的大小,F 切=ma 切.(3)在分析传动装置的线速度、角速度、向心加速度与半径之间的关系时,关键是抓住不变量,确定另一变量与半径的正比或反比关系进行判断。
:如皮带传动轮缘各点的线速度大小相等. 如同轴转动的各点角速度相等(轴上的点除外).(4)做匀速圆周运动的物体,在合外力突然消失或者不足以提供物体做圆周运动所需的向心力的情况下,质点是做半径越来越大的运动或沿切线方向飞去的运动,它不是沿半径方向飞去,做离心运动的质点不存在的所谓的“离心力”作用,因为没有任何物体提供这种力.(5)竖直平面内圆周运动临界问题:最高点处的受力特点分析三种情况进行讨论.①弹力只可能向下,如绳拉球(图).此时小球在最高点的临界速度由mg =m v 2r决定,因此,其临界速度v 0=gr.②弹力只可能向上,如车过桥(图4-3-3乙).当v <v 0=gr 时,车辆才能完成圆周运动;当v >v 0=gr 时,车辆将会因向心力不足而脱离圆周轨道飞出.③弹力可向上又可向下,如管内转球(或杆连球、环穿球)可进一步讨论:v =gr 时物体受到的弹力恰好为零.问题1运动学角度及传动装置:1.(2012上海) 图a 为测量分子速率分布的装置示意图。
匀速圆周运动做匀速圆周运动的物体的速度大小是恒定的,但速度方向时刻改变,所以匀速圆周运动是变速运动 做匀速圆周运动的物体并不处于平衡状态物体做匀速圆周运动的条件是物体时刻受到与速度方向垂直的合外力作用,并且这个合外力总沿着半径指向圆心,所以叫向心力向心力总是指向圆心,而线速度沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体线速度的方向而不改变线速度的大小向心力是根据力的作用效果命名的,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,还可以是某个力的分力向心加速度①意义:它是描述线速度方向改变快慢的物理量,向心力产生的加速度叫向心加速度,它遵循牛顿第二定律②方向:始终指向圆心,并且时刻变化③大小22224v a r r v r Tπωω====向做匀速圆周运动的物体,向心加速度大小不变对向心加速度的几点说明①向心加速度通过牛顿第二定律由物体所受向心力来确定由于做匀速圆周运动的物体在运动的过程中角速度、速率、周期都是不变的,因而物体在做匀速圆周运动的过程中,向心加速度的大小是不变的,但是向心加速度的方向在时刻变化着,所以匀速圆周运动是变加速曲线运动②向心加速度是匀速圆周运动的瞬时加速度而不是平均加速度在匀速圆周运动中,加速度不是恒定的,这里的向心加速度,是指某时刻或某一位置的瞬时加速度 ③向心加速度不一定是物体做圆周运动的实际加速度【例1】下列说法正确的是( )A .匀速圆周运动是一种匀速运动B .匀速圆周运动是一种匀变速运动C .匀速圆周运动是一种变加速运动D .物体做圆周运动时,其合力垂直于速度方向,不改变线速度大小圆周运动:圆周运动的基本规律、圆周运动的各种应用【例2】质点做匀速圆周运动,则①在任何相等的时间里,质点的位移都相等②在任何相等的时间里,质点通过的路程都相等③在任何相等的时间里,质点运动的平均速度都相同④在任何相等的时间里,连接质点和圆心的半径转过的角度都相等以上说法中正确的是( )A.①②B.③④C.①③D.②④【例3】做匀速圆周运动的两物体甲和乙,它们的向心加速度分别为a1和a2,且a1>a2,下列判断正确的是( )A.甲的线速度大于乙的线速度B.甲的角速度比乙的角速度小C.甲的轨道半径比乙的轨道半径小D.甲的速度方向比乙的速度方向变化得快【例4】甲、乙两物体均做匀速圆周运动,其向心加速度a随半径r变化的关系图线,分别如图中a甲、a乙所示,图线a甲是一条过原点的直线;图线a乙是以横轴和纵轴为渐近线的双曲线。
第2讲 圆周运动及其应用考点1 描述圆周运动的物理量1.线速度①定义:质点做圆周运动通过的弧长S 与通过这段弧长所用时间t 的叫做圆周运动的线速度.②线速度的公式为,③方向为.作匀速圆周运动的物体的速度、方向时刻在变化,因此匀速圆周运动是一种运动.2.角速度①定义:用连接物体和圆心的半径转过的角度θ跟转过这个角度所用时间t 的叫做角速度. ②公式为,单位是.3.周期①定义:做匀速圆周运动的物体运动的时间,称为周期.②公式:4.描述匀速圆周运动的各物理量的关系①.角速度ω与周期的关系是:②.角速度和线速度的关系是:③.周期与频率的关系是:;④.向心加速度与以上各运动学物理量之间的关系:5.描述圆周运动的力学物理量是向心力(F 向),它的作用是.描述圆周运动的运动学物理量和力学物理量之间的关系是:.[例1]图所示为一皮带传动装置,右轮的半径为r ,A 是它边缘上的一点.左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r .B 点在小轮上,它到小轮中心的距离为r .C 点和D 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( )A .A 点与B 点的线速度大小相等B .A 点与B 点的角速度大小相等C .A 点与C 点的线速度大小相等D .A 点与D 点的向心加速度大小相等考点2匀速圆周运动、离心现象1.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的相等,这种运动就叫做匀速成圆周运动。
2.向心力:做匀速圆周运动的物体所受到的始终指向圆心的合力,叫做向心力。
向心力只能改变速度的,不能改变速度的。
向心力的表达式为:3.向心力始终沿半径指向圆心,是分析向心力的关键,而圆周运动的圆心一定和物体做圆周运动的轨道在.例如沿光滑半球内壁在水平面上做圆周运动的物体,匀速圆周运动的圆心在与小球同一水平面上的O´而不在球心O 点(如图1).4.离心现象:做匀速圆周运动的物体,在合外力突然,或者物体做圆周运动所需要的向心力时,即:r v m F 2.物体将做,这种现象叫做离心现象. [例2]如图3所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中()A .B 对A 的支持力越来越大B .B 对A 的支持力越来越小C .B 对A 的摩擦力越来越大D .B 对A 的摩擦力越来越小[例3]如图所示,光滑水平面上,小球m 在拉力,作用下做匀速圆周运动,若小球运动到P 点时,拉力F 发生变化,关于小球运动情况的说法正确的是 ( )A .若拉力突然消失,小球将沿轨迹Pa 做离心运动B .若拉力突然变小,小球将沿轨迹pa 做离心运动C .若拉力突然变大,小球将沿轨迹pb 做离心运动D .若拉力突然变小,小球将沿轨迹pc 做离心运动[解析]开始时小球做圆周运动,说明此时的拉力恰好能提供向心力。
圆周运动的规律及其应用知识点总结与典例【知识点梳理】知识点一 匀速圆周运动及描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。
(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
2.描述圆周运动的物理量物理量 意义、方向公式、单位 线速度(v )①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πr T ②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT ②单位:rad/s 周期(T )和转速(n )或频率(f )①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv 单位:s ②n 的单位:r/s 、r/min ,f 的单位:Hz向心加速度(a )①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2 ②单位:m/s 23.线速度、角速度、周期、向心加速度之间的关系 (1)v =ωr =2πT r =2πrf .(2)a n =v 2r =rω2=ωv =4π2T 2r =4π2f 2r . 知识点二 匀速圆周运动的向心力1.向心力的理解 (1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
(2)大小F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
(4)来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
2.离心现象(1)现象做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
(2)受力特点①当F n=mω2r时,物体做匀速圆周运动。
圆周运动圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。
2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。
它们之间的关系大多是用半径r 联系在一起的。
如:Tr r v πω2=⋅=,22224T r r r v a πω===。
要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。
(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。
只适用于匀速圆周运动的公式有:224T ra π= ,因为周期T 和转速n 没有瞬时值。
二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T rt s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
高考物理一轮复习讲义 第2讲 圆周运动的基本规律及应用一、描述圆周运动的物理量物理量 物理意义定义、公式、单位线速度描述物体沿切向运动的快慢程度①物体沿圆周通过的弧长与时间的比值②v =Δl Δt③单位:m/s④方向:沿圆弧切线方向角速度描述物体绕圆心转动的快慢①连接运动质点和圆心的半径扫过的角度与时间的比值②ω=ΔθΔt③单位:rad/s周期和转速描述匀速圆周运动的快慢程度①周期T :物体沿圆周运动一周所用的时间,公式T =2πrv,单位:s②转速n :物体单位时间内所转过的圈数,单位:r/s 、r/min向心加速度描述速度方向变化快慢的物理量①大小:a n =v 2r=ω2·r②方向:总是沿半径指向圆心,方向时刻变化③单位:m/s 2v 、ω、T 、n 、a 的相互关系v =ωr =2πrTa =v 2r =ω2r =ω·v =⎝ ⎛⎭⎪⎫2πT 2·r 二、向心力1.定义:做圆周运动的物体受到的指向圆心方向的合外力,只改变线速度方向,不会改变线速度的大小.2.大小:F 向=ma 向=m v 2R=mRω2=mR ⎝ ⎛⎭⎪⎫2πT 2=mR (2πf )2.3.方向:总指向圆心,时刻变化,是变力.4.向心力的向心力是按效果来命名的,对各种情况下向心力的来源要明确. 三、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)运动特点:线速度的大小恒定,角速度、周期和频率都恒定不变的圆周运动.(2)受力特点:合外力完全用来充当向心力.向心力(向心加速度)大小不变、方向时刻指向圆心(始终与速度方向垂直),是变力.(3)运动性质:变加速曲线运动(加速度大小不变、方向时刻变化). 2.变速圆周运动(非匀速圆周运动)(1)运动特点:线速度大小、方向时刻在改变的圆周运动.(2)受力特点:变速圆周运动的合外力不指向圆心,合外力产生两个效果(如图所示).①沿半径方向的分力F n :此分力即向心力,产生向心加速度而改变速度方向. ②沿切线方向的分力F τ:产生切线方向加速度而改变速度大小. (3)运动性质:变加速曲线运动(加速度大小、方向都时刻变化). 四、离心运动1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. 3.受力特点:(1)当F =m rω2时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <m rω3时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示.1.关于运动和力的关系,下列说法正确的是( ) A .物体在恒力作用下不可能做直线运动 B .物体在恒力作用下不可能做曲线运动 C .物体在恒力作用下不可能做圆周运动 D .物体在恒力作用下不可能做平抛运动解析:物体在恒力作用下不可能做圆周运动,选项C 正确. 答案: C2.关于向心力,下列说法中正确的是( ) A .向心力不改变做圆周运动物体速度的大小 B .做匀速圆周运动的物体,其向心力是不变的 C .做圆周运动的物体,所受合力一定等于向心力D .做匀速圆周运动的物体,一定是所受的合外力充当向心力解析:向心力始终指向圆心,所以方向是时刻变化的;做匀速圆周运动的物体,所受合力才等于向心力.答案:AD 3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号的轿车在高速公路上行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速约为( )A .1000 r/sB .1 000 r/minC .1 000 r/hD .2 000 r/s解析: 由公式ω=2πn ,v =ωr =2πrn ,其中r =30 cm =0.3 m ,v =120 km/h =1003m/s ,代入公式得n =1 00018πr /s ,约为1 000 r/min.答案: B4.(2013·山西高三月考)荡秋千是儿童喜爱的运动,当秋千荡到最高点时小孩的加速度方向可能是( )A .1方向B .2方向C .3方向D .4方向解析:小孩在最高点时速度为零,由a =v 2R可知,此时的向心加速度为零,小球只沿切线方向加速,切向加速度不为零,所以在最高点时小孩的加速度方向为2方向,B 选项正确.答案: B5.一种新型高速列车转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合力为( )A .500 NB .1 000 NC .500 2 ND .0 答案: A圆周运动的运动学问题对公式v =rω和a n =v 2r=rω2的理解(1)由v =rω知,r 一定时,v 与ω成正比;ω一定时,v 与r 成正比;v 一定时,ω与r 成反比.(2)由a n =v 2r=rω2知,在v 一定时,an 与r 成反比;在ω一定时,a n 与r 成正比.如图所示是一个玩具陀螺.A 、B 和C 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .A 、B 和C 三点的线速度大小相等 B .A 、B 和C 三点的角速度相等 C .A 、B 的角速度比C 的大D .C 的线速度比A 、B 的大解析:A 、B 和C 均是同一陀螺上的点,它们做圆周运动的角速度都为陀螺旋转的角速度ω,B 对、C 错.三点的运动半径关系r A =r B >r C ,据v =ωr 可知,三点的线速度关系v A =v B >v C ,A 、D 错.答案:B在传动装置中各物理量之间的关系传动类型图示结论共轴传动各点角速度ω相同,而线速度v =ωr 与半径r 成正比,向心加速度大小a =rω2与半径r 成正比.皮带(链条)传动当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相等,由ω=v r 可知,ω与r 成反比,由a =v 2r可知,a 与r 成反比.1-1:如图所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A 错误、B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2,得从动轮的转速为n 2=nr 1r 2,C 正确、D 错误. 答案:BC匀速圆周运动的实例分析1.汽车转弯类问题汽车(或自行车)在水平路面上转弯如图所示.路面对汽车(或自行车)的静摩擦力提供向心力.若动摩擦因数为μ,则由μmg =m v 2R得汽车(或自行车)安全转弯的最大速度为v =μgR .2.火车拐弯问题 设火车车轨间距为L ,两轨高度差为h ,火车转弯半径为R ,火车质量为M ,如图所示.因为θ角很小,所以sin θ≈tan θ,故h L=F n Mg,所以向心力Fn =h LMg .又因为Fn =Mv 2/R ,所以车速v =ghR L.3.汽车过桥问题 项目 凸形桥 凹形桥受力 分析图以a 方向为正方向,根据牛顿第二定律列方程mg -F N 1=m v 2r F N 1=mg -m v 2rF N 2-mg =m v 2r F N 2=mg +m v 2r讨论v 增大,小车对桥的压力F′N 1减小;当v增大到rg 时,F′N 1=0 v 增大,小车对桥的压力F′N 2增大;只要v ≠0,F′N 1<F′N 2由列表比较可知,汽车在凹形桥上行驶对桥面及轮胎损害大,但在凸形桥上,最高点速率不能超过gr .在半径为r 的半圆柱面最高点,汽车以v =gr 的速率行驶将脱离桥面. 在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看做是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRhL B. gRh d C.gRLh D. gRd h解析:汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ.根据牛顿第二定律:F 向=m v 2R,tan θ=h d ,解得汽车转弯时的车速v =gRhd,B 对. 答案:B解决圆周运动问题的主要步骤2-1:“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人的总质量为m ,做圆周运动的半径为r .若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )A .人和车的速度为gr tan θB .人和车的速度为gr sin θC .桶面对车的弹力为mg cos θD .桶面对车的弹力为mgsin θ解析:对人和车进行受力分析如图所示.根据直角三角形的边角关系和向心力公式可列方程:F N cos θ=mg ,mg tan θ=m v 2r.解得v =gr tan θ,F N =mgcos θ. 答案:AC竖直面内圆周运动中的临界问题有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况.(2012·济南模拟)如图所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( ) A.小球通过最高点时的最小速度v min=g R+rB.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与球重力在背离圆心方向的分力F mg的合力提供向心力,即:F N-F mg=ma,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.答案:BC(2012·江西南昌模拟)如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .现使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v 时,两段线中张力恰好均为零,若小球到达最高点速率为2v ,则此时每段线中张力为多大?(重力加速度为g )解析:本题属于最高点无支持物的情况.当速率为v 时,mg =mv 2R当速率为2v 时,满足mg +F =m 2v 2R得F =3mg则设每根线上的张力为F T ,满足:2F T cos 60°2=3mg即F T =3mg . 答案: 3mg1.如图是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去解析:本题考查圆周运动的规律和离心现象.摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A 项错误;摩托车正确转弯时可看做是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B 项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C 、D 项错误.答案:B2.如图所示,用细线拴着一个小球,在光滑水平面上做匀速圆周运动,则下列说法中正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短一定越容易断 解析:小球线速度大小一定时,线的拉力大小与线的长度L 的关系可用F =m v 2L来判断;小球角速度一定时,线的拉力大小与线的长度L的关系可用F =mω2L 来判断.答案:BC3.如图所示的齿轮传动装置中,主动轮的齿数z 1=24,从动轮的齿数z 2=8,当主动轮以角速度ω顺时针转动时,从动轮的运动情况是( )A .顺时针转动,周期为2π/3ωB .逆时针转动,周期为2π/3ωC .顺时针转动,周期为6π/ωD .逆时针转动,周期为6π/ω解析:主动轮顺时针转动,从动轮逆时针转动,两轮边缘的线速度相等,由齿数关系知主动轮转一周时,从动轮转三周,故T 从=2π3ω,B 正确.答案:B4.如图所示,长为L 的轻杆一端固定一质量为m 的小球,另一端可绕固定光滑水平转轴O 转动,现使小球在竖直平面内做圆周运动,C 为圆周的最高点,若小球通过圆周最低点D 的速度大小为6gL ,则小球在C 点( )A .速度等于gLB .速度大于gLC .受到轻杆向上的弹力D .受到轻杆向下的拉力解析:小球从最低点转到最高点,由2mgL =12mv 2D -12mv 2C ,解得v C =2gL ,则小球在C 点的速度大于gL ,B 项对.在C 点,由牛顿第二定律得F +mg =m v 2CL,得F =mg ,F 方向向下,故D 项正确.答案:BD5.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图所示.表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变.摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H 、侧壁倾斜角度α不变,则下列说法中正确的是( )A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小 解析:考查圆周运动向心力相关知识,学生的分析能力、建模能力.经分析可知向心力由重力及侧壁对摩托车弹力的合力提供,因摩托车和演员整体做匀速圆周运动,所受合外力等于向心力,因而B 正确.答案:B。
圆周运动讲义集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#圆周运动讲义【知识点】1.匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动。
匀速圆周运动是一种变加速曲线运动,虽然匀速圆周运动的速度大小不变,但它的速度的方向时刻在发生变化,所以匀速圆周运动不是匀速圆周运动,而是匀速率圆周运动。
2.线速度v①物理意义:描述物体做圆周运动快慢的物理量;②定义:质点沿圆周运动通过的弧长s和所以时间t的比值叫做线速度③大小:v=s/t,单位:m/s④矢量,它的方向是质点在圆周上某点沿圆周上的切线方向。
实际上就是该点的瞬时速度。
3.角速度①物理意义:描述质点转过的圆心角的快慢②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t 的比值,就是质点运动的角速度。
③大小:=/t,单位:rad/s④匀速圆周运动是角速度不变的圆周运动。
4.周期T、频率f和转速n①周期T:在匀速圆周运动中,物体沿圆周转过一周所用的时间叫做匀速圆周运动的周期。
在国际单位制中,单位是秒(s)。
匀速圆周运动是一种周期性的运动。
②频率f:每秒钟完成圆周运动的转数。
在国际单位制中,单位是赫兹(Hz)。
③转速n:单位时间内做匀速圆周运动的物体转过的转数。
在国际单位制中,单位是转/秒(n/s).匀速圆周运动的T、f和n均不变。
5.描述匀速圆周运动的物理量之间的关系①线速度和角速度间的关系:②线速度和周期的关系:③角速度和周期的关系:④周期和频率之间的关系:6.描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
做匀速圆周运动的物体向心力是所受外力的合力做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
第3讲:圆周运动的规律及其应用一、 描述圆周运动的几个物理量 1、 线速度⑴定义:质点沿圆周运动通过的弧长l ∆与所用时间t ∆的比值叫线速度。
也即是单位时间通过的弧长 ⑵公式:tl v ∆∆=⑶单位:s m⑷物理意义:描述圆周运动的物体运动快慢的物理量。
注意:①线速度是矢量②线速度有平均线速度和瞬时线速度之分。
和速度一样,不作特殊说明,线速度指的都是瞬时线速度,也简称速度2、 角速度⑴定义:做圆周运动的物体与圆心的连线转过的角度θ∆与所用时间t ∆的比值叫角速度。
也即是单位时间转过的角度 ⑵公式:t∆∆=θ ⑶单位:s rad⑷物理意义:描述物体绕圆心转动的快慢。
注意:①角速度是矢量,角速度的方向高中阶段不研究。
②公式:t∆∆=θ中的θ∆必须用弧度制 ③一定要注意角速度的单位。
3、 周期⑴定义:做圆周运动的物体转动一周所用的时间叫周期。
⑵符号:T ⑶单位:s 4、 频率⑴定义:做圆周运动的物体1s 转动的圈数。
⑵符号:f⑶单位:Hz注意:周期和频率的关系fT 1=5、 转速⑴定义:做圆周运动的物体在单位时间转过的圈数 ⑵符号: n⑶单位:s r m in r 且1s r =60m in r注意:当转速以s r 为单位时,转速的大小和频率在数值上相等6、向心加速度⑴定义:做匀速圆周运动的物体的加速度始终指向圆心,这个加速度叫向心加速度。
⑵公式:rv a 2==r⑶单位:2s m⑷方向:总是指向圆心且与线速度垂直⑸物理意义:描述做圆周的物体速度方向变化快慢的物理量。
二、 匀速圆周运动1、 定义:线速度大小不变的圆周运动。
2、 性质:匀速圆周运动的性质可以有以下三种说法变速曲线运动匀速率曲线运动变加速曲线运动〔加速度的大小不变,方向在时刻变化〕注意:匀速圆周运动的性质不是匀速运动,也不是匀变速曲线运动 三、 描述匀速圆周运动的几个物理量的关系V= rTπ2=f T 1==2n rv a 2==r四、 几种常见的传动装置及其特点1、 同轴传动2、皮带传动 特点:物体上任意各点的特点:轮子边缘上各点线速度的大小相等,都和皮带 角速度都一样,即: C B A ωωω==的速度大小相等,即:D C B A v v v v ===3、 齿轮传动特点:两齿轮边缘上各点线速度 大小相等即:C B A v v v =例1、把地球看成一个球体,在地球外表上赤道*一点A ,北纬60°一点B ,在地球自转时,A 与B 两点角速度之比为多大.线速度之比为多大.例2、机械表中,时针、分针、秒针的运动可视为匀速转动,则分针与秒针从*次重合再次重合所经历的时间为〔〕 A 、59s B 、60s C 、min 5960 D 、min 6061变式:分针和时针从*次重合再次重合所经历的时间为多少.例3、如下图,直径为d 的纸制圆筒以角速度绕垂直纸面的轴O 匀速转动〔图示为截面〕,从枪口发射的子弹沿直径穿过圆筒,假设子弹在圆筒中旋转不到半周时,在圆筒上先后留下A 、B 两个弹孔,AO 与BO 的夹角为,求子弹速度大小•O •••C A R • • • • • • rD B CB AC•••五、 向心力1、物体做圆周运动时,所需向心力的大小: F 需=rmv 2=mr=ma r T m =⎪⎭⎫ ⎝⎛22π2、方向:总是指向圆心且与线速度垂直。
知识点1描述圆周运动的物理量1. 线速度若在时间t 内,做匀速圆周运动的质点通过的弧长是s ,则用比值/s t 来描述匀速圆周运动的快慢,这个比值称为匀速圆周运动的线速度.公式:sv t =,单位:米/秒.线速度是物体做匀速圆周运动的瞬时速度.线速度是矢量,它既有大小,也有方向.线速度的大小,sv t =.方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.物理意义:描述质点沿圆周运动的快慢.2. 角速度物体在t ∆时间内由A 运动到B ,半径OA 在这段时间内转过的角度为θ∆,则θ∆与t ∆的比值描述了物体绕圆心转动的快慢,这个比值叫做角速度.角速度用ω表示:=t θω∆∆,角速度单位为弧度每秒.符号:rad/s .角速度的物理意义:描述质点转过圆心角的快慢.角速度也是矢量,不过中学物理不讨论角速度方向问题. 3. 周期做匀速圆周运动的物体运动一周所用的时间叫做周期.用符号T 表示,周期的单位和时间单位一样. 4. 频率表示一秒内转过的圈数,周期的倒数叫做频率用符号f 表示;f =1/T .频率越高表明物体运转得越快! 5. 转数匀速圆周运动的物体单位时间转过的圈数,叫转速常用符号n 表示,单位r /s ,以及r/min ,转速n 越大表明物体运动得越快! 知识点2:线速度、角速度和周期的关系设某一物体沿半径为r 的圆周做匀速圆周运动,用v 表示线速度,用ω表示角速度,T 表示周期,则:v 与T 的关系:2/v r T π=,ω与T 的关系:2/T ωπ=,v 与ω的关系:v r ω= 知识点3:匀速圆周运动定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动.尽管做匀速圆周运动的物体在各个时刻的线速度大小相等,但线速度的方向是不断变化着的.匀速圆周运动是一种变速知识讲解圆周运动的规律曲线运动,“匀速”是指线速度的大小不变,即“匀速率”.匀速圆周运动是角速度不变的运动!匀速圆周运动是周期不变的运动! 知识点4:常见传动从动装置主动轮通过皮带、链条、齿轮等带动从动轮的过程中,皮带(链条)上各点以及两轮边缘上各点的线速度大小相等.同一轮上各点的角速度相同.【例1】 匀速圆周运动是( )A .匀速率运动B .匀变速运动C .匀加速运动D .变加速运动【例2】 一个质点做匀速圆周运动,已知该质点的角速度为ω,半径为r ,则它运动的线速度为( )A .ω2rB .ωrC .ω/rD .ωr 2【例3】 做匀速圆周运动的质点是处于( )A .平衡状态B .不平衡状态C .速度不变的状态D .加速度不变的状态【例4】 一物体以一定的半径做匀速圆周运动,它的线速度为v ,角速度为ω,经过一段短暂的时间后,物体通过的弧长为S ,半径转过的角度为φ,则下列关于S 的表达式中正确的是( ) A .ωϕ⋅=v S B .ϕω⋅=v SC .v S ϕω⋅=D .ϕω⋅=v S【例5】 如图所示,a 、b 是地球表面不同纬度上的两个点,如果把地球看作是一个球体,且a 、b 两点随地球的自转看作是做匀速圆周运动,则这两个点具有相同的:( ) A .线速度 B .角速度 C .周期 D .运动半径【例6】 如图所示,一个环绕中心线OO′以角速度ω转动,则:( )A .A 、B 两点的角速度相等例题精讲AOωB .A 、B 两点的线速度相等C .若θ=30°,则v A ∶v B =3∶2D .以上答案都不对知识点1:向心加速度在向心力作用下物体产生的加速度叫做向心加速度.向心加速度的方向:总是沿半径指向圆心,每时每刻在不断地变化.向心加速度大小:2222a r v r r T πω⎛⎫=== ⎪⎝⎭.向心加速度的方向与速度方向垂直.向心加速度是描述速度方向变化快慢的物理量. 知识点2:向心力向心力:做匀速圆周运动的物体受到的合外力总是指向圆心,这个力叫做向心力.向心力的方向:总是沿半径指向圆心,方向时刻在改变.因此向心力是变力.向心力的大小:2222=F ma m r mv r m r T πω⎛⎫=== ⎪⎝⎭向向心力的作用效果:只改变速度的方向,不改变速度的大小.向心力的来源:可以由重力、弹力、摩擦力等提供.总之是物体所受的合外力提供了物体做匀速圆周运动所需的向心力. 知识点3:几种典型匀速圆周运动的向心力来源1. 圆锥摆:向心力由拉力F 和重力G 的合力提供.2. 物体相对转盘静止,随盘做匀速圆周运动:木块做圆周运动所需向心力,由圆盘对木块的静摩擦力f 提供.3. 卫星绕地球运动:向心力由万有引力提供.4. 轻绳栓一小球,在光滑水平面做匀速圆周运动.5. 滚筒洗衣机中物体跟着滚筒匀速转动.知识讲解【例7】 对于做匀速圆周运动的物体,下列说法中正确的是:( )A .在任何时刻,物体所受的合力一定为零B .质点运动的方向一定不断改变C .在任何时刻,质点的加速度一定为零D .质点运动的线速度大小一定不断改变【例8】 匀速圆周运动中的向心加速度是描述:( )A .线速度大小变化的物理量B .线速度大小变化快慢的物理量C .线速度方向变化的物理量D .线速度方向变化快慢的物理量【例9】 如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A 的受力情况,下列说法中正确的是( )A .摆球A 受重力、拉力和向心力的作用B .摆球A 受拉力和向心力的作用C .摆球A 受拉力和重力的作用D .摆球A 受重力和向心力的作用【例10】 如图为一皮带传动装置,右轮半径为r ,a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心的距离为r .c 点和d 点分别位于左侧小轮和大轮的边缘上.若传动过程中皮带不打滑,则:( ) A .a 点和b 点的线速度大小相等 B .a 点和b 点的角速度大小相等 C .a 点和c 点的线速度大小相等 D .a 点和d 点的向心加速度大小相等例题精讲cb d r2r 4rrA【例11】 甲乙两个物体均做匀速圆周运动,甲的质量和轨道半径均为乙的一半,当甲转过60°时,乙在这段时间里正好转过45°,则甲乙两个物体的向心力之比为多少?【例12】 质量一定的物体做匀速圆周运动时,如所需的向心力要增为原来的8倍,现有以下各种措施:①线速度和圆半径加倍;②角速度和圆半径加倍;③周期和圆半径加倍;④频率和圆半径加倍.则其中正确的是:( ) A .①和③ B .②和④C .①和④D .②和③【例13】 质点做匀速圆周运动,当线速度为v 时,圆周半径为R ,若保持向心力大小不变,当圆周半径为2R 时,角速度应为:( )A .R v 2B .R v 22C .R vD .Rv 2【例14】 甲、乙两个质点绕同—圆心做匀速圆周运动,甲的转动半径是乙的3/4,当甲转动60周时,乙转动了45周,则甲、乙两个质点的向心加速度之比a a 乙甲:等于:( ) A .4:3 B .3:4 C .1:2 D .2:1【例15】 做匀速圆周运动的物体,圆轨道半径为R ,向心加速度为a ,则以下的关系式不正确的是:( )A .线速度v aR =B .角速度aRω=C .频率Raf π2= D .周期a R T π2=【例16】 关于做匀速圆周运动物体的向心加速度方向,下列说法正确的是:( ) A .与线速度方向始终相同 B .与线速度方向始终相反C .始终指向圆心D .始终保持不变【例17】 洗衣机的甩干筒在转动时有一衣物质附在筒壁上,则此时( )A .衣物受到重力、筒壁的弹力和摩擦力的作用B .衣物随筒壁做圆周运动的向心力是由于摩擦的作用C .筒壁的弹力随筒的转速增大而增大D .筒壁对衣物的摩擦力随转速增大而增大【例18】 同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有( )A .车对两种桥面的压力一样大B .车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断【例19】对于做匀速圆周运动的物体,下列说法正确..的是()A.相等的时间内通过的路程相等B.向心加速度是不变的C.向心力不随时间变化是恒力D.线速度是不变的【例20】如图所示,小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况是()A.重力、支持力B.重力、向心力AC.重力、支持力、指向圆心的摩擦力D.重力、支持力、向心力、摩擦力【例21】关于向心加速度的叙述,正确的是()A.向心加速度是由向心力产生的B.向心加速度的方向与向心力方向相同C.向心加速度与速度方向相同D.向心加速度是矢量【例22】下列关于匀速圆周运动的叙述,正确的是()A.速率是恒定的B.周期是恒定的C.速度是恒定的D.角速度是恒定【例23】在绕同一转轴转动物体上的不同点,下列哪些物理量是相同的()A.线速度B.角速度C.周期D.向心加速度【例24】如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则:()A.球A的角速度一定大于球B的角速度B.球A的线速度一定大于球B的线速度C.球A的运动周期一定小于球B的运动周期D.球A对筒壁的压力一定大于球B对筒壁的压力1、 某质点绕圆轨道做匀速圆周运动,下列说法中正确的是:( )A .因为它的速度大小始终不变,所以它做的是匀速运动B .它速度大小不变,但方向时刻改变,是变速运动C .该质点速度大小不变,因而加速度为零,处于平衡状态D .该质点做的是变速运动,具有加速度,故它所受合外力不等于零 2、 做匀速圆周运动的物体,下列物理量时刻发生变化的是:( )A .速度B .加速度C .角速度D .周期3、 一小球被细绳拴着,在水平面内做半径为R 的匀速圆周运动,向心加速度为a .那么( )A .小球运动的角速度ω=RaB .小球在时间t 内通过的路程为s=aR tC .小球做匀速圆周运动的周期T=aR D .小球在时间t 内可能发生的最大位移为2R4、 图示所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为n r r 21D .从动轮的转速为n r r 125、 如图所示,定滑轮的半径r=2 cm ,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2 m/s 2做匀加速运动,在重物由静止下落距离为 1 m 的瞬间,滑轮边缘上的点的角速度ω=__________rad/s ,向心加速度a=_________m/s 2.基础演练1、 做平抛运动的物体,每秒的速度增量总是( )A .大小相等,方向相同B .大小不等,方向不同C .大小相等,方向不同D .大小不等,方向相同2、 在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描绘下落速度的水平分量大小x v 、竖直分量大小y v 与时间t 的图像,可能正确的是( )3、 正在做匀加速直线行驶的列车,顶棚上脱落一小螺钉.关于小螺钉的运动情况,以下说法正确的是( )A .列车上的乘客看到螺钉做直线运动B .列车上的乘客看到螺钉做曲线运动C .地面上的人看到螺钉做直线运动D .地面上的人看到螺钉做曲线运动4、 如右图所示,在一次救灾工作中,一架沿水平直线飞行的直升飞机A ,用悬索(重力可忽略不计)救护困在湖水中的伤员B .在直升飞机 A 和伤员 B 以相同的水平速度匀速运动的同时,悬索将伤员吊起,在某一段时间内,A 、B 之间的距离以2l H t =-(式中H 为直升飞机A 离地面的高度,各物理量的单位均为国际单位制单位)规律变化,则在这段时间内( ) A .悬索的拉力等于伤员的重力 B .悬索是竖直的C .伤员做加速度大小和方向均不变的曲线运动D .伤员做速度大小增加的曲线运动5、 如图,已知排球网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求水平扣球速度的取值范围.课后练习6、 一水平放置的水管,距地面高h=1.8m ,管内横截面积S=2.02cm .有水从管口处以不变的速度2.0v m s =源源不断地沿水平方向射出,设出口处横截面上各处水的速度都相同,并假设水流在空中不散开.取重力加速度2/10s m g =,不计空气阻力.求水流稳定后在空中有多少立方米的水.7、 如图所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为1v 时,小球到达斜面时速度方向与斜面的夹角为1α;当抛出速度为2v 时,小球到达斜面时速度方向与斜面的夹角为2α,则( ) A .当1v >2v 时,1α>2αB .当1v >2v 时,1α<2αC .无论1v 、2v 关系如何,均有1α=2αD .1α、2α 的关系与斜面的倾角θ有关。