人教版七年级数学上册第一章第一讲 数轴 讲义 (无答案)
- 格式:docx
- 大小:162.32 KB
- 文档页数:10
新人教版七年级数学上册第一章讲学稿有理数和数轴 课 题有理数和数轴 课 型 预习课 执笔人 审核人级部审核 学习时间 第 周第 导学稿 教师寄语若不给自己设限,则人生中就没有限制你发挥的藩篱。
学习目标 1、理解数轴的概念,掌握数轴三要素。
2、掌握有理数的分类,并会在数轴上表示有理数。
3、渗透数形结合的数学思想。
学生自主活动材料一、自学指导:自学课本第7--9页回答下列问题1、有理数分为哪几类?2、什么叫数轴?数轴三要素?3、如何在数轴上表示有理数?二、自学检测1、先画一条数轴,然后在数轴上表示下列各数:1,3,0,2.4,7.5--2、数轴上表示217-的点在( ) A 、6-与7-之间 B 、7-与8-之间C 、7与8之间D 、6与7之间3、在数轴上,到原点的距离等于3个单位长度的点所表示的有理数是4、数轴的三要素是( )( )( )5、在已知的数轴上,表示 2.75的点是 [ ]A.E 点B.F 点C.G 点D.H 点6.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是[ ]A.3B.1 C -2 D.-47、以下四个数,分别是数轴上A.B.C.D 四个点可表示的数,其中数写错的是 [ ]8、下列各语句中,错误的是 [ ]A.数轴上,原点位置的确定是任意的;B.数轴上,正方向可以是从原点向右,也可以是从原点向左;C.数轴上,单位长度1的长度的确定, 可根据需要任意选取;D.数轴上,与原点的距离等于36.8的点有两个。
9、有理数由_________、_________两部分组成,由________、_________、_________三部分组成,由__________、___________、__________、___________和____________五部分组成。
三、探索交流1、如何利用数轴比较有理数的大小?2、有理数与数轴上的点之间存在怎样的关系?3、下列说法正确的是( )A 、数轴上的点只能表示有理数B 、一个数只能用数轴上的一个点表示C 、在1和3之间只有2D 、在数轴上离原点2个单位长度的点表示的数是24、数轴上表示整数的点称为整点。
第一讲数轴与有理数一、知识梳理1.区分正负数;2.有理数的概念以及分类;3.数轴的概念以及应用; 二、课堂例题精讲与随堂演练知识点1:正数和负数1.正数与负数是实际需要而产生的正数和负数是根据实际需要而产生的,随着知识面的拓宽,小学学过的自然数、分数和小数已不能满足实际需要,比如一些具有相反意义的量,收入200元和支出100元,零上6℃和零下4℃等等。
它们不但意义相反,而且表示一定的数量。
怎么表示它们呢?我们把一种意义规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数。
2.正数和负数的概念:(1)像5,8.7,4112……这样的数叫正数。
在正数前面加上“-”(读作负)号的数叫做负数。
如-58,-18.9,211等都是负数。
(2)零既不是正数也不是负数,它表示正数和负数的分界。
3.正数和负数:大于0的数叫做正数,在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号.一个数前面的“+”“-”号叫做它的符号.4.数0既不是正数,也不是负数.把0以外的数分为正数和负数,起源与表示两种相反意义的量.例1 下列说法中正确的是()A.正数都带“+”号B.不带“+”号的数可能是负数C.小学数学中学过的数都可以看作正数D.小学数学中学过的数中除零以外,都可以看作是正数 例2.说明下列语句的实际意义。
(1)温度上升℃ (2)运进吨化肥 (3)向东走了米(4)盈利元例3.判断题。
(1)一个数不是正数就是负数。
() (2)海拔米表示比海平面低155米。
() (3)温度0℃就是没有温度。
() (4)零是最小的有理数。
() (5)零是正数。
()【随堂演练】【A 类】1.6,2005,0,-3,+1,41-,-6.8中,正整数和负分数共有…() A .3个B .4个C .5个D .6个2.把下列各数分别填在相应的大括号里: +9,-1,+3,312-,0,213-,-15,45,1.7.正数集合:{}, 负数集合:{}.【B 类】3.下列说法正确的是( ).A.一个数前面加上“-”号这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数也不是负数 4.一个数的倒数是它本身的数是( ) . A.1 B.-1 C.±1 D .05.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________. 【C 类】6.观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。
数轴与相反数(基础)【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;3.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4. 掌握多重符号的化简.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】类型一、数轴的概念1.如图所示是几位同学所画的数轴,其中正确的是( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.类型二、相反数的概念2.(2015•宜宾)﹣的相反数是()A.5 B.C.﹣ D.-5【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】B【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【高清课堂:数轴和相反数例1(1)~(7)】【变式1】填空:(1) -(-2.5)的相反数是;(2) 是-100的相反数;(3)155-是的相反数;(4) 的相反数是-1.1;(5)8.2和互为相反数.(6)a和互为相反数. (7)______的相反数比它本身大,______的相反数等于它本身.【答案】(1)-2.5;(2)100;(3)155;(4)1.1;(5)-8.2;(6)-a;(7)负数,0 .【高清课堂:数轴和相反数例2】【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等.A. 0个B.1个C.2个D.3个或更多【答案】B3.(2016•泰安模拟)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【思路点拨】考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【总结升华】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.类型三、多重符号的化简4.化简下列各数中的符号.(1)123⎛⎫--⎪⎝⎭(2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)【答案】(1)112233⎛⎫--=⎪⎝⎭(2)-(+5)=-5 (3)-(-0.25)=0.25(4)1122⎛⎫+-=-⎪⎝⎭(5)-[-(+1)]=-(-1)=1 (6)-(-a)=a【解析】(1)123⎛⎫--⎪⎝⎭表示123-的相反数,而123-的相反数是123,所以112233⎛⎫--=⎪⎝⎭;(2)-(+5)表示+5的相反数,即-5,所以-(+5)=-5;(3)-(-0.25)表示-0.25的相反数,而-0.25的相反数是0.25,所以-(-0.25)=0.25;(4)负数前面的“+”号可以省略,所以1122⎛⎫+-=-⎪⎝⎭;(5)先看中括号内-(+1)表示1的相反数,即-1,因此-[-(+1)]=-(-1)而-(-1)表示-1的相反数,即1,所以-[-(+1)]=-(-1)=1;(6)-(-a)表示-a的相反数,即a.所以-(-a)= a【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型四、利用数轴比较大小5.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来. 【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得: ∴312.5101 2.5344-<-<-<<<< 【总结升华】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小.举一反三:【变式1】有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0【答案】D【高清课堂:数轴和相反数 例4(2)】【变式2】填空: 大于763-且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,3类型五、数轴与相反数的综合应用(数形结合的应用)6.已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b(a <b)并且A 、B 两点间的距离是144,求a 、b 两数. 【思路点拨】因为a 、b 两数互为相反数(a <b),所以表示a ,b 的两点A 、B 离原点的距离相等,而A 、B 两点间的距离是144,所以A 、B 两点到原点的距离就是1142248÷=. 【答案与解析】 解:由题意A 、B 两点到原点的距离都是:1142248÷=而a <b ,所以128a =-,128b =.【总结升华】(1)理解相反数的几何意义. (2)从相反数的意义入手,明确互为相反数的两数关于原点对称.举一反三:【变式】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【答案】(1)±5,提示:要注意两种情况,原点左右各一个点;(2)5,提示:画出数轴,容易看出-3和3之间的整数是-2,-1,0,1,2共5个.。
人教版七年级数学上册第一章有理数1.2.2 数轴课件23张PPT(共23张PPT)人教版七年级数学上册1.2.2 数轴有理数正整数正分数负分数整数分数零负整数自然数有理数的分类:有理数正整数负整数负分数正有理数负有理数正分数零知识回顾学习目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.(重点)2.会正确的画出数轴,利用数轴上的点表示有理数.(难点)画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.讲授新课画数轴的步骤:(1) 画直线,取原点:在直线上任取一个适当的点为原点.(1)画数轴的步骤:(1) 画直线,取原点(2) 标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向.(1)画数轴的步骤:(1) 画直线,取原点(2) 标正方向(3) 选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,..;从原点向左,用类似方法依次表示-1,-2,-3,….(1)123-1-2-3(2)(3)新知探究1-37.5-4.8现在,你能说出图中数字表示的实际意义吗?0表示分界向东为正3表示汽车东方的柳树7.5表示汽车东方的杨树-3表示汽车西方的槐树-4.8表示汽车西方的电线杆新知探究思考:右图中的温度计可以看作表示正数、0、负数的直线. 它和下图有什么共同点,有什么不同点?共同点:都有分界“0”,都有正数、有负数;都有一条直线。
不同点:上图中每两个点之间的长度不一样,而温度计每两个数之间的长度是一样的。
过关练习你还能举出一些在现实生活中用直线表示数的实际例子吗?新知探究0是正数和负数的分界点原点是数轴的“基准点”在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.原点单位长度正方向(1)在直线上任取一点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度.水平或竖直数轴三要素新知探究你能把下面各数在数轴上表示出来吗?它们在原点的哪侧?距原点有几个单位长度?准备好工具,一起画一条数轴吧!一般地, 设a是一个正数, 则数轴上表示数a的点在原点的右边, 与原点的距离有a个单位长度; 表示数-a的点在原点的左边, 与原点的距离是a个单位长度.1.在数轴上只能表示整数. ()2.所有的有理数都能在数轴上表示出来. ()3.数轴上表示的数一定是有理数. ()4.π不能在数轴上表示出来.()辨析:判断下列对错:√×××例1 写出数轴上点A,B,C,D分别表示的数.解:点A表示-3,点B表示-1,点C表示2.5,点D表示5.235-14BA.DC...例题例2 在数轴上表示下列各数:-4,0,-2,+3,,-1-4-3-21234-6-5-4+3-2注意:1.用实心原点表示所要表示的数.2.一般情况把点标在线上.3.把数标在点的上方.点A表示的数:0点B表示的数:2点C表示的数:1点D表示的数:2.5点E表示的数:3例1 如图,写出数轴上点A、B、C、D、E表示的数ADBCE如何在数轴上画出表示一个数的点呢?想一想:首先,根据已知数的符号确定表示这个数的点在原点的哪边,其次,从原点沿相应的方向确定它与原点相距的几个单位长度,并在此位置上描出这个点,最后,在这个点上边写上对应的字母,下边写上对应的数即可.如何在数轴上画出表示一个数的点呢?想一想:例2 在数轴上画出表示下列各数的点:2,1,,典例精析12–1–2例2 在数轴上画出表示下列各数的点:2,1,,12–1–2ABCD目前所有的有理数都可以用数轴上的点表示规定了原点、正方向、单位长度的一条直线叫做数轴.数轴的概念:课堂小结原点正方向单位长度课后练习小明的家门口(记为A)、他上学的学校门口(记为B)以及书店门口(记为C)依次坐落在一条东西向的大街上,A位于B西边300m处,C位于B东边1000m处.小明从学校门口出发,沿这条街向东走400m,接着又向西走了700m到达D处,试用数轴表示上述A、B、C、D的位置.小明的家门口(记为A)、他上学的学校门口(记为B)以及书店门口(记为C)依次坐落在一条东西向的大街上,A位于B西边300m处,C位于B东边1000m处.小明从学校门口出发,沿这条街向东走400m,接着又向西走了700m到达D处,试用数轴表示上述A、B、C、D的位置.。
1.1正数和负数(1)正数:大于0的数;负数:小于0的数; (2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义; (4) — a 不一定是负数,+a 也不一定是正数; (5)自然数:0和正整数统称为自然数; (6) a>0a 是正数; a>0 a 是正数或0 a 是非负数; a< 0a 是负数;a< 0 a 是负数或0 a 是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数; (2)正整数、0、负整数统称为整数; (3)有理数的分类:(4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素) (5) 一般地,当a 是正数时,则数轴上表示数 a 的点在原点的右边,距离原点 点在原点的左边,距离原点 a 个单位长度;(6)两点关于原点对称:一般地,设 a 是正数,则在数轴上与原点的距离为 a 的点有两个,它们分别在原点的左右,表示-a 和a,我们称这两个点关于原点对称; (7)相反数:只有符号不同的两个数称为互为相反数; (8) 一般地,a 的相反数是一a ;特别地,0的相反数是0;第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数 正分数a 个单位长度;表示数—a 的(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a的点到原点的距离叫做a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
第一讲 数轴
1.1数轴的概念回顾
数轴的三要素
【例1】下列说法正确的是( )
①规定了原点、正方向的直线是数轴;
②数轴上两个不同的点可以表示同一个有理数;
③有理数如100
1 在数轴上无法表示出来; ④任何一个有理数都可以在数轴上找到与它对应的唯一点。
A.①②③④
B.②③④
C.③④
D.④
【练习1.1】已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,
那么点B对应的数是_____________
【练习1.2】数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在该
数轴上随意画出一条长2000厘米的线段AB,则线段AB盖住的整点的个数为()A.2001 B.2000 C.2000或2001 D.2001或2002
【练习1.3】如图,在数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是()
A .A点 B.B点 C.C点 D.D点
【例2】已知a、b、c三个数在数轴上对应点如图所示,则在下列式子中正确的是: ( )
A.ac>ab
B.bc
ab< C.ab
bc< D.b
a
c
b+
>
+
【练习2.1】观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则
111
,,
ab b a c
-
的大小关系是( )
A.
111
ab b a c
<<
-
B.
1
b a
-
<
1
ab
<
1
c
C.
1
c
<
1
b a
-
<
1
ab
D.
1
c
<
1
ab
<
1
b a
-
数轴的画法
一画:(一般画水平直线)。
二定:确定,在直线的适当位置选取一点作为(位置的选取可根据实际问题的需要而确定)。
a
b
c。