第9章 功率放大电路总结
- 格式:doc
- 大小:2.80 MB
- 文档页数:1
放大电路基本知识点总结一、电路的放大器放大电路是一种将输入信号放大到更高幅度的电路。
放大电路通常由一个激励信号源、一个放大器和一个负载组成。
激励信号源提供输入信号,放大器将这个输入信号放大到一个更高的幅度,而负载是放大器的输出端负载。
放大器的基本功能就是将输入信号的电压、电流或功率放大到更高的幅度。
放大器的基本性能参数有增益、带宽、输入电阻、输出电阻、共模抑制比等。
二、放大器的分类根据输入信号类型的不同,放大器可分为电压放大器、电流放大器和功率放大器。
根据放大器的工作方式的不同,放大器可分为线性放大器和非线性放大器。
线性放大器输出信号与输入信号成正比,非线性放大器则不成比例。
根据放大电路的构造方式,放大器可分为分立元件放大器和集成电路放大器。
三、放大器的基本构成放大器一般由输入端、输出端和放大器核心构成。
输入端是输入电路,用于接收输入信号,输出端是负载,放大器核心是实现信号放大的核心部分。
一般情况下,放大器核心由放大器管(如晶体管、场效应管等)组成。
四、常见放大电路1. 电压放大电路电压放大电路是将输入电压信号放大到更高电压幅度的电路。
常见的电压放大电路有共集放大电路、共阴放大电路、共源放大电路等。
2. 电流放大电路电流放大电路是将输入电流信号放大到更高电流幅度的电路。
常见的电流放大电路有共射放大电路、共集放大电路、共源放大电路等。
3. 功率放大电路功率放大电路是将输入信号的功率放大到更高功率幅度的电路。
功率放大电路的输出功率通常会比输入功率要大。
5、放大器的增益放大器的增益是衡量放大器放大性能的重要参数,它是输出信号幅度与输入信号幅度之比。
增益分为电压增益、电流增益和功率增益。
电压增益是输出电压与输入电压之比,电流增益是输出电流与输入电流之比,功率增益是输出功率与输入功率之比。
增益是放大器的关键指标之一。
6、放大器的带宽带宽是放大器能够放大的频率范围。
对于一个特定的放大器,当输入信号的频率超过了其带宽时,输出信号就无法完整地被放大了。
Joo 图5功率放大电路知识梳理一、功率放大电路的特点、基本概念和类型1、特点:(1)输出功率大(2)效率高(3)大信号工作状态⑷功率BJT 的散热-工作点Q 处于放大区,基本在负载线的中间,见图 5.1-在输入信号的整个周期内,三极管都有电流通过•导通角为360度。
缺点:效率较低,即使在理想情况下,效率只能达到 50% 由于有I CQ 的存在,无论有没有信号,电源始终不断地输送功率。
当没有信号输入时,这些功率全部消耗在晶体管和电阻上, 并转化为2、功率放大电路的类型(1)甲类功率放大器x Q mF 数特点:热量形式耗散出去;当有信号输入时,其中一部分转化为有用的输出功率。
作用:通常用于小信号电压放大器;也可以用于小功率的功率放大器。
(2)乙类功率放大器•工作点Q处于截止区。
•半个周期内有电流流过三极管,导通角为180度。
•由于I c(=0,使得没有信号时,管耗很小,从而效率提高。
缺点:波形被切掉一半,严重失真,如图 5.2所示。
作用:用于功率放大。
(3)甲乙类功率放大器图5.3特点:•工作点Q处于放大区偏下。
•大半个周期内有电流流过三极管,导通角大于180度而小于360 度。
•由于存在较小的I CQ所以效率较乙类低,较甲类高。
缺点:波形被切掉一部分,严重失真,如图 5.3所示。
作用:用于功率放大。
返回第三节乙类双电源互补对称功率放大电路一、电路组成在图5.4所示电路中,两晶体管分别为NPN管和PNP管,由于它们的特性相近,故称为互补对称管。
图54静态时,两管的l cc=0;有输入信号时,两管轮流导通,相互补充。
既避免了输出波形的严重失真,又提高了电路的效率。
由于两管互补对方的不足,工作性能对称,所以这种电路通常称为互补对称电路團5.5二、分析计算1.输出特性曲线的合成因为输出信号是两管共同作用的结果,所以将「、壬合成一个能反映输出信号和通过负载的电流的特性曲线。
合成时考虑到:(1) V i =0 时,V cEQ=V Cc ,-V CEQ=V Cc,因此Q l=Q。
功率放大电路结论
功率放大电路是电子设备中常见的一种电路类型,用于增大输入信号的功率。
以下是一些关于功率放大电路的一般性结论:
1.放大信号的功率:功率放大电路的主要目的是增大输入信号
的功率,使其输出信号具有更大的幅度。
这种放大通常是通过在电路中使用放大器来实现的。
2.电路构成:功率放大电路通常由一个或多个放大器级联组成。
放大器可能采用晶体管、场效应管、功率运算放大器(OPA)或其他放大器构建而成。
3.功率传递效率:功率放大电路的功率传递效率是一个重要指标。
高效率的功率放大电路可以最大程度地将输入信号转化为输出信号,而不损失太多能量。
4.失真:放大器在放大信号时可能引入失真。
这可能是非线性
失真、失真产生的杂散频率或者其他类型的失真。
设计功率放大电路时,需要注意最小化失真程度。
5.热稳定性:功率放大器可能因为工作时产生的热量而引起温
度变化。
因此,设计要考虑热稳定性以确保在不同温度条件下保持稳定性能。
6.负载匹配:功率放大器的输出需要与负载匹配,以确保最大
功率传输。
负载不匹配可能导致信号反射和功率损失。
7.功率级联:在某些应用中,可以将多个功率放大电路级联以
获得更大的输出功率。
8.应用领域:功率放大电路被广泛应用于音频放大器、射频(RF)放大器、通信设备、电力电子设备和许多其他领域。
综上所述,功率放大电路的设计和使用需要综合考虑多个因素,包括性能指标、失真、效率和稳定性,以满足特定应用的需求。