设备状态检测与故障诊断-振动监测系统的组成
- 格式:ppt
- 大小:1.94 MB
- 文档页数:7
1.设备监测目的意义保障设备安全,防止突发故障。
保障设备精度,提高产品质量和经济效益。
推进设计理念和维修制度的革新。
避免设备事故、人员伤亡、环境污染。
维护社会稳定。
2.故障分类按故障对机械工作能力的影响分类:完全性故障局部性故障按故障发生速度及演变过程分类:突发性故障渐进性故障按其发生的原因分类:磨损性故障错用性故障先天性故障按造成的后果分类:危害性故障安全性故障3.故障规律浴盆曲线:磨合期,正常使用期,耗损期4.故障发生的原因宏观上分析1.设计错误2 原材料缺陷3 制造过程的缺陷4 运转缺陷微观上分析:疲劳,磨损,断裂,腐蚀5.零件磨损的一般规律磨合阶段,正常磨损阶段,急剧磨损阶段6.零件变形失效塑性变形失效,弹性变形失效,蠕变变形失效,翘曲变形失效7.断裂失效塑性断裂,脆性断裂8.状态监测与故障诊断的技术方法1.振动、噪声诊断技术2. 油液分析技术3. 温度检测技术4. 无损检测技术9.振动的危害降低机器及仪表的精度,引起机械设备及土木结构的破坏10.机械振动的分类按振动系统本身的特点分类: 离散系统连续系统按振动系统所受的激励类型分类: 自由振动强迫振动自激振动参数振动按系统的响应(振动规律)分类: 确定性振动随机振动按描述系统运动的微分方程分类:线性振动非线性振动11.机械振动要研究的内容和步骤1. 建立物理力学模型2.建立数学模型3.方程的求解4.结果的阐述12. 随机振动非确定而又具有统计规律,它们的规律不能用时间的确定性函数来描述,但又具有一定的统计规律性。
平稳随机过程与各态历经过程13. 自相关函数∑=∞→+=+nk k k Tx t x t x n t t R 11111)()(1),(lim ττ同一点不同的两个时间函数乘积称为随机过程 X(t)于时刻 t 1与 t 1+ τ的自相关函数。
它是时差 的函数,在一般情况下,它也依赖于采样时刻 t 1,反映这两个时刻的随机变量的X k (t 1)与X (t1+τ)统计联系。
电力设备状态监测与故障诊断电力设备是电力系统中不可或缺的组成部分,它们的正常运行对于保障电力系统的可靠性和稳定性至关重要。
然而,由于设备的长期运行和外界环境的影响,电力设备存在着各种潜在的故障隐患。
因此,电子与电气工程师在电力设备状态监测与故障诊断方面发挥着重要的作用。
一、电力设备状态监测的意义电力设备状态监测旨在通过对设备运行参数的实时监测和分析,了解设备的工作状态,及时发现设备存在的问题,并采取相应的措施进行修复和维护。
通过电力设备状态监测,可以实现对设备运行情况的全面了解,提前预警潜在故障,避免设备的突发故障对电力系统的影响。
二、电力设备状态监测技术电力设备状态监测技术是电子与电气工程师在电力设备状态监测与故障诊断中的重要手段。
目前,常用的电力设备状态监测技术包括振动监测、红外热像监测、超声波监测、电流监测等。
1. 振动监测技术:通过对电力设备振动信号的采集和分析,可以判断设备的机械状况,如轴承的磨损、不平衡、松动等。
振动监测技术可以实时监测设备的振动频率和振动幅值,提供设备健康状况的评估和故障预警。
2. 红外热像监测技术:利用红外热像仪对电力设备表面的红外辐射进行监测和分析,可以检测设备的热异常情况,如电气接触不良、局部过载等。
红外热像监测技术可以无接触地获取设备表面的温度分布图像,提供设备的热状态评估和故障诊断。
检测设备的机械故障,如机械摩擦、裂纹等。
超声波监测技术可以实时监测设备的声波频谱和振幅,提供设备的机械状态评估和故障诊断。
4. 电流监测技术:通过对电力设备电流信号的采集和分析,可以判断设备的电气状况,如电气接触不良、过载等。
电流监测技术可以实时监测设备的电流波形和电流谐波分布,提供设备的电气状态评估和故障预警。
三、电力设备故障诊断的意义电力设备故障诊断是在设备出现故障时,通过对故障现象的观察和分析,确定故障原因和位置,为故障的修复提供依据。
电力设备故障诊断的及时准确性对于恢复设备的正常运行至关重要,可以减少故障对电力系统的影响,提高设备的可靠性和运行效率。
水电机组状态监测与故障诊断摘要:在我国电力企业不断发展的过程中,为了进一步提高相关企业的经济效益,提高市场竞争力,可以采取以下措施:一是降低设备维修成本;二是进一步提高设备运行的可靠性和稳定性。
为保证水电机组平稳平稳运行,我国传统的方式是实行计划维修制度,虽然取得了一些成效,但仍存在以下不足:一是缺乏针对性;二是维修过于盲目;第三,该方法不能提前预防设备故障,因此不能满足当前水电机组的需求。
这种情况下,有一个新的维护模式即状态维护,该方法有较强针对性,先进的设备检测技术和设备的应用谨慎监测诊断系统设备运行状态分析,从而尽快发现问题,及时采取适当的策略来解决,不仅大大降低了维护成本,而且还提高维修工作的效率,确保设备的安全运行,避免相关安全事故的发生。
关键词:水电机组;状态监测;故障诊断一、水电机组状态监测与故障诊断技术现状1、水电机组状态监测技术现状(1)机组振动稳定性监测技术。
水电机组振动稳定性监测技术包含多种不同的参数,如水压脉动、主轴摆度、机组结构振动等。
其中,当前水轮发电机组振动稳定性监测的基本原理如图1所示。
监测分析系统、振动传感器共同构成振动监测系统。
表征机组振动状态的不同非电量特征参数,通过传感器收集并转化成为电量信号,以便监测系统进行有效运用。
监测分析系统共包括3种功能,即数据分析功能、数据存储功能、数据采集功能,能比较全面地获取振动信息,如振动趋势、轴心轨迹、振动波形、相位等,便于故障分析。
图1 振动监测原理(2)发电机气隙和磁场强度监测技术。
到目前为止,通过运用配套前置器、平板电容式传感器,利用计算机采集、储存、输出数据,便能测量出水轮发电机的磁场强度和气隙。
电容式位移传感器的工作原理是通过对被测表面和传感器平板二者之间等效电容的的变化程度,对2个平面之间的距离进行有效反映。
由于传感器属于平板形式,在定子转子之间安装传感器比较合适。
其中,美国Vibrosys公司生产的气隙监测传感器比较具有代表性,包括空气气隙传感器VM5.0(图2a)和磁场强度传感器MFM-100(图2b)。
设备状态监测与设备故障诊断技术第一章:绪论第一节:什么是设备诊断技术机械设备状态监测与故障诊断是同一学科的两个不同层次,它们既有联系又有区别,为了方便起见统称为机械设备故障诊断。
机械设备故障诊断是识别机械设备(机器或机组)运行状态的一门综合应用科学和技术,它主要研究机械设备运行状态的变化在诊断信息中的反映。
具体来说,就是通过测取设备运行的状态信号,并结合其历史状况对所测取的信号进行处理、分析、提取特征,从而定量诊断(识别)机械设备及其零部件的运行状态(正常、异常、故障),再进一步预测设备未来的运行状态,最终确定需要采取何种必要的措施来保证机械设备取得最优的运行效果。
主要内容包括对机械设备运行状态的监测、诊断(识别)和预测三个方面。
其中,状态监测也被称为简易诊断,一般是通过测定设备的某些较为单一的特征参数(如:振动、温度、压力等)来检查设备运行状态,再根据特征参数值与门限值之间的关系来确定设备当前是处于正常、异常还是故障状态。
如果对设备进行定期或连续的状态监测,就可以获得设备运行状态变化的趋势和规律,据此就可以预报设备的未来运行发展趋势,也就是人们常说的趋势分析。
诊断(识别)则不仅要掌握设备的运行状态和发展趋势,更重要的是查找产生故障的原因,识别、判断故障的严重程度,为科学检修指明方向,这就是人们常说的精密诊断,设备状态监测与设备故障诊断可以从以下两个方面来理解。
1.设备状态监测以监测设备振动发展趋势为手段的设备运行状态预报技术。
2.设备故障诊断以分析设备振动主要特征为手段的设备运行故障诊断技术。
设备故障诊断技术是以设备为对象,采用多种现代化科学成果而形成的一门综合性学科。
它涉及了传感器技术、信息采集技术、信息处理技术、识别理论、预报决策、计算机诊断技术及有关机械设备的专业技术与理论。
第二节:故障诊断的目的机械设备故障诊断的根本目的就是要保证设备的安全、可靠和高效、经济地运行,具体来说就是:1.及时、正确、有效地对设备的各种异常状态和故障状态作出诊断,预防或消除故障;同时对设备的运行维护进行必要的指导。
旋转机械状态监测与故障诊断讲义目录第一章状态监测的基本知识 (4)一、有关的名词和术语 (4)1. 振动的基本参量:幅值、周期(频率)和相位 (4)2. 通频振动、选频振动、工频振动 (6)3. 径向振动、水平振动、垂直振动、轴向振动 (6)4. 同步振动、异步振动 (7)5. 谐波、次谐波、亚异步、超异步 (7)6. 相对轴振动、绝对轴振动、轴承座振动 (7)7. 自由振动、受迫振动、自激振动、随机振动 (7)8. 高点和重点 (8)9. 刚度、阻尼和临界阻尼 (8)10. 共振、临界转速、固有频率 (9)11. 分数谐波共振、高次谐波共振和参数激振 (9)12. 涡动、正进动和反进动 (9)13. 同相振动和反相振动 (10)14. 轴振型和节点 (10)15. 转子挠曲 (11)16. 电气偏差、机械偏差、晃度 (11)17. 偏心和轴心位置 (11)18. 间隙电压、油膜压力 (11)二、传感器的基本知识 (12)1. 振动传感器 (12)2. 电涡流振动位移传感器的工作原理 (13)3. 电动力式振动速度传感器的工作原理 (13)⒋压电式加速度传感器的工作原理 (14)第二章状态监测常用图谱 (15)1.波德图 (15)2.极坐标图 (16)3.频谱瀑布图 (16)4.极联图 (17)5.轴心位置图 (18)6.轴心轨迹图 (18)7.振动趋势图 (19)8.波形频谱图 (20)第三章旋转机械的故障诊断 (22)1. 不平衡 (22)2. 不对中 (23)3. 轴弯曲和热弯曲 (26)4. 油膜涡动和油膜振荡 (28)5. 蒸汽激振 (30)6. 机械松动 (33)7. 转子断叶片与脱落 (33)8. 摩擦 (38)9. 轴裂纹 (40)10. 旋转失速与喘振 (40)11. 机械偏差和电气偏差 (43)第一章状态监测的基本知识一、有关的名词和术语机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。
机械设备状态检测与故障诊断1.简述设备故障诊断的目的和任务答:目的:①能及时的、正确的对各种异常状态或故障状态作出诊断,预防或消除故障,对设备的运行进行必要的指导,提高设备的可靠性、安全性和有效性,把故障降低到最低水平②保证设备发挥最大的设计压力③通过检测监视、故障分析、性能评估等,为设备结构改造、优化设计、合理制造及生产过程提供数据和信息任务:①状态监测②故障诊断③指导设备的管理维修2.简述设备故障诊断技术的定义、内容、类型和方法答:定义:在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,判定产生故障的部位和原因,以及预测预报设备状态的技术内容:设备故障诊断的内容包括状态监测、分析诊断和故障预测三方面,实施过程为信号采集、信号处理、状态识别、诊断决策四方面类型:①按诊断对象分类:旋转机械诊断技术、往复机械诊断技术、工程结构诊断技术、运载器和装置诊断技术、通信系统诊断技术、工艺流程诊断技术②按诊断目的分类:功能诊断与运行诊断、定期诊断与连续诊断、直接诊断与间接诊断、常规工况与特殊工况诊断、在线诊断和离线诊断③按诊断方法完善程度分类:简易诊断、精密诊断技术方法:①传统方法:利用各种物理和化学的原理和手段,通过伴随故障出现的各种物理和化学现象直接检测故障;利用故障所对应的征兆来诊断②智能诊断:在传统诊断方法的基础上,将人工智能的理论的方法用于故障诊断③模式识别、概率统计、模糊数学、可靠性分析和故障树分析、神经网络、小波变换、分析几何等数学分支在故障诊断中应用3.机械设备故障的信息获取和检测方法有哪些?答:获取方法:直接观测法、参数测定法、磨损残渣测定法、设备性能指标的测定检测方法:①振动和噪声的故障检测:振动法、特征分析法、模态识别与参数识别法、冲击能量与冲击脉冲测定法、声学法②材料裂纹及缺陷损伤的故障检测:超声波探伤法、射线探伤法、渗透探伤法、磁粉探伤法、涡流探伤法、激光全息检测法、微波检测技术、声发射技术③设备零部件材料的磨损及腐蚀故障检测:光纤内窥技术、油液分析技术④温度、压力、流量变化引起的故障检测4.简述振动检测和诊断系统的组成和原理,说明其区别答:振动检测系统:信息输入-数据预处理-数据变换和压缩-特征提取-状态分类-{①显示、打印、绘图、储存②判断与决策-报警、审核、维修}诊断系统:激振器-被诊断对象-传感器-二次仪表-{①磁带记录仪②分析仪③数据采集、记录和存储器}-故障诊断系统5.测振传感器有哪些类型?简述其工作原理。
煤矿大型机电设备在线监测与故障诊断系统0 背景介绍管好、用好煤矿大型关键设备,是煤矿稳产高产的前提,也是煤矿安全生产的保障,若能对设备进行状态监测与故障诊断,及时准确识别核心零部件故障的微弱特征信号,必将为潜在故障预示和演化、寿命预测和制定维修策略提供技术支持,从而提高煤矿关键装备整体运行安全性和可靠性,实现由“事后维修” 到“预知维修”的转变,避免意外停机及恶性事故发生,具有巨大的经济效益和社会效益。
煤矿现行的设备维修方式基本上是通过维修工人凭直觉目测、敲击、触摸等手段判断,由于受人为因素的影响,其可靠性较差。
温度监测技术己广泛应用于煤矿设备状态监测,但设备在即将出现事故温度才会急剧上升,因此温度检测难以完成设备安全监测和早期预警的重任和及时报警的现场要求。
铁谱技术是现阶段煤矿行业设备状态监测与故障诊断常用技术,美国煤矿开展屑监测工作较早,然而,在应用铁谱分析技术属于离线监测,大多还是从设备现场采集油样,再在实验室制作谱片进行油液成分分析,分析周期相对较长,速度慢,降低了设备监测的实时性。
振动监测技术,利用振动信号对设备进行诊断,是设备故障诊断最常用、最有效的方法之一。
设备振动信号中包含了系统、零部件由于磨损、疲劳、老化等因素引起的劣化和失效等重要信息,通过对振动信号进行采集、分析和处理,可以监测设备的运行状态,识别机械设备的故障类型、故障来源,从而为设备的维修提供依据,以达到保障设备安全运行的目的。
设备在线监测诊断技术目的:1、概述传统的矿用机电设备在线监测系统仅仅局限于简单数据的采集与集中监测显示,这种方式虽然在设备运行状态监测中起到重要作用,但不能及时准确地诊断分析出机电设备可能出现的故障。
矿用机电设备在线监测与故障诊断系统主要由YHZ18 矿用本安型振动监测分析仪和KGS18矿用本安型振动加速度传感器构成,可以智能地诊断出设备可能存在的不对中、不平衡、配合松动、装配不当以及轴承疲劳损伤等潜在故障,适用于煤矿通风机、皮带输送机、水泵等重要机电设备的运行状态监测与故障诊断分析。
振动检测技术在设备故障诊断中的应用振动信号处理技术在动设备振动监测与诊断中的应用.标签:动设备;振动信号;频谱分析;监测与诊断设备的运转一定会产生振动.即使是机器在最佳的运行状态,因微小的缺陷及外界激励,也会产生振动.例如,汽轮机、离心压缩机、压缩机、鼓风机、电机、发电机、泵及各种齿轮变速器等在运行时,必然会产生振动和噪声.据目前多方资料统计,机械设备由于振动引起的故障,占总的机械故障率的60%-70%。
所以通过振动信号测量、监视和分析,分析设备运行状态,是降低设备振动和噪音、提高设备寿命、保证生产系统平稳、节能降耗的最佳途径。
1 振动产生的原因动设备的主要是由转子、支承转子的轴承、定子、机器壳体、联轴节等部件组成,此外还有齿轮传动件、叶轮叶片及密封等.动设备转速范围一般为每分钟几千转至几十万转。
动设备部件和机体的振动有两类振源引起:一类是由于转子的动、静不平衡,零部件配合失当,零部件配合间隙过大等引起的机械强迫振动,其中包括周期振动、冲击振动、随机振动等,同时也引起噪声.大多数振动都具有周期性的特征频率,振动以转子转速为相应函数,属于不同转速时的强迫振动;别一类振动是由设备自身结构自激振动或环境振动引起的振动、例如:流体的喘激振动、轴承的油膜振动、部件本身的响应振动,结构的局部振动等.这类振动的特点是与动设备的转速、转速阶数无直关系.转子、轴承、壳体、联轴节、密封和基础等部分的结构及加工和安装方面的缺陷,使设备在运行时引起振动,振动又往往是机器破坏的主要原因,所以对动设备的振动测量、监视和分析是非常重要的.由于振动这个参数比起其它状态参数(例如润滑油或内部流体的温度、压力、流量或电机的电流等)更能直接地、快速准确地反映机组运行状态,所以振动一般作为对机组状态进行诊断的主要依据.动设备振动检测、监视及故障诊断是一门综合性的学科,在理论上它涉及到转子动力学、轴承、流体力学等.2 动设备的振动分类2.1动设备振动按振动频率分为:振动频率为转速频率的倍数,即振动频率为nXr/sec(X为转速频率),振动与转速频率成一定比例关系的振动频率,例如:38~49%Xr/sec,及低頻振动(5Hz以下的振动)、高频振动(10KHz以上的振动).2.2按振动发生的部位分为:转子、轴承、壳体、基础、阀、管道等结构.2.3按振幅方位分为:轴向振动、径向振动、扭转振动.2.4按振动原因分为:转子不平衡、不对中、滑动轴承与轴颈偏心、机器零件松动、摩擦、滚动轴承损坏、传动皮带损坏、油膜涡动和油膜振荡、电气方面的原因引起的振动、介质引起的振动等.3 振动信号处理技术在动设备故障诊断中的应用3.1概况设备为两级双吸卧式离心泵,其技术参数:泵型号250AYSⅡ160×2,流量500m3/h,转速3 000r/min,单级扬程160m。