用乘幂法求解A的特征值和特征向量
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
数值分析--第四章--特征值特征向量计算(乘幂法)
摘要:n阶⽅阵A满⾜AX=λx,λ为矩阵A的特征值,x为特征值对应的特征向量。
⼀.乘幂法(求模最⼤特征值及对应特征向量)
设矩阵A有n个相性⽆关的特征向量x1,x2,x3,.....xn,相应的特征值λ1,λ2,λ3,.....λn(由⼤到⼩排列)。
迭代法引⼊:上⼀章学了迭代法求解线性⽅程组Ax=b的解,给定任⼀的初始值v0,不断迭代可以得到Ax=b的解。
同理,给定任⼀⾮零的n维向量v0,不断迭代可以 得到矩阵A的特征向量,
对于初始向量v0可以由A的n个线性⽆关的特征向量表⽰:
带⼊迭代⽅程中:
当迭代次数k趋近于⽆穷⼤时,可得到最⼤特征值λ1对应的特征向量a1x1(与x1线性相关)
同理,当迭代次数趋近于⽆穷⼤时,可得到绝对值最⼤的特征值,λ1
其中,m表⽰向量中的绝对值最⼤的那个元素值
如何利⽤迭代法求解按模最⼤特征值和特征向量
说明:
1.初始值:我们给定初始值x0=[1,1,1]^T,取特征值1
2.第⼀次迭代:
对应的近似特征值取:
3.第⼆次迭代:
⼆.改进乘幂法
这个规范化处理的⽬的:防⽌数据溢出或是数据消失
从上⾯可以看出,改进乘幂法即是每次迭代出的特征向量都进⾏⼀次规范化处理 。
幂法求特征值和特征向量
幂法是一种用于求解特征值和特征向量的迭代算法。
它可以应用于任何具有特征值和特征向量的方阵,并且在实际应用中被广泛使用。
首先,我们需要了解什么是特征值和特征向量。
对于一个n阶方阵A,如果存在一个非零向量x,使得Ax = λx,其中λ是一个实数,那么λ称为A的特征值,x称为对应于特征值λ的特征向量。
幂法的基本思想是通过迭代过程得到一个向量序列,使得每一次迭代后的向量越来越接近于所需的特征向量。
具体步骤如下:
1. 选择一个非零向量b作为初始向量。
2. 迭代计算b的下一个近似向量b' = Ab,即将初始向量乘以
矩阵A。
3. 归一化向量b',即将b'除以其模长,得到新的向量b。
4. 重复步骤2和步骤3,直到向量b的变化趋于稳定。
在每次迭代过程中,向量b的模长会越来越接近于最大的特征值。
此外,向量b也收敛到与最大特征值对应的特征向量。
需要注意的是,幂法只能找到矩阵A的最大特征值和对应的特征向量。
如果需要找到其他特征值和特征向量,可以通过将矩阵A进行位移变换,使得所需的特征值成为矩阵A的最大特征值。
幂法的收敛速度取决于矩阵A的特征值的大小差异。
如果特征值之间的差异很大,那么幂法将很快收敛。
然而,如果特征值之间的差异很小,那么幂法的收敛速度将较慢。
总之,幂法是一种简单而有效的方法,用于求解矩阵的特征值和
特征向量。
它在很多实际问题中都得到了广泛的应用,例如在机器学习、信号处理和物理学等领域。
第三章 矩阵特征与特征向量的计算3.1 引言在科学技术的应用领域中,许多问题都归为求解一个特征系统。
如动力学系统和结构系统中的振动问题,求系统的频率与振型;物理学中的某些临界值的确定等等。
设A 为n 阶方阵,n n ij R a A ⨯∈=)(,若)0(≠∈x R x n ,有数λ使Ax= λx(5.1)则称λ为A 的特征值,x 为相应于λ的特征向量。
因此,特征问题的求解包括两方面:1.求特征值λ,满足 0)det()(=-=I A λλϕ(5.2)2.求特征向量)0(≠∈x R x n ,满足齐方程组0)(=-x I A λ(5.3)称ϕ(λ)为A 的特征多项式,它是关于λ的n 次代数方程。
关于矩阵的特征值,有下列代数理论,定义1 设矩阵A, B ∈Rn ⨯n,若有可逆阵P ,使AP P B 1-= 则称A 与B 相似。
定理1 若矩阵A, B ∈R n ⨯n 且相似,则 (1)A 与B 的特征值完全相同;(2)若x 是B 的特征向量,则Px 便为A 的特征向量。
定理2 设A ∈R n ⨯n 具有完全的特征向量系,即存在n 个线性无关的特征向量构成R n 的一组基底,则经相似变换可化A 为对角阵,即有可逆阵P ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==-n D AP P λλλ 211其中λi 为A 的特征值,P 的各列为相应于λi 的特征向量。
定理3 A ∈R n ⨯n ,λ1, …, λn 为A 的特征值,则 (1)A 的迹数等于特征值之积,即∑∑===≡ni ini iiaA tr 11)(λ(2)A 的行列式值等于全体特征值之积,即n A λλλ 21)det(=定理4 设A ∈R n ⨯n 为对称矩阵,其特征值λ1≥λ2≥…≥λn ,则(1)对任A ∈R n ,x ≠0,1),(),(λλ≤≤x x x Ax n(2)),(),(minx x x Ax x n ≠=λ(3)),(),(max1x x x Ax x ≠=λ定理5 (Gerschgorin 圆盘定理) 设A ∈R n ⨯n ,则 (1)A 的每一个特征值必属于下述某个圆盘之中,n i aa z nij j ijii ,,2,1,1 =≤-∑≠= (5.4)(5.4)式表示以a ii 为中心,以半径为∑≠=nij j ij a 1的复平面上的n 个圆盘。
1、用幂法计算矩阵A的主特征值和对应的特征向量。
function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1)lambda=0;k=1;Wc=1;jd=jd*0.1;state=1;V=V0;while((k<=max1)&(state==1))Vk=A*V;[m j]=max(abs(Vk));mk=m*sign(Vk(j));tzw=abs(lambda-mk);Vk=(1/mk)*Vk;txw=norm(V-Vk);Wc=max(txw,tzw);V=Vk;lambda=mk;state=0;if(Wc>jd)state=1;endk=k+1;endif(Wc<=jd)disp('迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:')elsedisp('迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:')endVk=V;k=k-1;Wc;>> A=[1 -1;2 4];>> V0=[1,1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =33lambda =3.0000Vk =-0.50001.0000Wc =8.6919e-007>> [V,D]=eig(A)V =-0.7071 0.44720.7071 -0.8944D =2 00 3>> Dzd=max(diag(D))Dzd =3>> wuD=abs(Dzd-lambda)wuD =1.7384e-006>> wuV=V(:,2)./VkwuV =-0.8944-0.8944>> A=[1 2 3;2 1 3;3 3 6];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =3lambda =9Vk =0.50000.50001.0000Wc =>> [V,D]=eig(A)V =0.7071 0.5774 0.4082-0.7071 0.5774 0.40820 -0.5774 0.8165D =-1.0000 0 00 -0.0000 00 0 9.0000>> Dzd=max(diag(D))Dzd =9>> wuD=abs(Dzd-lambda)wuD =>> wuV=V(:,2)./VkwuV =1.15471.1547-0.5774>> A=[1 2 2;1 -1 1;4 -12 1];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc如下:k =100lambda =-0.0909Vk =1.00001.00001.0000Wc =1.9582>> [V,D]=eig(A)V =0.9045 -0.7255 -0.72550.3015 -0.2176 - 0.0725i -0.2176 + 0.0725i-0.3015 0.5804 - 0.2902i 0.5804 + 0.2902iD =1.0000 0 00 -0.0000 + 1.0000i 00 0 -0.0000 - 1.0000i>> Dzd=max(diag(D))Dzd =1.0000>> wuD=abs(Dzd-lambda)wuD =1.0909>> wuV=V(:,2)./VkwuV =-0.7255-0.2176 - 0.0725i0.5804 - 0.2902i(4)>> A=[-4 14 0;-5 13 0;-1 0 2];>> V0=[1 1 1]';>> [k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100)迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k =22lambda =6.0000Vk =1.00000.7143-0.2500Wc =8.1744e-007>> [V,D]=eig(A)V =0 0.7974 0.66670 0.5696 0.33331.0000 -0.1994 -0.6667D =2.0000 0 00 6.0000 00 0 3.0000>> Dzd=max(diag(D))Dzd =6.0000>> wuD=abs(Dzd-lambda)wuD =8.1744e-007>> wuV=V(:,2)./VkwuV =0.79740.79740.79742、用原点位移反幂法计算矩阵A的特征值和对应的特征向量。
特征值和特征向量计算的数值方法在数学和计算机科学领域中,特征值和特征向量是非常重要的概念。
特征值和特征向量的计算有许多不同的数值方法,本文将介绍其中一些常见的数值方法,并分析它们的优劣和适用范围。
一、特征值和特征向量的定义在矩阵理论中,给定一个n×n的矩阵A,如果存在一个非零向量v和一个标量λ,使得Av=λv,那么称v为矩阵A的特征向量,λ为矩阵A的特征值。
特征值和特征向量的计算可以帮助我们理解矩阵的性质以及解决一些实际问题。
二、幂法幂法是计算特征值和特征向量的常用数值方法之一。
幂法的基本思想是通过多次迭代,逐渐逼近矩阵的特征值和特征向量。
具体操作如下:1. 初始化一个非零向量b0;2. 进行迭代计算:bi+1 = A * bi / ||A * bi||;3. 取出近似特征向量的最后一列:v = bn;4. 进行迭代计算特征值:λ = (Av)T * v / (vT * v)。
幂法的主要优点是简单易懂,且只需要进行矩阵向量乘法和内积计算。
然而,幂法仅能求取具有最大特征值的特征向量,而且对于存在多个特征值相等的情况并不适用。
三、反幂法反幂法是幂法的一种改进方法,用于求取矩阵A的最小特征值和对应的特征向量。
反幂法的基本步骤如下:1. 初始化一个非零向量b0;2. 进行迭代计算:bi+1 = (A - μI)^-1 * bi / ||(A - μI)^-1 * bi||;3. 取出近似特征向量的最后一列:v = bn;4. 进行迭代计算特征值:λ = (Av)T * v / (vT * v)。
反幂法的改进之处在于引入了矩阵的逆运算,通过使用矩阵A减去一个合适的常数μ乘以单位矩阵来实现。
反幂法适用于矩阵A的特征值接近于μ的情况。
四、QR方法QR方法也是一种常用的特征值计算方法,它适用于求解所有特征值以及对应的特征向量。
QR方法的基本思想是将一个矩阵分解为正交矩阵Q和上三角矩阵R的乘积,然后迭代地将矩阵A转化为更接近上三角形的形式。
竭诚为您提供优质文档/双击可除matlab用规范化乘幂法求以下矩阵的按模最大特征值及其特征向量篇一:幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1.幂法简介:当矩阵a满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵a需要满足的条件为:(1)|1||2|...|n|0,i为a的特征值xn(2)存在n个线性无关的特征向量,设为x1,x2,...,1.1计算过程:n对任意向量x,有x(0)(0)iui,i不全为0,则有i1x(k1)ax(k)...ak1x(0)aαiuiαiλik1uik1i1i1nnnk12k1λ1u1()a2u2()anun11k111u1k112|越小时,收敛越快;且当k充分大时,有可见,当|1 (k1)k111u1x(k1)x(k1)(k)x1(k),对应的特征向量即是。
kxx11u12算法实现(1).输入矩阵a,初始向量x,误差限,最大迭代次数n(2).k1,0;y(k)x(k)max(abs(x(k))(3).计算xay,max(x);(4).若||,输出,y,否则,转(5)(5).若kn,置kk1,,转3,否则输出失败信息,停机.3matlab程序代码function[t,y]=lpowera,x0,eps,n)%t为所求特征值,y 是对应特征向量k=1;z=0;%z相当于y=x0./max(abs(x0));%规范化初始向量x=a*y;%迭代格式b=max(x);%b相当于ifabs(z-b) t=max(x);return;endwhileabs(z-b)>epsz=b;y=x./max(abs(x));x=a*y;b=max(x);end[m,index]=max(a(matlab用规范化乘幂法求以下矩阵的按模最大特征值及其特征向量)bs(x));%这两步保证取出来的按模最大特征值t=x(index);%是原值,而非其绝对值。
数值分析幂法求矩阵A按模最大的特征值及其特征向量幂法的主要思想设 nn ij R a A ⨯∈=)( ,其特征值为i λ ,对应特征向量为),,,1(n i x i=即i i i x Ax λ= ),,1(n i =,且x 1,······,x n线性无关。
求矩阵A的主特征值及对应的特征向量。
幂法的基本思想: 任取一个非零初始向量v 0 ∈R n 且v 0≠0,由矩阵A 的乘幂构造一向量序列:称{vk }为迭代向量,A 特征值中 λ1为强占优,即▕ λ1▕>▏λ2 ▏>······>▏λn ▏,{x 1,x 2,······,x n }线性无关,即{x 1,x 2,······,x n }为R n 中的一个基,于是对任意的初始向量v 0∈R n 且v0≠0有展开式。
(v0 用{x i }的线性组合表示)(且设01≠α) 则当k =2,3,… 时,vk =A vk-1 =A k v 0⎩⎨⎧01Av v =0212v A Av v ==011v A Av v k k k ++==),,1,0(n k =∑==n i i i x v 10 α)(221101n n x x x A v A vααα+++==nn x A x A x Aααα+++=2211nn n x x x λαλαλα+++=222111)(111+≡x kαλk ε其中 由假设▕ λ1▕>▏λ2 ▏>······>▏λn ▏,得 ,从而 即,0lim =∞→k k ε且收敛速度由比值||12λλ=r 确定。
所以有说明,当k 充分大时,有111x v k kαλ≈,或 k kv 1λ 越来越接近特征向量规范化幂法的算法①输入矩阵A 、初始向量v (0),误差eps ,实用中一般取v (0)=(1,1,···,1)T ; ②k ←1;③计算v(k) ←Au (k-1);④m k←max{ v (k) },m k-1←{ v (k-1) };⑤u (k) ←v (k)/ m k;⑥如果▕ m k - m k-1▕<eps ,则显示特征值λ1←和对应的特征向量x (1),终止;⑦k=k+1,转③。
幂法求特征值算法幂法是一种用于求解矩阵特征值和特征向量的迭代算法。
它是数值线性代数中的重要算法之一,在科学和工程领域有着广泛的应用。
幂法的基本思想是利用一个非零向量的矩阵幂序列逐渐逼近矩阵的主特征向量。
主特征向量对应矩阵的最大特征值,因此通过逼近主特征向量,我们也能够得到矩阵的最大特征值。
算法步骤如下:1.随机选择一个非零向量b作为初始向量。
2.计算矩阵A乘以向量b的结果,得到向量b1,即b1=A*b。
3.对向量b1进行归一化,使其成为单位向量,即b1=b1/||b1||,其中||b1||表示向量b1的模。
4.判断新向量b1与旧向量b之间的误差是否足够小,如果误差小于给定的阈值,则停止计算,否则继续迭代。
5.将新向量b1赋值给旧向量b,即b=b1。
6.重复步骤2-5,直到满足停止条件。
幂法的核心思想是利用矩阵与向量的乘积进行迭代,使得向量收敛到矩阵的特征向量。
由于迭代过程中,向量b的每一次迭代都会趋近于主特征向量,因此迭代的次数越多,结果越接近主特征向量。
最终,我们可以得到矩阵的主特征向量以及对应的特征值。
幂法的收敛性取决于特征向量对应的特征值的相对大小。
如果矩阵的特征值不重复且特征值的模最大,那么幂法能够收敛到主特征向量。
在实际应用中,为了加快收敛速度,通常会对矩阵进行特征值的平移,使得矩阵的主特征值接近于零,然后再进行幂法的迭代计算。
幂法求解特征值的时间复杂度为O(n^2m),其中n为矩阵的维度,m为迭代的次数。
这是由于每一次迭代需要进行一次矩阵与向量的乘积,而矩阵与向量的乘积的时间复杂度为O(n^2)。
总结起来,幂法是一种简单而有效的求解矩阵特征值和特征向量的方法。
它通过迭代的方式,利用矩阵与向量的乘积逼近特征向量,从而得到矩阵的特征值。
幂法在科学和工程领域有广泛的应用,如电力系统中的潮流计算、结构分析、图像处理等。
虽然幂法存在一些限制,如只能求解特征模最大的特征值和对应的特征向量,但其简单性和高效性使得它成为一种常用的数值线性代数算法。
幂法求矩阵A按模最大的特征值及其特征向量幂法(Power Method)是一种求解矩阵特征值的迭代算法,在数值线性代数中被广泛使用。
它利用矩阵的特征向量的特性,通过迭代过程逼近矩阵按模最大的特征值及其对应的特征向量。
假设我们要求解一个n阶矩阵A的按模最大的特征值及其特征向量,其中特征值的绝对值最大,特征向量对应的是这个特征值。
我们设矩阵A的特征值为λ,对应的特征向量为x。
幂法的基本思想是:通过连续的矩阵向量乘法,不断迭代一个向量,使其逼近于x。
迭代过程中,向量的每个元素都会趋近于特征向量对应的分量,最终收敛到x。
下面是幂法的具体步骤:1.选择一个初始向量b0,可以是任意向量,但最好与特征向量接近。
2.进行迭代过程,直到满足终止条件:a) 计算向量bn(第n次迭代):bn = Abn-1b) 计算归一化因子:cn = ,bn,(向量bn的欧几里得范数)c) 归一化向量:xn = bn / cn(将向量bn除以归一化因子,得到归一化向量)3. 判断是否满足收敛要求,如果满足,算法终止,特征值λ的近似值为λ≈cn,特征向量x的近似值为x≈xn。
接下来,我们通过一个数值示例来说明幂法的计算过程。
假设有以下3x3矩阵A:A=[0.80.30.2]0.10.70.40.10.00.5我们将使用幂法来计算矩阵的按模最大的特征值及其特征向量。
步骤1:选择初始向量b0。
我们选择初始向量为b0=[1,1,1],即x 的两个分量值为1步骤2:进行迭代过程。
a)计算向量b1:b1=Ab0b1=[0.8*1+0.3*1+0.2*1,0.1*1+0.7*1+0.4*1,0.1*1+0.0*1+0.5*1] =[1.3,1.9,0.6]b)计算归一化因子c1:c1=,b1,=√(1.3^2+1.9^2+0.6^2)≈2.498c)归一化向量:x1=b1/c1x1=[1.3/2.498,1.9/2.498,0.6/2.498]=[0.520,0.760,0.240]步骤3:判断是否满足收敛要求。
幂法求特征值和特征向量例题
幂法是一种用于估计矩阵的最大特征值和对应的特征向量的迭代方法。
它是一种迭代方法,通过不断地对向量进行矩阵乘法和归一化来逼近最大特征值和特征向量。
下面我将通过一个例题来说明幂法求特征值和特征向量的过程。
假设我们有一个矩阵A,我们希望通过幂法来求解其最大特征值和对应的特征向量。
首先,我们需要选择一个初始向量x(0),通常选择一个非零向量作为初始向量。
然后,我们通过以下迭代过程来逼近最大特征值和特征向量:
1. 计算向量y(k) = Ax(k),其中A是矩阵A,x(k)是第k次迭代得到的向量。
2. 计算新的向量x(k+1) = y(k) / ||y(k)||,其中||y(k)||表示向量y(k)的范数。
重复以上步骤直到满足收敛条件,通常是当x(k+1)与x(k)的差别很小或者达到预先设定的迭代次数。
举个例子,假设我们有如下矩阵A:
A = [3, 1]
[1, 2]
我们选择初始向量x(0) = [1, 1]。
然后按照上述步骤进行迭代计算,直到满足收敛条件。
经过多次迭代计算,我们最终得到收敛的特征向量和特征值,它们分别是矩阵A的最大特征值和对应的特征向量。
这就是使用幂法来求解特征值和特征向量的基本过程。
需要注意的是,幂法只能用来求解最大特征值和对应的特征向量,对于其他特征值和特征向量需要使用其他方法来求解。
摘 要根据现代控制理论课程的特点, 提出并利用MATLAB 设计了现代控制理论课程的实验, 给出了设计的每个实验的主要内容及使用到的MATLAB 函数, 并对其中的一个实验作了详细说明。
通过这些实验, 将有助于学生理解理论知识, 学习利用MATLAB 解决现代控制理论问题。
关键词:现代控制理论、MATLAB 、仿真。
1设计目的、内容及要求1.1设计目的本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,求连续系统对应的离散化的系统,并用计算系数阵按模最大的特征根法判别离散系统的稳定性,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的实现和分析系统的稳定性的设计的工具。
1.2设计内容及要求1 在理论上对连续系统离散化推导出算法和计算公式2 画出计算机实现算法的框图3 编写程序并调试和运行4 以下面的系统为例,进行计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=041020122A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100B ,[]111-=c 5 分析运算结果6 幂法迭代精度为ep=0.001,离散系统展开项数为207 程序应具有一定的通用性,对不同参数能有兼容性。
2算法选择及推导2.1连续系统离散化算法书P67离散化意义已知被控对象的状态方程为:()()()()()()t t u t y t t u t =+=+ xAx B Cx D对方程求解,得:0()()0()()()ott t t t t e t e u d τττ--=+⎰A A x x B设0t kT =,(1)t k T =+,代入上式,得:H 公式若省略T 则为{⎰+-++Φ=+Tk kTd kT Bu T k kt x T T k x )1()(])1[()()(])1([(ττφ不改变与离散后时刻,即得连续离散化方程则:相当于)+=(上限相当于下限设令D C kT Du kT Cx kT y kT t kT u T H kT x T G T k x Bdt t Bdt e T H t T k T t kT d dt T k t Bd e T H e T T G TTAT T k kT T k A AT )()()()()()()(])1([(:)()(0,1,,)1()()()(0)1(])1[(+==+=+Φ=====-=-+=⋅==Φ=⎰⎰⎰+-+ττττττ2.2判别离散系统的稳定性2.2.1方法选择这里选用乘幂法,即求矩阵A 按模最大的特征值和相应的特征向量的方法判别离散系统的稳定性。