三角函数常见问题十种求解策略
- 格式:doc
- 大小:15.00 KB
- 文档页数:3
三角函数最值问题常见的求解策略三角函数最值问题是三角函数学习中的难点之一.求三角函数的最值,往往要涉及二次函数、不等式等其他重要知识,是历年高考考查的热点之一.本文试对常见三角函数最值问题作归纳、梳理.1.y=asinx+b型应对策略:令t=sinx,化为求一次函数y=at+b在闭区间上的最值.例1 求函数y=-3sinx+2的最值.解 令t=sinx,则原式化为y=-3t+2,t∈[-1,1],得-1≤y≤5.故ymin=-1,ymax=5.2.y=asinx+bcosx+c型应对策略:引进辅助角φtanφ=b()a,化为y=a2+b槡2sin(x+φ)+c,再利用正弦、余弦函数的有界性.例2 已知x∈-π2,π[]2,求函数f(x)=5sinx+槡53cosx的最值.解 f(x)=5sinx+槡53cosx=10sinx+π()3,令t=x+π3,则y=10sint,t∈-π6,5π[]6.故当t=-π6时,sint有最小值-12,f(x)min=-5;当t=π2时,sint有最大值1,f(x)max=10.3.y=asin2x+bsinx+c型应对策略:令t=sinx,化为求二次函数y=at2+bt+c在闭区间上的最值.例3 求y=2sin2x+sinx+3-π2≤x≤π()6的最值.解 令t=sinx,则由-π2≤x≤π6,得t[∈-1,]12.于是y=2t2+t+3=2t+()142+238.当t=-14时,ymin=238;当t=-1或12时,ymax=4.4.y=asin2x+bsinxcosx+cos2x型应对策略:降次,整理化为类型2,求y=Asin2x+Bcos2x+c的最大值、最小值.例4 函数f(x)=6sinxcosx+8cos2x,求f(x)的周期与最大值.解 f(x)=3sin2x+4cos2x+4=5sin(2x+φ)+4.故周期T=π,f(x)最大值为9.5.y=asinxcosx+b(sinx±cosx)+c型应对策略:令t=sinx±cosx,化为求二次函数y=±a2(t2-1)+bt+c在t∈[-槡2,槡2]上的最值.例5 求函数y=(1+sinx)(1+cosx)的最值.解 y=1+sinxcosx+(sinx+cosx),令t=sinx+cosx,则y=1+t+t2-12=12(t+1)2,t∈[-槡2,槡2].当t=槡2时,ymax=3+槡222;当t=-1时,ymin=0.6.y=asinx+bcsinx+d型应对策略:反解出sinx,利用正弦函数的有界性或用分析法来求解.例6 求函数y=sinx-3sinx+3的最值.解法一:解出sinx=3(y+1)1-y,由|sinx|≤1,得-2≤y≤-12.解法二:(“部分分式”分析法)原式=1-6sinx+3,再由|sinx|≤1,解得-2≤y≤-12.故ymin=-2,ymax=-12.7.y=asinx+bccosx+d型 十种特殊条件下的 三角恒等变换□韩玉宝 三角变换的关键在于发现题目中条件与结论之间在角、函数名称、次数这三方面的差异及联系,然后通过角变换、函数名称变换、升降幂变换等方法找到已知式与所求式之间的联系.三角变换的方法很多,本文将课本中出现的特殊条件下的一些变换方法归纳如下:一、条件或所求中出现“sinα+cosα”,将其平方.例1 设α∈(0,π),sinα+cosα=713,求tanα的值.解 将sinα+cosα=713两边平方,得sinαcosα=-60169,两式联立解得sinα=1213,cosα=-513,从而tanα=-125.二、已知tanα,求asin2α+bsinαcosα+ccos2α的值,先将asin2α+bsinαcosα+ccos2α除以(sin2α+cos2α)(即1),然后分子、分母同除以cos2α.例2 已知tanα=2,求sin2α+3sinαcosα+4的值.解 sin2α+3sinαcosα+4=sin2α+3sinαcosα+4sin2α+cos2α=tan2α+3tanα+4tan2α+1=145.三、化简1+sin槡α,1-sin槡α,1+cos槡α,1-cos槡α,引用倍角公式或将1用平方代换.应对策略:化归为y′=Asinx+Bcosx型求解或用数形结合法(常用到直线斜率的几何意义).例7 求函数y=sinxcosx+2的最大值及最小值.解法一:将原式ycosx-sinx+2y=0化为y2+槡1sin(x+φ)=-2y,即sin(x+φ)=-2yy2+槡1,由|sin(x+φ)|≤1,得-2yy2+槡1≤1,解得-槡33≤y≤槡33.故ymin=-槡33,ymax=槡33.解法二:函数y=sinxcosx+2的几何意义为点P(-2,0)与点Q(cosx,sinx)连线的斜率k,而点Q的轨迹为单位圆,如右图,可知-槡33≤k≤槡33.故ymin=-槡33,ymax=槡33.8.y=asinx+bsinx型应对策略:转化为利用函数y=ax+bx的单调性求最值.例8 求函数y=sinx+4sinxx∈0,π(]()2的最小值.解 令t=sinx,x∈0,π(]2,则y=t+4t,t∈(0,1].利用函数y=ax+bx的单调性得,函数y=t+4t在t∈(0,1]上为单调递减函数.故当t=1时,ymin=5.巩固练习1.若函数y=2sinx+槡acosx+4的最小值为1,求a的值.2.求函数y=-2cos2x+2sinx+3的值域.3.求函数y=(sinx+槡3)(cosx+槡3)的最值.(参考答案见第41页)由π4-α=π12-()α+π6,可得cosα-π()4=-槡3+4310.故所求值为:槡-33+20350.《常见三角函数最值问题的求解策略》1.a=5. 2.y∈12,[]5. 3.ymax=72槡+6,ymin=72槡-6.《十种特殊条件下的三角恒等变换》1.略. 2.116.《“整体思维”巧解三角恒等变换题》1.5972. 2.±712. 3.5665. 4.14. 5.1.《例谈构造法在三角问题中的妙用》1.提示:解析式看作是动点P(cosx,sinx)与定点Q(3,0)连线的斜率,为此构造直线斜率这一几何模型处理.y=sinxcosx-3最小值为-槡24,最大值为槡24.2.提示:已知条件可视为关于sinα2的一元二次方程模型去证明.3.提示:构造几何模型将条件化为(1-cosβ)cosα-sinβsinα+cosβ-32=0.因为点(cosα,sinα)在直线(1-cosβ)x-sinβy+cosβ-32=0上,同时也在圆x2+y2=1上,所以直线和圆有公共点,故d≤r,即cosβ-32(1-cosβ)2+sin2槡β≤1,整理得cosβ-()122≤0,即cosβ=12.又β为锐角,所以β=π3.同理α=π3.《向量问题的几何解法》1.a21+a22=b21+b22. 2.120°. 3.槡6.《一道课本向量题的探究与应用》1.设→AG=→ mGC,→ FG=→ nGE,则→ BG=→ BA+→mBC1+m.又→BG=→ BF+→ nBE1+n=→ BA+→ AF+→nBE1+n=→BA+13→ AD+n2→ BC1+n=→ BA+13+n()2→BC1+n.故11+m=11+n,m1+m=13+n21+烅烄烆n m=n=23.从而→AG=23→ GC,→ AG=25→ AC.单元测试参考答案1.1 2.5665 3.③ 4.槡459 5.116 6.[槡-3,槡3] 7.2 8.π2 9.槡2-12 10.d1d211.因为sinC=sin(A+B)=sinAcosB+cosAsinB,所以sinAcosB=cosAsinB,即sin(A-B)=0.所以三角形是等腰三角形.12.原式=2sin50°+2sin80°cos10°12cos10°+槡32()sin10°槡2cos5°=2sin50°+2sin80°cos10°cos(60°-10°)槡2cos5°=2槡22sin50°+槡22()cos50°cos5°=2cos(50°-45°)cos5°=2.13.因为tanα+β2=槡62,所以cos(α+β)=1-tan2α+β21+tan2α+β2=-15,即cosαcosβ-sinαsinβ=-15.①又因为tanαtanβ=137,所以sinαsinβcosαcosβ=137,即13cosαcosβ-7sinαsinβ=0②联立①、②,解得cosαcosβ=730,sinαsinβ=1330.。
三角函数十大题型三角函数是数学中的重要概念,与几何图形和三角形的关系密切相关。
在学习三角函数时,有一些常见的题型是必须要熟练掌握的。
下面将介绍三角函数的十大题型以及解题方法。
1. 求角度的正弦、余弦、正切值对于给定的三角函数值,如正弦值sinα=1/2,我们需要求出对应的角度α。
对于求解这类问题,我们可以通过查表法或使用计算器进行近似计算。
2. 求角度的值域与周期对于三角函数中的角度,不同的函数具有不同的值域和周期。
例如,正弦函数的值域是[-1, 1],周期是2π。
需要掌握各个三角函数的值域和周期,以便在解题过程中进行合理的计算和判断。
3. 角度的性质和恒等变换三角函数中的角度具有一些特殊的性质和恒等变换,如正弦函数的奇偶性、余弦函数的周期性等。
掌握这些性质和变换可以简化问题的求解过程。
4. 通过图像求解问题三角函数的图像可以帮助我们理解和解决问题。
例如,通过观察正弦函数的图像,我们可以确定其最大值、最小值、零点等信息,从而解决与角度相关的问题。
5. 解三角函数方程三角函数方程是指包含三角函数的方程,需要求解其中的未知量。
解三角函数方程时,我们可以通过恒等变换、化简和换元等方法,将其转化为简化的方程组或方程,从而求解出未知量的值。
6.求三角函数的导数求三角函数的导数是解决曲线变化问题的基础。
通过计算三角函数的导数,我们可以求解与速度、加速度等相关的问题。
7. 三角函数的图像变换通过对三角函数进行平移、伸缩和翻转等图像变换,可以得到新的三角函数图像。
掌握这些图像变换可以帮助我们更好地理解和运用三角函数。
8. 三角函数的复合运算在三角函数的求解过程中,经常会遇到要求解三角函数的复合运算,如sin(2x)、cos(2x)等。
掌握三角函数的复合运算可以帮助我们简化问题,并得到更简洁的解答。
9. 三角函数与三角恒等式的运用三角函数与三角恒等式是数学中的重要工具,可以帮助我们简化问题,并得到更方便的解答。
掌握三角函数与三角恒等式的运用可以提高解题的效率和准确性。
高中数学解题技巧之三角函数求解在高中数学中,三角函数是一个重要的概念,涉及到许多与角度相关的问题。
在解题过程中,我们经常会遇到需要求解三角函数的值或方程的问题。
本文将介绍一些解决这类问题的技巧和方法,并通过具体的题目来说明考点和解题思路。
一、求解三角函数的值1. 利用特殊角的值:我们可以利用特殊角的值来求解一些常见的三角函数。
例如,对于正弦函数,我们知道sin(0°)=0,sin(30°)=1/2,sin(45°)=√2/2,sin(60°)=√3/2,sin(90°)=1。
通过记忆这些特殊角的值,我们可以在解题过程中快速求解三角函数的值。
例题1:求解sin(150°)的值。
解析:由于150°可以表示为30°+120°,根据三角函数的和差公式,我们有sin(150°)=sin(30°+120°)=sin30°cos120°+cos30°sin120°=1/2*(-1/2)+√3/2*√3/2=-1/4+3/4=1/2。
2. 利用三角函数的周期性:三角函数具有周期性,即sin(x+360°)=sin(x),cos(x+360°)=cos(x)。
因此,如果我们需要求解一个角度超过360°的三角函数的值,可以通过减去整数倍的360°来化简问题。
例题2:求解sin(420°)的值。
解析:由于420°可以表示为360°+60°,根据三角函数的周期性,我们有sin(420°)=sin(60°)=√3/2。
3. 利用三角函数的奇偶性:正弦函数是奇函数,即sin(-x)=-sin(x);余弦函数是偶函数,即cos(-x)=cos(x)。
因此,如果我们需要求解一个负角的三角函数的值,可以通过利用奇偶性来化简问题。
(完整版)三角函数的常见解法三角函数是数学中一种重要的函数类型,常见的三角函数包括正弦函数、余弦函数和正切函数。
在解决三角函数的问题时,常常需要采用不同的解法。
本文将介绍三角函数的常见解法。
1. 代数解法代数解法是一种基于代数运算的方法来解决三角函数的问题。
通过运用三角函数的性质和恒等式,我们可以利用代数运算的规律来求解。
例如,在解决三角方程sin(x) = 0时,可以通过运用正弦函数的性质得出解x = 0。
这是因为正弦函数的零点是周期性出现的,其周期为2π,因此解集为{x | x = kπ, k ∈ Z}。
2. 几何解法几何解法是一种基于几何关系的方法来解决三角函数的问题。
通过利用三角函数在几何上的意义和性质,我们可以通过几何图形的分析来求解。
例如,在解决三角方程cos(x) = 1/2时,可以通过考虑单位圆上的点对应的角度来求解。
由于余弦函数表示的是一个点在单位圆上的横坐标,而1/2对应的角度是π/3,因此解集为{x | x = π/3 +2kπ, k ∈ Z}。
3. 三角恒等式的应用三角恒等式是三角函数中一个重要的工具,通过运用三角恒等式,我们可以将复杂的三角函数问题化简为简单的表达式,从而求解问题。
例如,在解决三角方程sin(2x) = √3/2时,可以运用双倍角公式sin(2x) = 2sin(x)cos(x)来化简为2sin(x)cos(x) = √3/2。
然后,运用三角函数的定义sin(x) = √3/2时的解集,即{x | x = π/3 + 2kπ, k ∈ Z},可以求得原方程的解集。
以上是三角函数的常见解法,包括代数解法、几何解法和三角恒等式的应用。
通过灵活运用这些解法,我们可以解决各种三角函数问题。
在实际应用中,根据具体问题的特点选择合适的解法,可以更高效地求解三角函数的问题。
三角函数问题分析及其复习策略三角函数是高中数学中的一个重要的概念,涵盖了正弦、余弦、正切等多种函数形式。
它们的性质和应用广泛,例如在几何图形的计算、物理问题的建模等领域中都有重要的作用。
下面分析三角函数问题的难点和复习策略。
一、三角函数问题的难点:1.概念理解:学生需要理解正弦、余弦、正切等函数的定义及其几何意义。
对于初学者来说,这些概念可能较为抽象,需要通过绘制三角形、解决相关几何问题等方式进行直观理解。
2.计算技巧:涉及到三角函数的计算和运用,需要熟练掌握相关公式和性质。
例如,正弦和余弦函数的周期性、三角函数的和差化简等。
3.题目应用:在解决实际问题时,需要将三角函数的知识应用于几何图形的计算、物理问题的建模等方面。
这需要学生具备将抽象概念转化为实际应用的能力。
二、三角函数问题的复习策略:1.重点概念的理解:对于初学者来说,重点在于理解正弦、余弦、正切等函数的定义和几何意义。
可以通过绘制三角形、观察函数图像等方式进行直观理解,帮助学生建立起相关概念的几何形象。
2.公式与性质的记忆:三角函数的计算和运用离不开相关公式和性质。
学生需要熟练掌握诸如和差公式、积化和差、三角函数的周期性等重要的公式和性质。
可以通过复习课本中的相关内容,或者编写总结性的笔记进行记忆与复习。
3.经典题目的解析:选取一些经典的三角函数题目进行解析复习。
例如,求解等腰三角形的高、正弦定理和余弦定理的应用等。
对于每道题目,可以从建立数学模型、运用相关公式、解算步骤等方面进行详细的说明和分析。
4.实际问题的解决:将三角函数的知识应用于实际问题的解决中。
可以选择一些与几何图形、物理问题相关的题目进行复习。
通过解决这些问题,可以帮助学生将抽象的数学知识应用到实际情境中,加深对三角函数概念和运用的理解。
5.做题技巧的掌握:对于三角函数题目的解答过程中,有一些常用的做题技巧可以帮助学生提高答题的准确性和效率。
例如,利用特殊角和特殊值进行计算、化简式子等。
解决三角函数的种方法方法一:代入法将给定的三角函数表达式代入三角恒等式,化简得到新的三角函数表达式。
这种方法适用于简单的恒等式,例如将sin^2x和cos^2x代入1−cot^2x=0,得到1−(cos^2x/sin^2x)=0,然后通过化简解方程得到解x的值。
方法二:化简法将给定的复杂三角函数表达式化简为简单形式。
例如将sin(x+a)−sin(x−a)的差化积公式应用,并使用和差化积公式,最后化简为2sin(a)cos(x)。
方法三:换元法通过引入新的变量或替换三角函数表达式,将原问题化简为更简单的形式。
例如可以通过令t=tan(x/2)将tan^2x转化为t^2,然后解方程t^2+1=0。
方法四:反函数法使用正弦、余弦、正切的反函数,将已知的值代入反函数的表达式,解方程找到相应的角度值。
例如通过arcsin函数,可以求解sin(x)=0.5的解x=π/6方法五:复数法将三角函数表达式转化为复数形式,利用复数的运算性质来解决问题。
例如欧拉公式e^ix=cos(x)+isin(x)可以将三角函数问题转化为复数的运算问题。
方法六:图像法根据三角函数的周期性和图像特点,结合图像的性质去解决问题。
例如可以通过观察sin函数的图像,得知sin(x)=0的解为x=nπ,其中n 为整数。
方法七:恒等式法利用三角函数的恒等式解决问题。
例如通过化简sin2x−cos^2x−1=0的表达式为−cos^2x+(1−cos^2x)−1=0,然后使用三角恒等式cos^2x=1−sin^2x,最终化简得到sin^4x=0。
方法八:半角公式通过半角公式将复杂的三角函数表达式化简为简单的形式。
例如将sin(2θ)化简为2sinθcosθ的形式,然后代入原方程得到更简单的表达式。
方法九:三倍角公式通过三倍角公式将复杂的三角函数表达式化简为简单的形式。
例如将sin(3θ)化简为3sinθ−4sin^3θ的形式,然后代入原方程得到更简单的表达式。
三角函数中的常考题型及其解法三角函数中常考题型及解法:一、求解三角函数值1、求正弦函数值解法:使用正弦定理进行求解,总结如下:(1)正弦定理(用于直角三角形):a/sinA=b/sinB=c/sinC;(2)正弦表:常记正弦值,如15°的正弦值是0.2588;(3)半角公式:sin(x/2)=±√[(1-cosx)/2];(4)倍角公式:sin2x=2sinxcosex。
2、求余弦函数值解法:使用余弦定理进行求解,总结如下:(1)余弦定理(用于直角三角形):a²=b²+c²-2bc·cosA;(2)余弦表:常记余弦值,如45°的余弦值是0.7071;(3)化简余弦值:常用公式或知识点化简余弦值,如极限化简,勾股定理等;(4)半角公式:cos(x/2)=±√[(1+cosx)/2];(5)倍角公式:cos2x=cos²x-sin²x。
三、求解三角函数表达式1、求正弦函数表达式解法:(1)可用图像法求解,如求函数y=2sin(x+π/6)的图形,可将之前已知的普通正弦图形向右移动π/6,并放大2倍;(2)也可用公式求解,如求函数y=2sin(x+π/6),用单位正弦函数表示法,则有y=2sin(x)·cos(π/6)+2cos(x)·sin(π/6)。
2、求余弦函数表达式解法:(1)可用图像法求解,如求函数y=2cos(x+π/6)的图形,可先求出正弦函数的图像,再进行垂直翻转;(2)也可用公式求解,如求函数y=2cos(x+π/6),用单位余弦函数表示法,则有y=2cos(x)·cos(π/6)-2sin(x)·sin(π/6)。
浅析高中生学习三角函数的困难与解决策略高中阶段的三角函数是数学中的重要知识点,也是让很多学生感到头疼的内容之一。
三角函数的概念及运用涉及到诸多的数学知识,对很多高中生而言都是一个难点。
本文将主要就高中生学习三角函数中的困难点进行分析,并提出一些解决策略,希望能对高中生学习三角函数有所帮助。
一、困难分析1. 概念理解困难三角函数涉及到很多的概念,如正弦函数、余弦函数、正切函数等,还有角度的概念、同角三角函数的性质等等,对很多学生而言,这些概念可能并不是很直观,很难理解。
2. 公式推导困难三角函数的运算中需要应用到一系列复杂的公式,如和差化积公式、倍角公式、半角公式等,这些公式的推导和应用对于学生来说可能是很枯燥和困难的。
3. 解题思路混乱在解三角函数的题目时,很多学生会感到头疼。
有些题目需要根据给定的条件,进行换元或者利用三角函数的性质进行推导,而这一系列的思路对于很多学生来说可能并不是很清晰。
二、解决策略学生在学习三角函数之前,应该首先打好数学基础,对数学中的一些基本概念,如角度、弧度等进行深入理解。
只有打好基础,才能更好地理解三角函数的相关概念。
对于三角函数中的一些公式,学生应该多进行推导和练习,从各个方面去理解这些公式的本质及应用场景,这样在运用时就能够得心应手。
3. 多做题多总结解题方法在学习三角函数,特别是解题时,学生应该多进行题目的练习,总结解题的方法和技巧。
对于一些常见的角度,可以列出其正弦、余弦、正切值,形成一个“角-函数值”对应表,这样在解题时能够更加快速地找到解题方法。
4. 结合实际问题进行训练学生在学习三角函数时,也可以结合一些实际问题进行练习,比如弦长、角度等问题,这样能够更好地理解三角函数的应用。
5. 培养兴趣,增加学习的动力三角函数的学习并不是一件容易的事情,而且需要较长的时间来积累和理解。
学生可以通过一些趣味的数学游戏,或者数学竞赛来激发学习兴趣,从而增加学习的动力。
三角函数最值问题的十种常见解法解法一:利用图像性质求解利用三角函数的图像性质,首先将函数图像画出来,观察函数在指定区间上的最大值和最小值所对应的点的坐标。
解法二:使用导数求解通过对三角函数进行求导,然后将导数等于零进行求解,可以得到函数的关键点,进而通过函数的变化趋势确定最值。
解法三:使用平均值不等式求解根据平均值不等式的性质,可以得到三角函数的最值。
例如,对于正弦函数sin(x),可以利用平均值不等式得到最值。
解法四:使用二次函数的性质求解将三角函数转化为二次函数的形式,然后利用二次函数的性质求解最值。
例如,可以将正弦函数sin(x)转化为二次函数的形式。
解法五:使用三角函数的周期性质求解三角函数的周期性质可以帮助我们确定最值所在的区间。
通过观察函数的周期性质,可以得到函数的最大值和最小值。
解法六:使用三角函数的反函数求解利用三角函数的反函数,可以将问题转化为求解反函数的最值问题。
通过对反函数的最值进行求解,可以得到原函数的最值。
解法七:使用三角函数的恒等式求解利用三角函数的恒等式,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用和差公式将三角函数的角度转化为相对简单的形式。
解法八:使用三角函数的基本关系求解利用三角函数的基本关系,可以将复杂的三角函数转化为简单的形式,进而求解最值问题。
例如,可以利用正切函数和余切函数的基本关系求解最值。
解法九:使用三角函数的积分求解通过对三角函数进行积分,可以得到函数的积分表达式,并通过积分表达式求解最值。
例如,可以通过对正弦函数进行积分得到函数的积分表达式。
解法十:使用泰勒级数展开求解利用泰勒级数展开,可以将三角函数转化为幂级数形式,进而求解最值问题。
通过计算前几项幂级数的和,可以得到函数的近似值,并进一步求解最值。
关于三角函数的几种解题技巧一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如:例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。
A .m 2=n B .m 2=12+n C .n m 22= D .22mn = 分析:观察sin θ+cos θ与sin θcos θ的关系:sin θcos θ=2121)cos (sin 22-=-+m θθ而:n ctg tg ==+θθθθcos sin 1故:1212122+=⇒=-nm n m ,选B 。
在解答三角函数相关的问题时,掌握一些基本的技巧可以帮助你更快更准确地得到答案。
以下是一些三角函数答题技巧:
1. 熟悉基本公式:确保你熟悉所有基本的三角恒等式,如和差公式、倍角公式、半角公式、积化和差公式、和差化积公式等。
2. 化简表达式:在解题前,先将给定的三角函数表达式化简到最简形式,这有助于简化计算。
3. 使用诱导公式:当遇到角度不是标准角度时,可以使用诱导公式将其转换为标准角度。
4. 利用图形辅助:在处理复杂问题时,可以画出一个简单的三角函数图形来辅助理解问题。
5. 注意象限和符号:在计算三角函数值时,要特别注意角度所在的象限以及三角函数的符号。
6. 识别特殊角度:对于0°、30°、45°、60°、90°等特殊角度,要熟悉它们的三角函数值。
7. 使用计算器:在允许的情况下,可以使用计算器来计算复杂的三角函数值,但要注意精度。
8. 检查答案:完成计算后,要检查答案是否合理,例如,一个正弦值不可能大于1。
9. 理解题目要求:仔细阅读题目,确保理解题目的要求,不要答非所问。
10. 规范答题:在答题时,要保持解答过程的条理性和规范性,这有助于阅卷老师理解你的思路。
11. 避免常见错误:在解答过程中,要避免常见的错误,如计算失误、公式使用错误等。
通过练习和不断的复习,你可以更好地掌握这些技巧,并在考试中灵活运用。
师说新语332019年第25期求三角函数最值及值域常用的策略◎ 任彩霞/平遥现代工程技术学校三角函数的最值问题是三角函数中重要的一个知识点,题型较多、方法较碎,是同学们学习的一个难点,由于题型灵活,容易考查思维能力,因而也是高考中热点题型,现对三角函数最值求法中常见的策略加以归类,常用方法加以总结,以达快速正确求解。
一、利用三角函数的有界性求最值1、形如y=asinx+bcosx+c 型,引入辅助角公式化为22b a +sin(x+φ)+c ,再求值域。
例1、求函数f(x)=2sinx+cos(x+3π)的值域解:f(x)=2sinx+21cosx -23sinx=(2-23)sinx+21cosx=)sin()21()232(22φ++−x ,故f(x)∈[]2、形如y=asin 2x+bsinxcosx+ccos 2x 型,通过降幂转化为Asinx+Bcosx ,再求值域。
例2、f(x)=23asinx·cosx-2asin 2x+1(a>0)的值域解:f(x)= 3asin2x+acos2x-a+1=2asin(2x+6π)-a+1∵a>0,sin(2x+6π)-a+1∴f(x)∈[-3a-1,a+1]二、用换元法化为二次函数求值域1、形如y=sin 2x+bsinx+c 型,令sinx=t 转化为二次函数再求值域。
例3、k<-4,求y=cos 2x+k(cosx-1)的值域解:y=2cos 2x-1+kcosx-k y=2cos 2x+kcosx-k-1,设t=cosx ,t ∈[-1,1]则y=2t2+kt-k-1,对称轴x=-4k,由于k<-4,则-4k >1,故当t=1时,ymin=1,当t=-1时,ymax=1-2k ,即y ∈[1,1-2k]2、形如y=asinx·cosx+b (sinx ±cosx )+c 型,令sinx ±cosx=t转化为二次函数在]2,2[−上的值域问题例4、求函数y=sinx·cosx+sinx+cosx 的值域。
高中数学解题方法系列:三角函数最值问题的10种方法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数2cos 1y x =-的值域[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-二. 转化sin()y A x b ωϕ=++(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为.[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.()f x ≤三. 转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3. 求函数3cos 3sin 2+--=x x y 的最小值.[分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y四. 引入参数转化(换元法)对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4. 求函数sin cos sin .cos y x x x x =++的最大值.[分析]解:令().cos sin 21cos sin 2x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=21,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝⎛+=y x t π 五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.设()1sin ,01,2x t t y t t =<≤=+≥=2t =. 六.利用函数在区间内的单调性 例6.已知()π,0∈x ,求函数x x y sin 2sin +=的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .七.转化部分分式例7.求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x Θ3≥y 或.31≤y 八. 数形结合由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. 例8. 求函数()π<<--=x xx y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3365tan -==πAB k 所以y 的最小值为33-(此时3π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.九. 判别式法例9.求函数22tan tan 1tan tan 1x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.解:()()()()222tan tan 1tan tan 11tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈1≠y 时此时一元二次方程总有实数解()()()().3310313,014122≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ 由.31,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.例10.设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();214422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4210a g a M -== ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,21442,21432a a a a a a a a M以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.挑战自我:1.求函数y=5sinx+cos2x 的最值2.已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合.3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.参考答案:1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一. ()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。
三角函数解各类问题的十种方法1 凑角法一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答.例1 求tan 204sin 20︒+︒的值.2 降幂法一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.3 配对法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.例3 已知(0,)2x π∈,且222cos cos 2cos 31x x x ++=,求x 的值.评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答.4 换元法很多给值求值问题都是给的单角的某一三角函数值,但有时会出现给出复合角的三角函数值求值的问题,此时,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值问题.例4 求sin 75cos 4515ααα+︒++︒+︒()()()的值.5 方程法 有时可以根据已知构造所求量的方程解答.例5 若33cos sin 1x x =+,试求sin x 的值.评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.6 讨论法涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.例6 已知ABC !中,54sin ,cos 135A B ==,求cos C . 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!7 平方法分析已知和所求,有时借助“取平方”的方法可以实现顺利解题例7 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的.8 猜想法有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题.例8已知sin cos αα+=α为第二象限角,则sin α= . 评注实际上,将sin cos αα+=22sin cos 1αα+=联立所得二元二次方程组只有两组解,即1sin ,cos 2αα==或1cos ,sin 2αα==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.9 图象法有时候,借助图象才能更好的解决对应的三角函数问题.例9 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.10 比例法借助比例的性质,有时可以实现快速解答三角函数问题.例10 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα-=-++++.= 三角函数解各类问题答案例1. 解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20︒+︒︒+︒-︒==︒︒ sin 202(sin 60cos 20cos60sin 20)cos 20︒+︒︒-︒︒==︒例2. 解析 由2cos cos 1αα+=,得1cos 2α-+=,1cos 2α--=(舍去).由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,则263sin sin cos cos αααα+=+,又由2cos cos 1αα+=,得2cos 1cos αα=-,故322cos cos cos (1cos )cos (2cos )2cos cos 3cos 1ααααααααα+=+=-=-=-,代值可得26sin sin αα+= 例3.解析 设222cos cos 2cos 3m x x x =++,令222sin sin 2sin 3n x x x =++,则3m n +=,cos2cos4cos6m n x x x -=++,其中,2cos62cos 31x x =-,cos2cos4cos(3)cos(3)2cos cos3x x x x x x x x+=-++=,2cos3(cos cos3)1m n x x x -=+-,又cos cos3cos(2)cos(2)2cos cos2x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-,故可解得1cos cos 2cos3(22)0(1)4x x x m m =-==Q .则cos 0x =,或cos20x =,或cos30x =,又(0,)2x π∈,则6x π=或4x π=.例4. 解析 令15αβ+︒=,则原式sin(60)cos(30)βββ=+︒++︒-(sin cos 60cos sin 60)(cos cos30sin sin 30)0βββββ=︒+︒+︒-︒-=.例5. 解析 令cos sin x x t =+,则21cos sin (1)2x x t =-,[t ∈.由已知,有2221(cos sin )(cos sin cos sin )(1)12t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.例6. 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,AB 是ABC !的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65C A B A B A B =-+=-=- 例7.解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++22(sin )(cos )1γγ=-+-=,即1cos()2αβ-=-.例8.解析 由sin 0,cos 0αα><及22221sin cos 1,()(122αα+=+-=,可得1sin 2α=. 例9. 解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,(,)D d A ,由三角函数图象的对称性,则有22b c ππ+=⨯=,3232c d ππ+=⨯=,有b c π=-,3d c π=-,又222()(3)34c bd c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4A π,代入可得2A =+.例10. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2sin (1cos )(1cos )ααα=+-及比例性质a c a c b d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα-+-==+++,代入等式左边可知所证成立.。
第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。
(2)项的分拆与角的配凑。
如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。
(3)降次与升次。
(4)化弦(切)法。
(4)引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。
三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。
三角函数常见问题十种求解策略
导语:三角形中的三角函数问题,是三角函数和解三角形两个知识点的有机结合,也是近年来高考中常见的考点之一。
以下是为大家精心的高中数学,欢迎大家参考!
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90,90)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);
2.cos(kπ+α)=(-1)kcos α(k∈Z);
3.tan(kπ+α)=(-1)ktanα(k∈Z);
4.cot(kπ+α)=(-1)kcot α(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或
2.sinα-cosα>0(或
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、“见齐思弦”=>“化弦为一”
已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
五、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)=sin2α-sin2β;
2.cos(α+
β)cos(α-β)=cos2α-sin2β.
六、见“sinα±cosα与sinαcosα”问题,起用平方法则: (sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
七、见“tanα+tanβ与tanαtanβ”问题,启用变形公式: tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
八、见三角函数“对称”问题,启用图象特征代数关系:(A≠
0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数
y=Acot(wx+φ)的对称性质。
九、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十、见“高次”,用降幂,见“复角”,用转化.
1.cos2x=1-2sin2x=2cos2x-1.
2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w).。