运筹学(胡运权版)第三章运输问题课后习题答案.doc
- 格式:doc
- 大小:1.17 MB
- 文档页数:26
运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。
并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。
1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?表解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ijij x c Z2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。
或者说:优先供应罚数最大行(或列)中最小运费的方格,以避免将运量分配到该行(或该列)次小运距的方格中。
第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。
所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。
P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。
单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。
P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。
两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。
P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。
运筹学基础及丨、V:用习题解答习题一 P461.1(a)2 = 3。
(b)用亂解法找+到满足所打约柬条仲的公:it•范W,所以该问题无可行解。
1.2(a)约束方程组的系数矩阵最优解A.=(o,i a o,7,o,o)r(b)约束方程组的系数矩阵 f I 2 3 4、4 = l2 2 I 2,最优解1 = (^,0,11,0^ V55 )"1.3(a)(1)图解法⑵单纯形法首先在各约朿条件上添加松弛变铽,将问题转化为标准形式max z = 10a-, +5a'2 +0x3 +0a4[3a-. +4 义2 + A3 = 9 si.<[5a-j + 2X2 + a'4 = 8则A,P4组成个猫《=令 A = ;c2 = 0得-站可行解a_ = (0.0.9,8),山此列出初始单纯形表cr 2 >0, 0 - minj 2Ax2xi =~,a-3 =0, a 4最优解即为严+2X2=24的解x =卩,2V 最大值z : IA"i + X y =5I 2 2 /新的单纯形农为A', Xo X A14 14_5_ _25M ~T?q.qcO ,表明已找到问题垴优解.(b)(1)图解法17(2)单纯形法苘先在外约朿条件.h 添加松弛变M ,将问题转化为标准形式 max z = 2.v, + x 2 + Ox 3 + 0.v 4 + Oa 5 5a'2 + = 15 6.y, + 2x 2 + .v 4 = 240 00 --2 *^4o A :5、Q 0 一4(7,^2 <0,表明已找到问题最优解^ =1,X 2=- , A-32L估• 17Hi Z =——21.6(a)在约朿条件中添加松弛变量或剩余变量,且令k = jc 2 -a :; (a*2 > 0,.v ; > o)Xx = ~X->该问题转化为max z' = -3a, - x 2 + .v 2 - 2a 3 + 0.v 4 + (Xv 5 2x | + 3a -2 - 3a 2+ 4a 3 +a 4 =12攀 M I4a'| +x 2 -A*2 -2a*3 —^5 =8 3a*, -X 2 +X 2 — 3a*3 = 6A*,, A '2,X 2, x 3,A-4 , A 3 ^ 0-K 约朿系数矩陴为23 -34 I 0 4 丨-1-20-13 -丨丨一3 0 0在A 屮人为地添加两列单位向虽/>7,2 3 -3 4 1 0 0 0 4 丨-1 -2 t) -1 丨 0 3-1 I -3 0 0 0 1令 max z'= -3a -i - x 2 +x 2- 2.v 3 + Oa:., + 0.v 5 - Mx 6 - Mx 7 得初始单纯形表15最大a 4 = 0,x 5SS ^ Xi x 2x 4 x 5 x 6-2 0 0M -M4 10 -I 0 00 0 0-3 + 7M -J 1 -2-5M 0 -M 0 0-I-5(b)在约朿条件中添加松弛变M 或剩余变M ,.R 令a:3 (jc 3>0,.x ;>0)该问题转化为max z • = 一3^ - 5.v 2 + x ?- x ? + 0,v 4 + Ox 5 x, + 2X 2 + x^- x^-x 4 =6 2.v, + x 2- 3jc 3 - 3^:3 + a*5 = 16 x 2+ 5 a*3 一 5a*3= 10 •v p A :2,“x 4,A 5^0艽约柬系数矩阵为213-30-1 115-50 0v/ft A 屮人为地添加两列单位向觉p 7, 121-1-1010、2 13-30 100 115 -5 0 0 01、 /令 max z , = -3a*, 一 5,v 2 + .v 3 一 x 3 + 0x 4 + 0x s 一 Mx b - Mx 1衍初始单纯形表0 0 -M - M X. X, X,X, X, X, X, x n-A/ x 616-M x 7 10-3 + 2A/ 5 + 3M 1+6M -1-6M -M 0 0 0(a)解1:大\1法在上述线性规划问题中分别减去剩余变萤x 4,x 6,〜再加上人工变蛩15,17,',得max z = 2x t - x2 + 2x3 + 0,v4 - Mx s + 0,v6 - Mx7 + 0a8- Mx^-3 + 7M -J 1 -2-5M 0 -M 0 0A', + X 2 + A :3 - + JC 5 = 6 -2x l + jc 3 — a*6 + x 1 —2 2x z — j c 3 - a *8+ j c 9 =0a-,,.v 2,a*3,j:4,a:5,^6,x 7,x 8,a-9 >0,r,其中MS 个任意人的正数-据此可列出单纯形表22MMMjc, x 2x 4X5 X6 A-M x s 6 -M x 7一2 —Ma 、00 0 0[2]0 M 02-M 3A/-1 2 + A/ -M 1/2 -1/2 0 0-1/2 -1/2x s-M x,—Ix\ [1]1/2^ 5M 3 … ^… A/ I 1 3A/ 2-M0 ----- + — - M0 -M 0 ------------------ 一十 ---2 2 2 2 2 2-M jr 5 3 2 .v 3 2 -I x 2 I 3/2 -3/2 1/2 -1/2 -11-1/2 1/2 -1/2 1/20 0 0 1 1 03/40 0?>M +3 -5M -3 M-3M4Af+5 0 ■M22 2x, 3/4 A 3 7/2 7/40 00 1 0| 43/8 - 8 8-5/4 -M8山单纯形表计算结果可以ft 出,ct 4 >0且%<0(/ =丨,2,3),所以该线性规划问题有无界解 解2:两阶段法。
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?表解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ijij x c Z2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。
或者说:优先供应罚数最大行(或列)中最小运费的方格,以避免将运量分配到该行(或该列)次小运距的方格中。
246685143228116410=⨯+⨯+⨯+⨯+⨯+⨯=131421243234其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6)。
总运费为(目标函数值): ∑∑===3141i j ij ij x c Z 244685149228114412=⨯+⨯+⨯+⨯+⨯+⨯=三、解的最优性检验⒈ 闭回路法(以下的闭回路都是顺时针方向)看非基变量的检验数是否满足:(1)首先对用最小元素法所确定的初始基本可行解进行检验。
参见前面的计算结果,可知非基变量分别为:x 11,x 12,x 22,x 24,x 31,x 33。
σ11 = C 11 + C 23 - (C 13 + C 21) = 4 + 3 –( 4 + 2 ) =1σ12 = C 12 + C 34 - (C 14 + C 32) = 12 + 6 –( 11 + 5 ) =2σ22= C 22 + C 13 + C 34 - (C 23 + C 14 + C 32) = 10 + 4 + 6 – ( 3 + 11 + 5 ) = 20 – 19 =1.0≥ij σσ24 = C24 + C13 - (C14 + C23) = 9 + 4 –( 11 + 3 ) = -1σ31= C31 + C14 + C23 - (C34 + C13 + C21) = 8 + 11 + 3 – ( 6 + 4 + 2 ) = 22 – 12 = 10σ33 = C33 + C14 - (C13 + C34) = 11 + 11 –( 4 + 6 ) =12由于σ24 = C24 + C13 - (C14 + C23) = 9 + 4 –( 11 + 3 ) = -1 < 0,所以当前方案不是最优方案。
(2)然后对用伏格尔法所确定的初始基本可行解进行检验。
参见前面的计算结果,可知非= C23 + C14 - (C13 + C24) = 3 + 11– ( 4 + 9 ) = 14-13=123= C33 + C14 - (C13 + C34) = 11 + 11– ( 4 + 6 ) = 22-10 = 1233由于所有非基变量的检验数都大于零,说明当前方案是最优方案,最优解为:x11=12,x14=4,x21=8,x24=2,x32=14,x34=8。
2位势法(1)首先对用最小元素法所确定的初始基本可行解进行检验。
参见前面的计算结果,可知基变量分别为:x构造方程组:+ v3 = c13 = 4uu1 + v4 = c14 = 11u2 + v1 = c21 = 2u2 + v3 = c23 = 3u3 + v2 = c32 = 5u3 + v4 = c34 = 6令自由变量u1 = 0 ,将其代入方程组,得:u1 = 0,v3 = 4,v4 = 11,u3 = -5,v2 = 10,u2 = -1,v1 = 3,将其代入非基变量检验数:σij=C ij - (u i+ v j),得:σ11=C11 - (u1 + v1) = 4 – ( 0 + 3 ) = 1σ12=C12 - (u1 + v2) = 12 – ( 0 + 10 ) = 2σ22=C22 - (u2 + v2) = 10 – ( -1 + 10 ) = 1σ24=C24 - (u2 + v4) = 9 – ( -1 + 11 ) = -1σ31=C31 - (u3 + v1) = 8 – ( -5 + 3 ) = 10σ33=C33 - (u3 + v3) = 11 – ( -5 + 4 ) = 12与闭回路法计算的结果相同。
(2)然后对用伏格尔法所确定的初始基本可行解进行检验。
参见前面的计算结果,可知基变量分别为:x13,x14,x21,x24,x32,x34。
构造方程组:+ v3 = c13 = 4uu1 + v4 = c14 = 11u2 + v1 = c21 = 2u2 + v4 = c24 = 9u3 + v2 = c32 = 5u3 + v4 = c34 = 6令自由变量u1 = 0 ,将其代入方程组,得:u1 = 0,v3 = 4,v4 = 11,u3 = -5,v2 = 10,u2 = -2,v1 = 4,将其代入非基变量检验数:σij=C ij - (u i+ v j),得:σ11=C11 - (u1 + v1) = 4 – ( 0 + 4 ) = 0σ12=C12 - (u1 + v2) = 12 – ( 0 + 10 ) = 2σ22=C22 - (u2 + v2) = 10 – ( -2 + 10 ) = 2σ23=C23 - (u2 + v3) = 3 – ( -2 + 4 ) = -1σ31=C31 - (u3 + v1) = 8 – ( -5 + 4 ) = 9σ33=C33 - (u3 + v3) = 11 – ( -5 + 4 ) = 12与闭回路法计算的结果相同。
四、解的改进(用闭回路法调整)在使用最小元素法求得的初始方案中,由于σ24<0,说明当前方案不是最优,需要改进或调整。
见表1中非基变量x 24所在的闭回路,调整量为ε = min{2,6} = 2。
调整过程见表2:调整后的结果如表3所示,此结果正好与使用伏格尔法求得的结果相同,因此最优性检验过程同前,由于非基变量的检验系数都大于等于零,因此该方案是最优方案,最优解为: x 13=12,x 14=4,x 21=8,x 24=2,x 32=14,x 34=8。
将最优解代入到目标函数中,得总运费为(目标函数值):∑∑===3141max i j ij ij x c Z 244685149228114412=⨯+⨯+⨯+⨯+⨯+⨯=P66: 9.解:首先列出这一问题的产销平衡表,见表1。
表1一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.二、给出运输问题的初始可行解(初始调运方案) 1. 最小元素法343332312423222131411413121151047829103113min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,06563947342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭第1步,从表1中找出最小运价为1,表示应先将A2的产品供应B1。
在表中A2和B1的交叉格处填上3,得表2。
将表2中的B1列运价划去,得表3第2步,2 1 t物资供应B3。
得表4。
将表4的A2行运价划去,得表5第31B3。
得表6。
将表6的B3列运价划去,得表7。
第4步,在表7未划去的元素中再找出最小运价为4,确定A3的6 t物资供应B2。
得表8。
将表8的B2列运价划去,得表9。
第5步,在表9未划去的元素中再找出最小运价为5,确定A3的3 t物资供应B4。
得表10。
将表10的A3行运价划去,得表11。
第6步,在表11未划去的元素中再找出最小运价为10,确定A1的3 t物资供应B4。
得表12。
将表12的A3行运价划去,得表13。
在表13中,所有元素都被划去,说明在产销平衡表上已得到一个调运方案,即初始基可行解,x13 = 4, x14 = 3, x21 = 3,x23 = 1, x32 = 6, x34 = 5。
(基变量个数:3 + 4―1 = 6)基变量对应的运输量为零,非基变量对应的运输量为零。
运输费用为:Z = 3×4 + 10×3 +1×3 +2×1 +4×6 +5×3 = 12+30+3+2+24+15 = 862. 伏格尔(Vogel)法第1步:在表1中分别计算出各行、各列的最小运费和次最小运费的差额,并填入该表的最右列和最下行,见表2。
表1表2第2步:从行或列差额中选出最大者,选择它所在行或列中的最小元素。
在表2中,可确定A3的产品应首先供应B2,得表3。
将单位运价表中的列的数字划去,得表4。