化归思想在递推数列通项公式中的应用
- 格式:pdf
- 大小:124.69 KB
- 文档页数:2
转化与化归思想在高中数学解题教学中的应用研究【摘要】:随着科技、经济的迅速发展,数学在不同领域的应用日益广泛,数学教育成为世界各国关注的重点。
数学思想方法是数学学科的精髓,是分析与解决问题的理论基础,而转化与化归思想是数学中最重要的思想之一。
数学解题过程中处处渗透着转化与化归思想,学生解题能力的高低很大程度上也取决于其转化与化归能力的强弱。
笔者身处高中一线教学,结合教育教学实践经验以及调查分析,发现目前高中生数学解题中的转化与化归能力相对欠缺,影响学生解题能力的提升。
笔者希望本文的研究能够给一线教师提供一定的借鉴作用,对于提高学生的解题能力提供一定的帮助。
首先,笔者通过文献参考,了解转化与化归思想在国内外的研究现状,分析转化与化归思想的本质和内涵、转化与化归的原则、以及高中数学解题中转化与化归的常用方法。
简单来说,转化与化归思想就是通过观察、分析、类比、联想等思维过程把数学中需要解决的问题,遵循熟悉化、简单化、直观化等原则,选择合适的方法进行转化,然后归结到某些已经解决或比较容易解决的问题的一种思想方法。
其次,通过访谈和调查问卷,以我校部分教师和学生为研究对象,分别从教师和学生的角度研究转化与化归思想在高中数学中的应用现状。
研究表明,目前高中教师能够认识到转化和化归思想在高中数学解题中的重要作用。
但是,不少教师本身对于转化与化归思想缺乏系统深入的研究,教学过程渗透有限。
大部分学生的转化与化归能力仍然有待提高。
然后,结合教学实践经验,从高中数学中的数列、立体几何、函数、解析几何以及不等式几个方面,分析转化与化归思想的渗透策略。
这里重点选取近几年高考试题中一些具有代表性的问题,结合学生解题过程中存在的问题,具体分析老师在教学过程中的处理方式以及实践效果。
并提供《常见的递推数列通项公式的求法》解题教学案例,对课堂实践情况进行了详细分析。
最后,结合调查研究,笔者提出几点教学建议。
一要相信学生,给他们更多实践的机会;二要深入挖掘教材,感悟化归思想;三要注重概念、定理、公式等基础知识的教学,并注重知识之间的联系;四是通过变式训练引导学生应用化归思想;五是加强一题多解和多解归一的训练;六是引导学生及时归纳总结。
转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。
本文将分别探讨转化思想和化归思想在中学数学中的应用。
一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。
它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。
在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。
这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。
例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。
2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。
例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。
3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。
这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。
例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。
二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。
通过化归,我们可以更容易地理解问题,从而更好地解决问题。
在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。
这时候,我们可以采用化归的方法,将其化归为低阶次问题。
例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。
案例采撷关注核心素养培养的课堂教学———以“递推数列求通项公式”复习课教学为例文|袁雯青陶行知先生曾言“教育应当培植生活力,使学生向上生长”,在数学教学中,这句话体现了“让数学教学为学生成长助力”的理念。
尊重学生的认知规律,遵循学生的发展特点,确立其主体地位,使他们的核心素养得到充分发展,在课堂中体验学习的乐趣。
如何在复习课的教学课堂中,让学生在已有的知识方法储备中进行更深刻的思考,产生更严谨的思维,获得更多的学习数学的能力?本文结合“递推数列求通项公式”复习课教学案例进行分析,旨在教会学生思考,培养学生的核心素养。
一、课堂呈现(一)基本问题展示,回顾基本方法,抓牢求通项本质问题:已知数列a n {}满足a 1=1,na n +1=(n +1)a n ,则a n =.给学生一点时间思考后,学生积极提出自己的想法,并给出主要解题过程。
生1:条件可以变形为a n +1a n =n +1n,当n ≥2时,用累乘法可得:a n =a n a n -1·a n -1a n -2·…·a 2a 1=n n -1.n -1n -2 (21)=n ,又因a 1=1符合上式,所以a n =n 。
师:很好!这位同学将条件变形成前后两项的比值,利用累乘法求得了数列的通项,并且注意了n ≥2这个条件,很细致!那么,我们还有其他解决方法吗?生2:可以将条件变形为a n +1n +1=a n n,可知数列a nn {}为常数列,所以a nn =a 11=1,得a n=n 。
师:这位同学通过条件的另一种变形,构建了一个新的数列,得到了前后两项的相等关系,利用构造法构造了常数列,求得通项公式,有不错的转化意识。
(二)问题变形递进,深入基本方法研究,促进思维进阶探究1:记S n 为数列a n {}的前n 项和,已知a 1=1,S n a n{}是公差为13的等差数列,求数列{a n}的通项公式。
生3:因为S n a n{}是公差为13的等差数列,所以S n a n =1+13(n-1)=n +23,可得S n =(n +2)a n 3,则有a n +1=S n +1-S n =(n +3)a n +13-(n +2)a n 3,整理得到:na n +1=(n +2)a n ⇒a n +1a n =n +2n ,还是用累乘法,a n =a n a n -1·a n -1a n -2·…·a 2a 1=n +1n -1·n n -2·n -1n -3·…·53·42·31=n (n +1)2(n ≥2),又因a 1=1符合上式,可得a n =n(n +1)2。
例谈化归思想在中学数学解题中的应用化归思想是数学解题中一种重要的思维方法,通过将原问题转化为更简单的问题来解决复杂的数学问题。
在中学数学解题中,应用化归思想可以帮助学生提高问题解决能力,并加深对数学概念的理解。
1. 确定问题的等价变形:在解决数学问题时,往往可以通过将原问题转化为更简单的等价问题来解决。
在解决一元二次方程的时候,可以通过将方程化为标准形、配方法等等来简化求解过程。
这样做不仅可以减少计算量,还可以帮助学生更好地理解数学概念。
2. 利用对称性进行化简:对称性是数学中常见的一种性质,利用对称性可以简化问题的求解过程。
在解决平面几何问题时,可以利用图形的对称性质来简化分析,找出相应的对称点或线,从而有助于解题。
3. 利用递推关系进行化简:递推关系是数学中经常遇到的一种数学关系,利用递推关系可以通过找出问题中的规律,将问题化简为递推公式,从而简化求解过程。
在解决数列问题时,可以通过找出数列中的递推关系,写出递推公式,从而求解问题。
4. 利用特殊性质进行化简:某些数学问题具有特殊的性质,利用这些特殊性质可以简化问题的求解过程。
在解决组合数学问题时,可以利用排列组合的性质,例如乘法原理、加法原理等,进行合理的化简,以便更好地解决问题。
化归思想在中学数学解题中的应用可以帮助学生理解、把握问题的本质,减少解题过程中的复杂性,提高解题效率。
化归思想也能培养学生的逻辑思维能力、抽象思维能力和创造思维能力,提升他们解决问题的能力。
在中学数学教学中,应该注重培养学生的化归思维,引导他们灵活运用化归思想,更好地解决数学问题。
运用化归思想求二阶线性递推数列通项陈立章;童嘉森【期刊名称】《高中数理化》【年(卷),期】2017(000)007【总页数】1页(P1)【作者】陈立章;童嘉森【作者单位】山东省东平高级中学;北京市第八十中学【正文语种】中文将一个问题由难化易、由繁化简的过程称为化归,它是转化和归结的简称.对于求二阶线性递推数列通项问题,目前采用的多为特征方程法,普通高中生虽然没有接受过类似的知识,但是可以通过化归思想,用最基本的知识求二阶线性递推数列通项.对于二阶线性递推数列{an}:a1=α,a2=β,an=pan-1+qan-2.我们先对其进行如下整理:设an-ran-1=s(an-1-ran-2),即因为an=pan-1+qan-2,所以这样原数列就被化归成了一个等比数列,an-ran-1=s(an-1-ran-2),an-1-ran-2=s(an-2-ran-3),an-2-ran-3=s(an-3-ran-4),……a3-ra2=s(a2-ra1).于是得到即这就意味着只需知道p、q以及前2项a1=α、a2=β,即可求的二阶线性递推数列通项.斐波那契数列是最典型的二阶线性递推数列,我们可以用它来验证该通项的正确性.在斐波那契数列中,a1=a2=1,an=an-1+an-2,即p=q=1,故知解得与r的解可以互换,因为s与r是齐次的).于是结果正确,说明该通项正确.这就意味着,普通高中生即使没学过特征方程,只要有扎实的数学功底,也是可以求出二阶线性递推数列通项的.综上,对于二阶线性递推数列{an}:a1=α,a2=β,an=pan-1+qan-2的通项可用化归思想求得已知p、q以及前2项a1=α、a2=β,即可利用该公式求得二阶线性递推数列通项).变式在数列{an}中,a1=0, a2=1, an+2=an+1+6an,求通项an.根据式①,有解得或者若则于是于是其通项为若取则于是于是其通项为显然这2个结果是一样的.当然本题读者也可以利用二阶线性递推数列的特征方程,求出特征根的方法计算出同样的结果,但这个方法超出了中学课本的范围,故笔者认为本文的方法更接中学生的“地气”.。
“转化与化归”的思想方法在数学教学中应用作者:章传科来源:《文理导航·教育研究与实践》 2014年第8期浙江省苍南县桥墩高级中学章传科转化与化归思想是高中数学最重要的思想之一,它的实质是揭示联系,实现转化。
除极简单的数学问题外,数学问题的解决基本上是通过转化为已知或已解决问题实现的。
从这个意义上讲,一个数学问题的解答过程就是一个从未知向已知转化的过程。
数学思想的作用是无声的,蕴涵于一个个具体的数学问题的解答过程中,要寻找它的踪迹,也必须先深入到数学问题中。
现在让我们在一些具体的问题中去体会“转化化归”的思想方法。
一、在函数与不等式问题中的应用。
函数与不等式的内容在每年的高考中几乎占去了三分之二,函数与不等式问题的内容丰富多变,解法灵活多样,是高考考查的重点也是难点。
函数的三要素中定义域和值域都与不等式紧密相连,很多函数问题与不等式问题是相互交错的,一些特定的函数问题和不等式问题直接求解相对比较困难,可运用转化的方式进行等价求解。
如解分段函数的“最值”问题或求方程解的个数问题。
例如:“证明不等式,其中x≥1”这种问题,如果按照常规的思维用不等式的证明方法如比较法﹑分析法等很难下手,但是转换一个角度,将它视作要证明函数:的值恒大于0,只需要利用导数考查函数的单调性,求最小值,问题就很解决了。
证明一个数学命题,实际上是由假设经过推理以得出结论,当直接处理不容易时,往往我们会先考虑它的等价命题或者辅助命题,去寻求解题的思路。
原命题的等价命题或辅助命题的证明必须是我们所熟悉的知识和方法。
这种运用等价问题法和构造函数法在解答一些直接处理很难下手的函数或不等式问题时非常有用,体现了“转化与化归”思想的熟悉化原则和简单化原则。
从新课改的课程内容设计来看,作为数学的基础性内容,函数、不等式和方程仍然是比重最大的一块,这三者的关系密不可分,三者之间问题的相互转化也是其问题设计的一个重要指导思想,“转化与化归”的思想方法有着大量的运用和体现。
化归与转化思想在解题中的应用主讲人:黄冈中学高级教师汤彩仙一、复习策略化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的,不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口.2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决.3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举.4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始.5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维向高维的发展规律,通过降维转化,可把问题由一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见.6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化.7、函数与方程的转化二、典例剖析例1.函数极限的值为().A.B.C.D.分析:依据题意,从定义、定理、公式、概念出发,化抽象为具体,化复杂为简单,从纵向和横向进行联想转化.解:由导数的定义可知.故选C.点评:本题借用函数极限的具体形式,旨在考查对导数定义的正确理解,因而转化为求函数在处的导数.例2.数列中,,,则=______________.解:通过求猜想,从而达到解决问题的目的,也可以利用数列极限的含义进行重组变形,可转化为无穷等比递缩数列的求和,选C.点评:利用结构进行从特殊到一般的转化,既可缩短解题时间,又可提高运算准确性,同时考查思维的灵活性和代数变形能力.例3.(2005年湖北卷)以平行六面体ABCD—A′B′C′D′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为()A.B.C.D.分析:以平行六面体的八个顶点中任取三点为顶点可以构成56个三角形,从这56个三角形中任取两个,这两个三角形不共面有多少种不同取法?直接去做较困难,若利用“化归转化”数学思想,采用“正与反的相互转化”,正难则反,从问题的反面入手,找出共面的三角形的对数,问题较易解决.解析:以平行六面体ABCD—A′B′C′D′的任意三个顶点为顶点作三角形共有个,从中随机取出两个三角形共有=28×55种取法,其中两个三角形共面的为,故不共面的两个三角形共有(28×55-12×6)种取法,∴以平行六面体ABCD—A′B′C′D′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为,选(A).点评:当问题从正面入手难以解决时,常采用“正与反的相互转化”,从问题的反面入手,将不符合条件的情况去掉(这在排列组合、概率题中常用),或验证问题的反面不成立(反证法),从而使问题得以解决.B1C1中,底面为直角三角形,∠例4.(2006年江西卷)如图,在直三棱柱ABC-A1ACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是___________.分析:这里求CP+PA1的最小值,而CP与PA1在直三棱柱ABC-A1B1C1的两个不同平面内,因此需利用“高维与低维的相互转化”把立体问题转化为平面问题来解决.解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,连A1C,则A1C的长度就是所求的最小值.通过计算可得∠A1C1B=90°又∠BC1C=45°,∠A1C1C=135°,由余弦定理可求得A1C=.点评:此题将几何体的侧面展开,空间问题转化成平面问题来解决,这是立体几何分支中常用的降维转化思想在解答立几问题的过程中,还常用等积变换求有关几何体的体积或点到平面的距离;常用割补转化,改变几何体的状态,由复杂几何体变为简单几何体,同时,线线、线面、面面之间的垂直或平行的互相转化,贯穿于立体几何始终;线线、点面、线面、面面之间的距离,既相互联系,又可相互转化.各种转化策略的运用,是解决立几问题的法宝.例5.已知函数的部分图象如图(,且).(1)求的值;(2)若关于的方程(,且)有两个不等实数根;①若证明在(-π,)内有两个不等实数根;②上述①的逆命题是否成立,并证明.解:(1)由图象易知函数的周期为(π)=2π.∴,上述函数的图象是由的图象沿轴负方向平移个单位得到的,其解析式为.∴(2)①由得||≤∴>-1.同样||≤∴<1.令,显然而二次函数的对称轴∈(-1,1).∴二次方程两实根在(-1,1)中.∴关于的方程在(-,)内有两个不同实根.②逆命题不成立.反例,关于的方程为.显然方程在(-,)内有两个不等的实根,并=+=1.例6.(2007安徽卷理)设,.(1)令,讨论在内的单调性并求极值;(2)求证:当时,恒有.分析:(1)讨论在内的单调性并求极值只需求出的导数即可解决;(2)要证当时,恒有,可转化为证时,亦即转化为时恒成立;因,于是可转化为证明,即在上单调递增,这由(1)易知.解:(1)根据求导法则有,故,于是,列表如下:极小值故知在内是减函数,在内是增函数,所以,在处取得极小值.(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调递增.所以当时,,即.故当时,恒有.点评:对于证明在区间恒成立问题,常运用化归转化思想转化为证明在区间上恒成立,令,即可转化为在上,这样只需求出在区间上的最小值即可解决之.这种化归转化的思想方法在近几年高考中经常用到.例7.(2007年全国Ⅱ理)设数列的首项.(1)求的通项公式;(2)设,证明,其中为正整数.分析:(1)已知数列的递推公式,求数列的通项,常通过变形使之转化为形式的等差或等比数列来解决;(2)比较与的大小,这里由于式子里含有根号,因此可通过平方化无理为有理,比较与的大小.解:(1)由整理得.又,所以是首项为,公比为的等比数列,得.(2)方法一:由(1)可知,故.那么,又由(1)知且,故,因此为正整数.方法二:由(1)可知,因为,所以.由可得,即.两边开平方得.即为正整数.点评:数列是每年高考的必考内容.已知数列的递推公式或已知数列前n项和与的关系求数列通项也是常考内容.若已知数列的递推公式为()的形式,求数列的通项时常通过变形使之转化为形式的等比数列来解决;若已知数列前n项和与的关系式求数列通项,则常用将与的关系式化归转化为与(或与)间的递推关系再进一步求解.例8.(2007年全国卷II理)已知函数.(1)求曲线在点处的切线方程;(2)设,如果过点可作曲线的三条切线,证明:.分析:(1)通过求导得出切线的斜率,从而由点斜式较易写出切线方程;(2)由(1)易得过点的曲线的切线方程,曲线有三条切线可转化为方程有三个相异的实数根,即函数有三个零点,故只需的极大值大于零且的极小值小于零.解:(1)的导数.曲线在点处的切线方程为:,即.(2)如果有一条切线过点,则存在,使.若过点可作曲线的三条切线,则方程有三个相异的实数根.记,则.当变化时,变化情况如下表:极大值极小值由的单调性,当极大值或极小值时,方程最多有一个实数根;当时,解方程得,即方程只有两个相异的实数根;当时,解方程得,即方程只有两个相异的实数根.综上,如果过可作曲线三条切线,即有三个相异的实数根,则即.点评:将证明不等式的问题通过等价转化化归为函数的极值问题来讨论,这是近年来高考试题中常出现的一种类型.例9.已知函数,,的最小值恰好是方程的三个根,其中.(1)求证:;(2)设,是函数的两个极值点.①若,求函数的解析式;②求的取值范围.解:(1)三个函数的最小值依次为1,,,由,得.∴,故方程的两根是,.故,.,即.∴.(2)①依题意是方程的根,故有,,且△,得.由.;得,.由(1)知,故,∴,.∴.②(或).由(1)知.∵,∴,又,∴,,(或).∴.例10.(2007年福建理)已知函数.(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;(3)设函数,求证:.分析:(1)求出的导函数,易得的单调区间;(2)易知是偶函数,于是对任意成立可等价转化为对任意成立,进一步转化为在上的最小值大于零,从而求出实数的取值范围.解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是.(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:由此可得,在上,.依题意,,又.综合①,②得,实数的取值范围是.(3),,,由此得,.故.点评:利用偶函数的性质进行等价转化是解决此例问题(2)的关键.高考试题中常利用奇函数或偶函数的性质将函数在R上的问题进行“整体与局部的相互转化”转化为函数在区间上问题来讨论.例11.已知、是方程()的两个不相等实根,函数的定义域为.(1)求;(2)证明:对于(),若,则有.解:(1)设,则因为、是方程()的两个不相等实根,所以,即,从而有,所以函数在区间上是增函数,由此及,得;(2)证明:当且仅当,即()时取得等号,从而,而,当且仅当时取得等号,故有.冲刺练习一、选择题1.定义集合运算:A⊙B={z|z= xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()A.0B.6C.12D.182.设是R上的一个运算,A是R的非空子集,若对任意有,则称A对运算封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集3.从集合{1,2,3,…,11}中的任意取两个元素作为椭圆方程中的和,则能组成落在矩形区域内的椭圆的个数是()A. 43B. 72C. 86D. 904.是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.25.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B. 18C.24D.366.点P到点A(,0),B(,2)及到直线x=-的距离都相等,如果这样的点恰好只有一个,那么a的值是()A. B.C.或D.-或7.如果二次方程x2-px-q=0(p,q∈N*) 的正根小于3,那么这样的二次方程有()A. 5个 B. 6个C. 7个D. 8个8. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A. 不存在B. 只有1个C. 恰有4个D. 有无数多个9.计算机中常用的十六进制是逢16进1的记数制,采用数字0-9和字母A-F共16个记数符号;这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B,则()A.6EB.72C.5FD.B010.设P是△ABC内任意一点,S△ABC表示△ABC的面积,λ1=,λ2=,λ3=,定义f(P)=(λ1,λ2,λ3),若G是△ABC的重心,f(Q)=(,,),则()A. 点Q在△GAB内B. 点Q在△GBC内C. 点Q在△GCA内D. 点Q与点G重合[提示]二、填空题11.在平面几何中有如下特性:从角的顶点出发的一条射线上任意一点到角两边的距离之比为定值.类比上述性质,请叙述在立体几何中相应地特性,并画出图形.不必证明.类比性质叙述如下:_____________________.12.规定记号“”表示一种运算,即. 若,则函数的值域是_____________________.13.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍):则第9行中的第4个数是_____________________.14.某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿a元.设在一年内E发生的概率为p,为使公司收益的期望值等于a的百分之十,公司应要求顾客交保险金为_____________________.15.设函数f (x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0,]上的面积为(n∈N*),(i)y=sin3x在[0,]上的面积为___________;(ii)y=sin(3x-π)+1在[,]上的面积为______________.16.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:①3;②4;③5;④6;⑤7以上结论正确的为______________.(写出所有正确结论的编号)[答案]三、解答题17.设函数.y=f(x)图像的一条对称轴是直线.(1)求;(2)求函数的单调增区间;(3)证明直线与函数的图像不相切.[答案]18.某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是.棋盘上标有第0站、第1站、第2站、……、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为.(1)求P0,P1,P2;(2)求证:.(3)求玩该游戏获胜的概率.[答案]19.如图,直线l1:与直线l2:之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2.(1)分别用不等式组表示W1和W2;(2)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;(3)设不过原点O的直线l与(2)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点. 求证△OM1M2的重心与△OM3M4的重心重合.[答案]20.设轴、轴正方向上的单位向量分别是、,坐标平面上点、分别满足下列两个条件:①且=+;②且=.(1)求及的坐标;(2)若四边形的面积是,求的表达式;(3)对于(2)中的,是否存在最小的自然数M,对一切都有<M 成立?若存在,求M;若不存在,说明理由.提示:1、当x=0时,z=0,当x=1,y=2时,z=6,当x=1,y=3时,z=12,故所有元素之和为18,选D.2、A中1-2=-1不是自然数,即自然数集不满足条件;B中1÷2=0.5不是整数,即整数集不满足条件;C中有理数集满足条件;D中不是无理数,即无理数集不满足条件,故选择答案C.3、根据题意,是不大于10的正整数、是不大于8的正整数.但是当时是圆而不是椭圆.先确定,有8种可能,对每一个确定的,有种可能.故满足条件的椭圆有个.选B.4、由题意至少可得f(0)=f(2)=f(-2)=f(3)=f(-3)=f(-5)=f(5)=f(1)=f(4)=0,即在区间(0,6)内f(x)=0的解的个数的最小值是5,选(D).5、正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;选D.6、(思路一)点P在抛物线y2=2x上,设P(,y),则有(+)2=(-)2+(y-2)2,化简得(-)y2-4y+2+=0,当=时,符合题意;当a≠时,Δ=0,有-++=0,( +)(2-+)=0,=-.选D.(思路二)由题意有点P在抛物线y2=2x上,B在直线y=2上,当a=-时,B为直线y=2与准线的交点,符合题意;当a=时,B为直线y=2与抛物线通径的交点,也符合题意,故选D.7、由△=p2+4q>0,-q<0,知方程的根为一正一负.设 f(x)=x2-px-q,则 f(3)=32-3p-q>0,即 3p+q<9.由于p,q∈N*,所以 p=1,q≤5 或p=2,q≤2. 于是共有7组(p,q)符合题意.故选C.8、设四棱锥的两组不相邻的侧面的交线为 m、n,直线 m、n 确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相截,则截得的四边形必为平行四边形.而这样的平面α有无数多个.故选D.9、∵A=10,B=11,又A×B=10×11=110=16×6+14,∴在16进制中A×B=6E,∴选A.10、由题f(p)=若G为.而与之比较知..故选A.11.(下列答案中任一即可,答案不唯一)(1)从二面角的棱出发的一个半平面内任意一点到二面角的两个面的的距离之比为定值.(2)从二面角的棱上一点出发的一条射线上任意一点到二面角的两个面的的距离之比为定值.(3)在空间,从角的顶点出发的一条射线上任意一点到角两边的距离之比为定值.(4)在空间,射线上任意一点到射线、、的距离之比不变.(5)在空间,射线上任意一点到平面、、的距离之比不变.12.13.25914.(0.1+p)a 15.16.①③④⑤提示:12、由得,解得k=1,所以f(x)=,f(x)在(0,+∞)内是增函数,故f(x)>1,即f(x)的值域为.13、第1行第1个数为1=,第2行第1个数为2=,第3行第1个数为4=,…,第9行第1个数为=256,所以第9行第4个数为256+3=259.14、设保险公司要求顾客交x元保险金,若以ξ表示公司每年的收益额,则ξ是一个随机变量,其分布列为:因此,公司每年收益的期望值为Eξ=x(1-p)+(x-a)·p=x-ap.为使公司收益的期望值等于a的百分之十,只需Eξ=0.1a,即x-ap=0.1a,故可得x=(0.1+p)a.即顾客交的保险金为(0.1+p)a时,可使公司期望获益10%a.15、由题意得:y=sin3x在上的面积为,在上的图象为一个半周期,结合图象分析其面积为.16、B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选①③④⑤.17.(1)解:∵是函数y=f(x)的图象的对称轴,∴,∴,∵-,∴.(2)由(1)知,因此.由题意得,所以函数的单调增区间为.(3)证明:∵||=|(|=||≤2.所以曲线y=f(x)的切线的斜率取值范围是[-2,2],而直线5x-2y+c=0的斜率为>2,所以直线5x-2y+c=0与函数的图象不相切.18.解:(1)依题意,得P0=1,P1=,.(2)依题意,棋子跳到第n站(2≤n≤99)有两种可能:第一种,棋子先到第n-2站,又掷出反面,其概率为;第二种,棋子先到第n-1站,又掷出正面,其概率为.∴.∴.即.(3)由(2)可知数列{}(1≤n≤99)是首项为公比为-的等比数列,于是有=.因此,玩该游戏获胜的概率为.19.解:(1)(2)直线直线,由题意得即由知所以即所以动点P的轨迹方程为(3)当直线与轴垂直时,可设直线的方程为由于直线、曲线C 关于轴对称,且与关于轴对称,于是的中点坐标都为,所以的重心坐标都为,即它们的重心重合.当直线与轴不垂直时,设直线的方程为由,得由直线与曲线C有两个不同交点,可知,且设的坐标分别为则设的坐标分别为由从而所以所以于是的重心与的重心重合.20.解:(1)..(2),(3).∴,,.,,等.即在数列中,是数列的最大项,所以存在最小的自然数,对一切都有<M成立.。
高中数列知识蕴含的主要数学思想高中数列知识蕴含的主要数学思想1.函数思想因为数列的通项公式、前n项和公式都是关于n的函数,所以一些数列问题可从函数的角度出发,运用函数思想来解答.相关的问题有:数列的单调性问题、求基本量问题、最值问题等.上述问题可利用数列所对应函数的特征、数列所对应函数的性质来解答.2.方程思想等差、等比数列都有5个基本量,运用方程思想可做到“知三求二”.在已知某些量的情况下,通过列方程或方程组求解其它量.此外,本章经常使用的待定系数法其实就是方程思想的体现.3.转化与化归思想本章的转化思想的运用,主要体现在把非特殊数列问题转化成特殊数列问题来解答,如:求递推数列的通项公式可通过构造转化成特殊数列求通项公式,非特殊数列的求和问题可转化成特殊数列的求和问题等.化归思想指的是把问题转化到研究对象最基础知识点上去解决,如:用等差、等比数列及等差、等比中项的定义,证明一个数列是等差或等比数列等.4.分类讨论思想本章的分类讨论思想主要体现在解决一些含参数列问题上,9.特殊化思想在解答一些关于数列的选择或填空题时,用符合题设条件的特殊数列求解,就是特殊化思想的体现.最常用的特殊数列是常数列,这是因为非零常数列既是等差数列又是等比数列,在题目对公差、公比没有显性或隐性的限制时,我们就可以特殊化为常数列来解答.二、高中数列知识常用的数学方法1.待定系数法本法实质是通过列方程或方程组求待定的参数,这是解答含参数列问题的一种重要方法.2.配方法主要应用在等差数列(非常数列)求前n项和的最值问题中.3.构造法①由一个等差或等比数列的某些子数列可构造成一个新的等差或等比数列;②由数列递推公式求数列的通项公式往往采用构造法,即通过添项、取倒数、开方、平方等手段把它转化成特殊数列求通项公式;③对于数列应用题,我们可构造相应的数列模型来解答.。
如何由递推公式求通项公式高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。
找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。
下面就递推数列求通项的基本类型作一个归纳,以供参考。
类型一:1()nna a f n 或1()n na g n a 分析:利用迭加或迭乘方法。
即:112211()()+()nnnnna a a a a a a a ……或121121n n n nna a a a a a a a ……例1.(1)已知数列na 满足11211,2nna a a nn,求数列n a 的通项公式。
(2)已知数列n a 满足1(1)1,2nn n a a s ,求数列n a 的通项公式。
解:(1)由题知:121111(1)1nna a nnn n nn 112211()())n n n n na a a a a +(a -a a (1)111111()()()121122n n nn ……312n(2)2(1)n n s n a 112(2)nn s na n两式相减得:12(1)(2)n nna n a na n 即:1(2)1n na n n a n 121121n n nn n a a a a a a a a (121)121nn n n……n类型二:1(,(1)0)nn a pa q p q pq p 其中为常数,分析:把原递推公式转为:1(),1nnq a tp a t p其中t=,再利用换元法转化为等比数列求解。
例2.已知数列n a 中,11,123n n a a a ,求n a 的通项公式。
解:由123nn a a 可转化为:132(3)n na a 令3,nn b a 11n+1n则b =a +3=4且b =2b n b 1是以b =4为首项,公比为q=2的等比数列11422n n bn即123n na 类型三:1()(nn a pa f n 其中p 为常数)分析:在此只研究两种较为简单的情况,即()f x 是多项式或指数幂的形式。
化归思想在高中数学解题中的应用分析作者:莫京宇来源:《中学课程辅导·教学研究》2017年第08期摘要:数学对于高中课程当中尤为重要,学习数学的关键在于对数学知识的掌握和拥有良好且正确的解题思想。
在数学解题应用中,如等价交换思想、数形结合思想、函数思想等这些良好的解题思想我们都可以称之为化归思想。
本文就化归思想在高中数学解题中的实际应用作出简要分析。
关键词:化归思想;高中数学;应用前言:化归思想,一种化熟悉为陌生,化未知为己知的思想。
这种思想在生活中被我们习惯性地应用着,一个人的成长离不开化归思想,它是我们思考一切问题的基本习惯。
同样,在高中数学领域也离不开化归思想,关于它在高中数学解题中的应用,我认为可以分为五个方面进行,即在不等式中的应用,在数列中的应用,在函数中的应用和在几何中的应用。
一、化不等式为等式化归思想在不等式当中的应用表现最为明显的是化不等式为等式。
因为等号两端的数值相同,根据这一点我们可以进行具体的运算,进而得出答案。
举个例子:题目为若不等式kx-4=2的解集是x1≤x≤3,则实数k是多少。
通过观察题目可以解析出kx-4=2的两个根为1,3 即k-4=23k-4=2 ,可以解得k=2。
在这个问题中,我们利用化归思想将端点之进行带入,在等号成立的情况下将题解开。
在所有高中数学的不等式的问题之中,只要我们能够找到不等式之间的关系,将不等式转化为等式,问题就都能够被解开[1]。
二、转化为等差数列或等比数列数列是高中数学学习当中的重点,同时也是高考数学的必考内容。
同样,化归思想在高中数学数列题型当中也有很好的应用,主要是根据题目内容将其转化为等差数列或等比数列,然后利用所学习的公式求得答案[2]。
1.在等差数列当中的应用在高中数学的等差数列习题当中,经常出现的像an-an-1=fn这种等差数列的递推公式,我们通常可以利用叠加方法来进行解题。
举个例子。
题目为已知an-an-1=n-1,求an。
例谈化归思想在中学数学解题中的应用1. 引言1.1 化归思想在数学中的重要性化归思想在数学中的重要性可以说是至关重要的。
在数学问题解决过程中,化归思想是一种非常有效的解题方法,可以帮助我们将复杂的问题简化为更容易解决的子问题。
通过将问题化归为更小的部分,我们可以更清晰地理解问题的结构和逻辑,从而更容易找到解题的突破口。
化归思想在数学中的应用范围非常广泛,几乎涵盖了所有数学领域。
无论是代数、几何、概率还是数论,都可以运用化归思想来解决问题。
在代数中,化归思想可以帮助我们简化方程、证明和计算;在几何中,化归思想可以帮助我们理清各种几何关系;在概率中,化归思想可以帮助我们分析各种概率事件的关系;在数论中,化归思想可以帮助我们探讨数学规律。
掌握化归思想对于学生来说是非常重要的,不仅可以帮助他们更好地理解数学知识,还可以提高他们的解题能力和逻辑思维能力。
化归思想不仅可以帮助学生在课堂上解决问题,还可以帮助他们在生活中更好地应对各种复杂情况。
化归思想在中学数学解题中的重要性不可忽视。
1.2 化归思想的定义化归思想是数学中一种重要的解题思维方式,指的是将一个复杂问题化归为简单问题来解决的方法。
在数学中,化归思想常常通过分解问题、引入适当的假设、转化问题形式等方式帮助解题者更好地理解和解决问题。
通过化归思想,原本看似难以解决的问题可以转化为易于处理的形式,从而大大提高解题效率和准确性。
化归思想的核心在于将问题分解为更小的部分,并逐步解决每一个部分,最终将整个问题得以解决。
这种思维方式要求解题者具备分析问题、合理假设、推理推断等能力,通过不断剖析和转化问题,找到解决问题的突破口。
化归思想是数学解题中一种重要且常用的策略,能够帮助解题者更好地理清问题的本质,提高解题效率,培养解决问题的能力。
在实际解题中,灵活运用化归思想可以让复杂的数学问题变得简单而直观,从而更好地理解和掌握数学知识。
2. 正文2.1 基本化归法的应用基本化归法是一种常用的数学解题方法,特别适用于解决一些复杂的问题。
数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
笔者总结出九种求解数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =, 即)d 8a (a )d 2a (1121+=+,得d a d 12=∵0d ≠,∴d a 1=……………………①∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d =∴n5353)1n (53a n =⨯-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、累加法求形如1()n n a a f n --=(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。
例2.已知数列{a n}中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+ =1121n -+,3121n a n ∴=-+ 点评:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧.三、迭代法求形如1n n a qa d +=+(其中,q d 为常数) 的数列通项,可反复利用递推关系迭代求出。
高考冲刺转化与化归的思想编稿:孙永钊审稿:张林娟【高考展望】解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“转化与化归的思想方法”转化与化归思想在高考中占有相当重要的地位,可以说比比皆是,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.高考对本讲的考查为:(1)常量与变量的转化:如分离变量,求范围等。
(2)数与形的互相转化:若解析几何中斜率、函数中的单调性等。
(3)数学各分支的转化:函数与立体几何、向量与解析几何等的转化。
(4)出现更多的实际问题向数学模型的转化问题。
【知识升华】转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题变换转化为已解决的问题.解题的过程就是“化归”的过程,不断地改变待解决的问题,重新叙述它,变换它,直到最后成功地找到某些有用的东西为止.1.转化与化归应遵循的原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和方法来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所呈现的和谐统一的形式,或者转化命题,使其有利于运用某种数学方法或符合人们的思维规律.(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决.(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.2.转化与化归的基本类型(1)正与反、一般与特殊的转化,即正难则反,特殊化原则.(2)常量与变量的变化,即在处理多元问题时,选取其中的变量(或参数)当“主元”,其他的变量看作常量.(3)数与形的转化,即利用对数量关系的讨论来研究图形性质,也可利用图形直观提供思路,直观地反映函数或方程中的变量之间的关系.(4)数学各分支之间的转化,如利用向量方法解立体几何问题,用解析几何方法处理平面几何、代数、三角问题等.(5)相等与不等之间的转化,如利用均值不等式、判别式等.(6)实际问题与数学模型的转化.3.常见的转化方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换、获得转化途径.(4)参数法:引进参数,使原问题的变换具有灵活性,易于转化.(5)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(6)坐标法:以坐标系为工具,用计算方法解决几何问题.(7)类比法:运用类比推理,猜测问题的结论.(8)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(9)一般化方法:当原问题是某个一般化形式问题的特殊形式且又较难解决时,可将问题通过一般化的途径进行转化.(10)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(11)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即把命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,加强命题法是非等价转化方法.(12)补集法:如果正面解决原问题有困难,可把原问题结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集U Að获得原问题的解决. 以上所列的一些方法是互相交叉的,不能截然分割.4.利用转化与化归的思想解决问题的模式可图示如下:【典型例题】类型一、函数、方程与不等式之间的转化与化归【例1高清转化与化归的思想例题1 ID:404094】设函数f(x)=13x3-(1+a)x2+4ax+24a,其中常数a>1.(1)讨论f(x)的单调性;(2)若当x≥0时,f(x)>0恒成立,求a的取值范围.【思路点拨】(1)求f′(x)=0的根,比较两根的大小、确定区间,讨论f(x)的单调性;(2)将f(x)>0恒成立转化为f(x)的最小值大于0.【解析】(1)f′(x)=x2-2(1+a)x+4a=(x-2)(x-2a).由已知a>1,∴2a>2,∴令f′(x)>0,解得x>2a或x<2,∴当x∈(-∞,2)和x∈(2a,+∞)时,f(x)单调递增,当x∈(2,2a)时,f(x)单调递减.综上,当a>1时,f(x)在区间(-∞,2)和(2a,+∞)上是增函数,在区间(2,2a)上是减函数.(2)由(1)知,当x≥0时,f(x)在x=2a或x=0处取得最小值.f(2a)=13(2a)3-(1+a)(2a)2+4a·2a+24a=-43a3+4a2+24a=-43a(a-6)(a+3),f(0)=24a.由题设知1,(2)0,(0)0,af af>⎧⎪>⎨⎪>⎩即1,4(3)(6)0,3240,aa a aa>⎧⎪⎪-+->⎨⎪>⎪⎩解得1<a<6.故a的取值范围是(1,6).【总结升华】函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围. 举一反三:【变式】函数x x f 6log 21)(-=的定义域为 ▲ .【答案】(【解析】根据二次根式和对数函数有意义的条件,得:1266000112log 0log 620<x >x >x >x x x x ≤-≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩【例2】已知数列{}n a 满足1133,2,n n a a a n +=-=则na n的最小值为__________. 【答案】212【思路点拨】利用递推数列的通项公式构造函数,利用导数判断函数单调性求解。
常数列不平常,求通项很好用作者:郑飞波来源:《数学金刊·高考版》2013年第11期无穷数列a,a,a,…,称之为常数列. 常数列的通项为an=a,n∈N*,用递推式表示:an+1=an,a1=a,n∈N*.若a≠0,则此时的常数列既是公差d=0的等差数列,又是公比q=1的等比数列. 虽然非零常数列很简单,但在某些递推数列中巧妙地运用,能起到事半功倍的效果;巧妙树立递推的“形式”,建立递推的“内涵”是很重要的.巧用常数列转化等差、等比数列的定义化归思想是数列学习的重要思想,通过一些特殊的递推关系将数列转化为两个基本数列——等差数列和等比数列得到求解. 其实,等差数列与等比数列也可以转化为更简单的常数列来求解,即非零常数列是这两个数列的“融合体”.结论1 若等差数列{an}中,首项为a1,公差为d,则数列{an-nd}是项为a1-d的常数列.证明 an-an-1=d,n≥2?圯an-nd=an-1-(n-1)d,n≥2,显然数列{an-nd}为项是a1-d的常数列.反之亦然.巧用常数列递推解决一些特殊递推关系的数列例1 设正项数列{an}的首项为a1=1,满足:(n+1)a2n+1-na2n+an+1an=0,则它的通项公式是an=________.A. 2+lnnB. 2+(n-1)lnn分析凑形an+1-ln(1+n)=an-lnn,即数列{an-lnn}是项为2的常数列. 选A.说明运用累加法思想或累乘法思想求解递推关系的数列,转化为常数列后求解比较简便. 例如,已知数列{an},分别满足下列条件时递推数列可转化为常数列的递推形式:构成常数列递推式,重点在形式上保持递推关系,才能产生从“有形”到“无形”的质的飞跃.巧用常数列解决一些解递推关系的数列通项1. 反比例函数模型递推说明:反比例模型的递推关系的数列是重要的递推形式,在历年的高考题中经常出现.2. 一阶线性递推关系的数列例5 (2010年重庆高考)在数列{an}中,a1=1,an+1=can+cn+1·(2n+1)(n∈N*),其中实数c≠0,求{an}的通项公式.说明 Sn与an一般均有两种求解方向,以上两个例题的两种解法均有异曲同工之美,凑成常数列的“形式”过关,才能把握住实质上的递推!递推关系的数列是高考、自主招生、数学竞赛的常考知识点,也是高中数学的主干知识. 常数列是等差数列、等比数列的“融合体”,除了解决常规转化等比、等差关系的数列递推,还能解决不能用等差、等比关系解决的一些特殊递推数列. 因此,在变形要求上更加苛刻!在加深“递推”的含义上,要有更深的理解. 在“无形”中寻求“有形”,是处理数学递推。
利用化归思想求数列通项公式刘鑫迪【期刊名称】《高中数理化》【年(卷),期】2017(000)012【总页数】1页(P3)【作者】刘鑫迪【作者单位】山东省肥城市泰西中学【正文语种】中文运用化归思想求解数列的通项公式,其思路是通过恰当变换所给递推关系,将非等差、等比数列转化为等差、等比数列求解.下面举例说明.此类问题求解思路是将递推关系转化为an+1-an=f(n)后,利用累加法.例1 在数列{an}中a1=0,an+1=an+(2n-1) (n∈N*),求{an}的通项公式.解由题意可得an+1-an=2n-1,则有an-an-1=2n-3, an-1-an-2=2n-5,…,a2-a1=1.以上n-1个式子累加得所以an=(n-1)2+a1=(n-1)2.此类问题求解思路是将递推关系转化为=f(n)后,再利用累乘法.例2 在数列{an}中a1=1, an>0且,则an=____.解将因式分解得[(n+1)an+1-nan](an+1+an)=0.因为an>0,故(n+1)an+1-nan=0,即.所以.以上n-1个式子累乘得.又因为a1=1, 所以).此类问题的求解思路是运用待定系数法将递推关系转化为等比数列.例3 已知数列{an}满足a1=1,an+1=3an+1,求{an}的通项公式.解由an+1=3an+1得).因为,所以数列{ } 是首项为,公比为3的等比数列,所以即{an}的通项公式为.此类问题的求解思路是运用取倒数法将递推关系转化为等差(或等比)数列.例4 已知数列{an},a1=1且,求{an}的通项公式.解因为an≠0,将两边同时取倒数得+2,即,所以{}是以首项为,公差为2的等差数列,所以 .此类问题的求解思路是通过换元将递推关系转化为一阶线性递推关系,再利用待定系数法.例5 已知数列{an}满足a1=1,an+1=3an+2n+1,求an.解由已知得+1.设,故有,所以,即{bn+2}是以为公比,为首项的等比数列,所以总之,利用化归思想求数列的通项公式是一种十分有效的方法.此方法的运用对培养思维的灵活性、广阔性、敏捷性、创造性具有重要的意义,有助于提高我们发现问题、探索问题、解决问题的能力.。