5-2方阵的特征值与特征向量
- 格式:ppt
- 大小:1.50 MB
- 文档页数:22
【关键字】学习第五章矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设是数域P上的n阶矩阵,若对于数域P中的数,存在数域P上的非零n维列向量X,使得则称为矩阵A的特征值,称X为矩阵A属于(或对应于)特征值的特征向量注意:1)是方阵;2)特征向量X 是非零列向量;3)方阵与特征值对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A的特征值与特征向量的步骤为:(1)计算n阶矩阵A的特征多项式|E-A|;(2)求出特征方程|E-A|=0的全部根,它们就是矩阵A的全部特征值;(3)设1 ,2 ,… ,s 是A的全部互异特征值。
对于每一个i,解齐次线性方程组0,求出它的一个根底解系,该根底解系的向量就是A属于特征值i的线性无关的特征向量,方程组的全体非零解向量就是A属于特征值i的全体特征向量.3.特征值和特征向量的性质性质1 (1)若X是矩阵A属于特征值的特征向量,则kX()也是A属于的特征向量;(2)若是矩阵A属于特征值的特征向量,则它们的非零线性组合也是A属于的特征向量;(3)若A是可逆矩阵,是A的一个特征值,则是A—1的一个特征值,是A*的一个特征值;(4)设是n阶矩阵A的一个特征值,f(x)= amxm + am-1xm-1 + … + a1x + a0为一个多项式,则是f(A)的一个特征值。
性质2(1)(2)性质3 n阶矩阵A和它的转置矩阵有相同的特征值性质4 n阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A、B为n阶矩阵,若存在可逆矩阵P,使得B=P―1AP则称A与B相似。
记作A∽B. 并称P为相似变换矩阵.矩阵的相似关系是等价关系,满足:1°反身性:A∽A.2°对称性:若A∽B,则B∽A.3°传递性:若A∽B,B∽C则A∽C.5.矩阵相似的性质:设A、B为n阶矩阵,若A∽B,则(1) ; (2) ;(3)A 、B 有相同的迹和特征多项式,相同的特征值;(4) A ,B 或者都可逆或者都不可逆. 当A ,B 都可逆时,∽;(5)设f (x )= amxm + am-1xm-1 + … + a1x + a0 为一个多项式,则 f (A )∽ f (B ) ; 6.n 阶矩阵A 相似对角化的条件(1)n 阶矩阵A 与对角矩阵Λ相似的充分必要条件是A 有n 个线性无关的特征向量. (2)n 阶矩阵A 与对角阵相似的充要条件是A 的每个k 重特征值恰好对应有k 个线性无关的特征向量.注(1)与单位矩阵相似的 n 阶矩阵只有单位阵 E 本身,与数量矩阵 kE 相似的 n 阶方阵只有数量矩阵 kE 本身(2)有相同特征多项式的矩阵不一定相似。
引言众所周知,矩阵理论在历史上至少可以追溯到Sylvester与Cayley,特别是Cayley1858年的工作。
自从Cayley建立矩阵的运算以来,矩阵理论便迅速发展起来,矩阵理论已是高等代数的重要组成部分。
近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵理论中寻找它们的根源。
另一方面,作为一种基本工具,矩阵理论在应用数学与工程技术学科,如微分方程、概率统计、最优化、运筹学、计算数学、控制论与系统理论等方面有着广泛的应用。
同时,这些学科的发展反过来又极大地促进了矩阵理论的发展。
特征值与特征向量是矩阵理论中既具有基本理论意义,又具有重要应用价值的知识,与矩阵理论的其它知识也有着密切的联系。
可以说,特征值与特征向量问题是矩阵理论的基本核心问题。
因此,掌握这方面的知识对于培养新的高素质科技人才来说是必备的非常重要的。
矩阵是高等代数课程的一个基本概念是研究高等代数的基本工具。
线性空间、线性变换等,都是以矩阵作为手段,由此演绎出丰富多彩的理论画卷。
求解矩阵的特征值和特征向量,是高等数学中经常碰到的问题。
一般的线性代数教材中,都是先计算特征多项式,然后求得特征值,再通过解线性方程组得到对应的特征向量。
特征多项式和特征根在整个矩阵理论体系中具有举足轻重的作用,并且在于生活现实中的应用也很广泛。
“特征”一词来自德语的eigen,由希尔伯特在1904年首先在这个意义下使用(亥尔姆霍尔兹在更早的时候也在类似意义下使用过这一概念)。
eigen一词可翻译为“自身的”,“特定于...的”,“有特征的”或者“个体的”,这强调了特征值对于定义特定的变换上是很重要的。
矩阵特征值是高等代数研究的中心问题之一,也是硕士研究生招生考试的热点.而且在自然科学(如物理学、控制论、弹性力学、图论等)和工程应用(如结构设计、振动系统、矩阵对策)的研究中也同样离不开矩阵特征值问题,因而对其研究具有重要的理论和应用价值。
随着计算机的迅速发展,现代社会的进步和科技的突飞猛进,高等代数作为一门基础的工具学科已经向一切领域渗透,它的作用越来越为世人所重视。
方阵的特征值与特征向量
定义:设是阶方阵,若有数和非零向量,使得,称数是的特征值,非零向量是对应于特征值的特征向量。
【例如】:对,有及向量,使得,这
说明是的特征值,是对应于的特征向量。
特征值和特征向量的求法:
1.由得,并且由于是非零向量,故行列式,即
(称之为的特征方程)
由此可解出个根(在复数范围内),这就是的所有特征值。
2.根据某个特征值,由线性方程组解出非零解,这就是
对应于特征值的特征向量。
【例】:求的特征值和特征向量。
解:由,得,解得;
对,求解,得,取对应于的特征向量;
对,求解,得,取对应于的特征向量。
【例】:求的特征值和特征向量。
解:由,解得;
对,解得对应的特征向量;
对,求解,得,取对应的特征向量。
【例】:求的特征值和特征向量。
解:由,解得;
对,解得对应的特征向量;
对,求解,得,
取对应的特征向量。
特征值和特征向量的性质:
1.,
2.若是的特征向量,则对,也是的特征向量。
3.若是的特征值,则是的特征值,从而是的特征值。
4.是的个特征值,为依次对应的特征向量,若
各不相同,则线性无关。
特征值和特征向量的⼏何意义、计算及其性质⼀、特征值和特征向量的⼏何意义特征值和特征向量确实有很明确的⼏何意义,矩阵(既然讨论特征向量的问题,当然是⽅阵,这⾥不讨论⼴义特征向量的概念,就是⼀般的特征向量)乘以⼀个向量的结果仍是同维数的⼀个向量。
因此,矩阵乘法对应了⼀个变换,把⼀个向量变成同维数的另⼀个向量。
那么变换的效果是什么呢?这当然与⽅阵的构造有密切的关系,⽐如可以取适当的⼆维⽅阵,使得这个变换的效果就是将平⾯上的⼆维变量逆时针旋转30度。
这时,我们可以思考⼀个问题,有没有向量在这个变换下不改变⽅向呢?可以想⼀下,除了零向量,没有其他向量可以在平⾯上旋转30度⽽不改变⽅向的,所以这个变换对应的矩阵(或者说这个变换⾃⾝)没有特征向量(注意:特征向量不能是零向量)。
⼀个变换(或者说矩阵)的特征向量就是这样⼀种向量,它经过这种特定的变换后保持⽅向不变,只是进⾏长度上的伸综上所述,⼀个变换(或者说矩阵)的特征向量就是这样⼀种向量,它经过这种特定的变换后保持⽅向不变,只是进⾏长度上的伸缩⽽已缩⽽已。
再想想特征向量的原始定义:可以很容易看出,cx是⽅阵A对向量x进⾏变换后的结果,显然cx和x的⽅向相同。
⽽且x是特征向量的话,ax也是特征向量(a是标量且不为零),所以特征向量不是⼀个向量⽽是⼀个向量族。
另外,特征值只不过反映了特征向量在变换时的伸缩倍数⽽已。
对⼀个变换⽽⾔,特征向量指明的⽅向才是很重要的,特征值不那么重要。
特征向量是指经过指定变换(与特定矩阵相乘)后不发⽣⽅向改虽然我们求这两个量时先求出特征值,但特征向量才是更本质的东西!特征向量是指经过指定变换(与特定矩阵相乘)后不发⽣⽅向改变的那些向量,特征值是指在经过这些变换后特征向量的伸缩的倍数。
变的那些向量,特征值是指在经过这些变换后特征向量的伸缩的倍数⼆、特征值和特征向量的计算使⽤Matlab求矩阵的特征值和特征向量:矩阵D的对⾓线元素存储的是A的所有特征值,⽽且是从⼩到⼤排列的。
一、矩阵 的特征值和特征向盘1.矩阵的特征值与特征向量的概念对于n阶方阵A,若有数λ和向盘X:;t O,满足Ax =λX, 林λ为A的特征值,称x为A的属于特征值λ的特征向盘.2.矩阵的特征多项式与特征方程的概念行列式/(A)=A -λEl 或/(λ)=|λE-AI称为矩阵A的特征多项式:A -λEl=O或|λE -A l =O称为矩阵A的特征方程.3.矩阵的特征值与特征向量的求法设λ是A的一个特征值,x是A的属于λ的特征向量的充要条件是zλ为特征方程λE-A l=O的根,x是齐改方程组(λE-A)x =O的非零解.具体计算步骤如下z (1)计算机E-A :(2)求|λE-Al=O的全部棍,ll P 为A的全部特征值:(3)对于每一个特征值句,求出(λ。
E-A)x=O的一个基础解系吨,酌,…,飞-,.其中r为矩阵也E-A的秩,则A 的属于λ。
的全部特征向量为k,111+k 2、+…+k n -,11n叶’其中k l 'k 2,…,k n -,是不全为霉的任意常数.4.特征值和特征向盘的性质(I)特征值的性质。
设λ是方阵A的特征值,X是A对应λ的特征向最,则矩阵kA,A m,A-1,A·分别有特征值为z U,.-t "',_!_)剑,贝Ux也是kA.A m.A-1.A•对应特征值以,r ,土,凶”λ’λ””’λ’λ的特征向盘.2 )设λ是方阵A 的一个特征值,x为对应的特征向盘,若伊(A )=a 0E +a 1A+…+a n A n,则ψλ)=a 0 +a 1λ+…+a n A "是ψ(A )的一个特征值,x为对应特征向盘.3)若n阶方阵A=(a ij )的全部特征值为λ,,也,…,.-!"< k 重特征值算作k个特征值)则z①码+A..z+…+礼=a ,,+a 22+…+a nn : 2021考研高等数学必备公式特征值与特征向量②AiA:i ...λ..=IAI.)阳”的秩R(A)=l,则A的n个特征值为Ai=a u +a22 +…+a,,,,• 4)设A=(a11A:i=也=…=礼=0(2)特征向盘的性质1)设码,A:i,...,λm是方阵A的互不相同的特征值,X;是对应于..,1;(i = 1,2,··,m)的特征向量,则向量组鸟,鸟,…,x m线性无关,即对应于互不相同特征值的特征向盘线性无关:但相同特征值对应的特征向量可能线性相关,也可能线性无关.2)设坞,X2为A的属于λ的两个不同的特征向盘,若k1X1+kx2 :#0,贝tlk1x1+k2鸟也2是A的属于λ的特征向盘.3)设X1,X2为A的不同特征值λ1,名对应的特征向盘,则X1+X2不是A的特征向ffl:.4)k重特征值最多对应k个线性无关的特征向盘.二、相似矩阵、矩阵的对角化1. 相似短阵的概念与性质(1)相似矩阵的概念设A,8为两个n阶方阵,如果存在一个可逆矩阵P,使得B=P-1AP成立,则称矩阵A与B相似,记为A~8.(2)相似矩阵的性质如果A~B,则有:1) A r~e r.2) A-I~e-1 <若A,8均可逆〉.3) A+kE~B+kE.的A11.~e.t<k为正整数〉.的|λE-Al=IλE-BI,从而A,8有相同的特征值-S) I A l=I B,从而A,8同时可逆或同时不可逆.7) 4au = 4轧CA、B有相同的迹〉8) R(A)=R(B).2.矩阵可相似对角化(1)相似对角化的概念若n阶矩阵A与对角矩阵A相似,则称A可以相似对角化,记为A~A,并称A是A 的相似标准形.(2) A与对角矩阵相似的充要条件A与对角矩阵相似的充要条件为n阶矩阵A有n个线性无关的特征向盘.1) A与对角矩阵相似的充分条件z若A有n个互不相等的特征值4,也,…,礼,则A必与对角矩阵相似.2) A与对角矩阵相似的充要条件:对A的特征值的重根数等于其对应的线性无关的特征向盘个数,即R (λE-A)=n-k .(4)相似对角化A为对角短阵A的解题步骤。
矩阵的特征值与特征向量摘摘 要要本文介绍了矩阵的特征值与特征向量的一些基本性质及定理,通过分析基本性质和定理来得出它们的基本求解方法,并延伸到一些特殊求解法。
接下来还介绍了一类特殊矩阵——实对称矩阵的特征值与特征向量,这让读者对矩阵的特征值与特征向量有更进一步的理解。
最后给出了矩阵的特征值与特征向量在实际中的应用例子。
这让我们明白研究它们不仅仅因为它们是学术知识,更是为了将它们应用到实际中去,解决实际问题,决实际问题,让我们的社会得到更快的发展。
让我们的社会得到更快的发展。
让我们的社会得到更快的发展。
通过阅读这篇文章,通过阅读这篇文章,通过阅读这篇文章,可以使读者在以后可以使读者在以后的学习中对矩阵的求解更容易掌握。
的学习中对矩阵的求解更容易掌握。
关键词: 矩阵、特征值、特征向量、正交、线性相关、线性无关、特征多项式矩阵、特征值、特征向量、正交、线性相关、线性无关、特征多项式Matrix eigenvalue and eigenvectorZhong Y ueyuan(Science and information science department 2009 level of mathematics and applied mathematics at Shaoyang University in Hunan.)AbstractThis paper introduces the value and some basic properties and theorems of eigenvectors of the matrix characteristic, through the analysis of the basic properties and theorems to derive basic solving method for them, and extendsto some special method. Then it introduces the characteristics of a class of special matrix -- the real symmetric matrix value and the characteristic vector,the reader of matrices have further understanding and feature vector. Finallygives the matrix eigenvalue and eigenvector of the application in the actualexample.Let us understand this study them not only because they are theacademic knowledge, but also to apply them to practice, to solve practicalproblems, to make our society develop quickly. By reading this article,readers can learn in the future to solve the matrix is easier to grasp.Key word : Matrix, eigenvalue, eigenvector, orthogonal, linear correlation, linear independence, characteristic polynomial录目 录中文摘要 (Ⅰ)Abstract (Ⅱ)引言 (1)1 矩阵的特征值与特征向量 (1)1.1 矩阵的特征值与特征向量的定义及基本理论 (1)1.2 求解矩阵的特征值与特征向量方法 (4)2 实对称矩阵的特征值与特征向量 (7)2.1 实对称矩阵的性质、定理及对角化 (7)2.2 求实对称矩阵的特征值与特征向量 (9)3 矩阵的特征值与特征向量的举例应用 (10)3.1 用特征值理论求解Fibonacci数列通项 (11)3.2 在研究经济发展与环境污染中的应用 (12)4 结论 (15)参考文献 (16)致谢 (17)引言矩阵是高等代数课程的一个基本概念,是研究高等代数的基本工具。
第五章矩阵的特征值与特征向量5.1矩阵的特征值与特征向量一、基本概念定义5.1设A 为n 阶矩阵,l 是一个数,如果存在n 维非零向量a ,使得A a la =,则称l 是A 的一个特征值,向量a 称为矩阵A 对应于特征值l 的特征向量.例如311,2,131A l a -æöæö===ç÷ç÷-èøèø可以验证31121213121A a -æöæöæöæö===ç÷ç÷ç÷ç÷-èøèøèøèø所以,2l =是A 的一个特征值,a 是A 对应于特征值2l =的特征向量。
特征值和特征向量的性质:如果a 是A 的对应于特征值l 的特征向量,则(0)k k a ¹也是A 的对应于l 的特征向量。
如果12,a a 都是A 的对应于特征值l 的特征向量,则1122(0)k k a a +¹也是A 的对应于l 的特征向量。
因为11221122()()A k k k k a a l a a +=+.由此可知A 的属于同一个特征值l 的有限个特征向量的非零线性组合仍然是矩阵A 的属于l 的特征向量。
注:矩阵A 的对应于一个特征值的特征向量有无限多个,但是A 的同一个特征向量不可能属于两个不同的特征值。
二、特征值和特征向量的计算由A 的特征值和特征向量的定义知A a la=或()0E A l a -=由于0a ¹,这说明a 是齐次线性方程组()0E A X l -=的非零解.根据齐次线性方程组有非零解的充要条件得到E A l -=这是一个关于l 的n 次方程,它的根与矩阵A 的特征值是一一对应的.所以我们有如下的定义.定义5.2设A 为n 阶方阵,含有未知量l 的矩阵E A l -称为A 的特征矩阵;特征矩阵的行列式E A l -是一个关于l 的n 次多项式,称为A 的特征多项式;0E A l -=称为A 的特征方程.特征方程的根也称为A 的特征根,其实就是A 的特征值。
§3 方阵的特征值与特征向量一、特征值与特征向量的定义设A 为n 阶方阵,p 是某个n 维非零列向量. 一般来说,n 维列向量Ap 未必与p 线性相关,也就是说向量Ap 未必正好是向量p 的倍数. 如果对于取定的n 阶方阵A ,存在某个n 维非零列向量p ,使得Ap 正好是p 的倍数,即存在某个数λ使得λAp =p ,这样的向量就是A 的相应的特征向量.下面正式给出方阵的特征值和特征向量的定义.定义3.1 设()ij n na ⨯=A 为n 阶实方阵. 若存在某个数λ和某个n 维非零列向量p 使λA p =p, 则称λ是A 的一个特征值,称p 是A 的属于特征值λ的一个特征向量.为了求出A 特征值和特征向量,我们把λAp =p 改写成()λ-=n E A p 0. 再把λ看成待定参数,那么p 就是齐次线性方程组()λ-=n E A x 0的任意一个非零解. 显然,它有非零解当且仅当它的系数行列式为零:0λ-=n E A .定义3.2 带参数λ的n 阶方阵λ-n E A 称为A 的特征方阵,它的行列式λ-n E A 称为A 的特征多项式. 称0λ-=n E A 为A 的特征方程. 根据行列式的定义可知有以下等式111212122212n n n n n na a a a a a a a a λλλλ-------=---n E A()()()1122n na aa λλλ=---+ , (1)在省略的各项中不含λ的方次高于2n -的项, 所以n 阶方阵A 的特征多项式一定是λ的n 次多项式. A 的特征方程的n 个根(复根,包括实根或虚根, r 重根按r 个计算)就是A 的n 个特征值. 在复数范围内, n 阶方阵一定有n 个特征值.综上所述, 对于给定的n 阶实方阵()i j a =A , 求它的特征值就是求它的特征多项式(1)的n 个根. 对于任意取定的一个特征值0λ,A 的属于这个特征值0λ的特征向量,就是对应的齐次线性方程组0()λ-=n E A x 0的所有的非零解. 注意: 虽然零向量也是0()λ-=n E A x 0的解,但0不是A 的特征向量!二、关于特征值和特征向量的若干结论定理3.1 n 阶方阵A 和它的转置矩阵T A 必有相同的特征值. 证 由矩阵转置的定义得到矩阵等式()TT λλ-=-n n E A E A . 再由行列式性质1知道()TTλλλ-=-=-n n n E A E A E A. 这说明A 和T A 必有相同的特征多项式,因而必有相同的特征值. 证毕 定理3.2 设12,,,n λλλ 的n 阶方阵()i j a =A 的全体特征值,则必有()111,nn ni i iii i i atr λλ======∑∑∏A A .这里,()tr A 为()i j a =A 中的n 个对角元之和,称为A 的迹(trace ).A 为A 的行列式. 证 在关于变量λ的恒等式()()()()112111nn nnn n i i i i λλλλλλλλλλλ-==⎛⎫-=---=-++- ⎪⎝⎭∑∏n E A中取0λ=即得 ()()111nnnii λ=-=-=-∏A A ,所以必有1nii λ==∏A .再据行列式定义可得()()()1122n n a a a λλλλ-=---+n E A {()!1n -个不含n λ和1n λ-的项} 11n nn i i i a λλ-=⎛⎫=-++ ⎪⎝⎭∑ {()!1n -个不含n λ和1n λ-的项}比较λ-n E A 的上述两个等式两边的1n λ-项的系数, 即得11n ni i ii i aλ===∑∑. 证毕定理3.3 设A 为n 阶方阵.()1110mm m m f x a x a xa x a --=++++ 为m 次多项式.()1110m m m m f a a a a --=++++n A A A A E为对应的A 的方阵多项式. 如果λ=Ap p ,则必有()()f fλ=A p p . 这说明()f λ必是()f A 的特征值. 特别, 当()f =A O 时,必有()0f λ=,即A 的特征值必是对应的m 次多项式()f x 的根.证 先用归纳法证明,对于任何自然数k , 都有k k λ=A p p . 当1k =时,显然有λ=Ap p . 假设k k λ=A p p 成立, 则必有()()11k k k k k λλλ++====A p A A p A p Ap p 。