七年级数学下册轴对称、平移与旋转中心对称中心对称与轴对称同步练习华东师大版
- 格式:docx
- 大小:158.23 KB
- 文档页数:8
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、下列汽车标志中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图标中,是轴对称图形的是()A. B. C. D.3、在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2 ﹣1D.2 +14、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是()A.40°B.35°C.30°D.15°5、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()A.平移变换B.轴对称变换C.旋转变换D.相似变换6、如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点,则点的坐标是()A.(2019,2)B.(2019, )C.(4038, )D.(4037, )7、如图,在矩形ABCD中,AB=8,BC=4.将矩形沿AC折叠,CD′与AB交于点F,则AF:BF的值为()A.2B.C.D.8、直角三角形纸片的两直角边长分别为6,8,现将△ABC如右图那样折叠,使点A与点B重合,则折痕BE的长是()A. B. C. D.9、下列说法中正确命题有()①一个角的两边分别垂直于另一个角的两边,则这两个角相等.②已知甲、乙两组数据的方差分别为:S2甲=0.12,S2乙=0.09 ,则甲的波动大.③等腰梯形既是中心对称图形,又是轴对称图形.④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为.A.0个B.1个C.2个D.3个10、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、下列图形是全等图形的是()A. B. C. D.12、下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.两个圆形纸片随意平放在水平桌面上构成轴对称图形C.若两图形关于直线对称,则对称轴是对应点所连线的垂直平分线D.等腰三角形一边上的高,中线及这边对角平分线重合13、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5B.1.5C.D.114、下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.415、下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形二、填空题(共10题,共计30分)16、如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转,使点B 的对应点D恰好落在上,点C的对应点为E,则图中阴影部分的面积为________.17、如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为________.18、如图,正方形ABCD中,AB=6,点E在边AB上,且BE=2AE.将△ADE沿ED 对折至△FDE,延长EF交边BC于点G,连结DG,BF.下列结论:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正确的结论是________(填写序号)19、如图,将△ABC向左平移3cm得到△DEF,AB、DF交于点G,如果△ABC的周长是12cm,那么△ADG与△BGF的周长之和是________.20、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________ 种.21、在平面直角坐标系中点关于轴对称点的坐标为________.22、如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC,BD两次折叠后,得到如图2所示的扇形OAB,然后再沿OB的中垂线EF将扇形OAB剪成左右两部分,则∠OEF=________°;右边部分经过两次展开并压平后所得的图形的周长为________23、如图,长方形ABCD中,AB=8,BC=12,点E是边BC上一点,BE=5,点F是射线BA上一动点,连接EF,将△BEF沿着EF折叠,使B点的对应点P落在长方形一边的垂直平分线上,连接BP,则BP的长是________.24、如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有________个.25、如图,在中,已知,,现将沿所在的直线向右平移4cm得到,与相交于点,若,则阴影部分的面积为________ .三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,在四边形中,、是对角线,已知是等边三角形,,,,求边的长.28、如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.29、在台阶侧面示意图中,台阶高1米,水平宽度2.5米,为迎接贵宾,要在台阶上铺宽度2米的地毯,项目负责人经过考虑准备在市场上购买每平方米200元地毯,他要准备多少现金?30、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、C6、D7、B8、A9、C10、A11、C12、D13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
华东师大版七年级数学下册《第十章轴对称、平移与旋转》单元检测卷-带答案(考试时间:120分钟;全卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共12个小题,每小题4分,共48分1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字中是轴对称图形的是()2.下列图形中,属于中心对称图形的是()3.如图,已知△ABC与△A′B′C′关于直线l对称,∠B=110°,∠A′=25°,则∠C的度数为()A.25° B.45° C.70° D.110°4.如图,将△ABC绕点C按照顺时针方向旋转35°得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A的度数为()A.45° B.50° C.55° D.60°5.已知△ABC≌△DEF,△DEF的周长为13,AB+BC=7,则AC的长为()A.3 B.4 C.6 D.206.下列说法中正确的是()A.平移不改变图形的形状和大小,旋转则改变图形的形状和大小B.图形可以向某方向平移一定的距离,也可以向某方向旋转一定距离C.平移和旋转的共同点是改变图形的位置D.在平移和旋转图形中,对应角相等,对应线段相等且平行7.如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论中一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD 8.如图是4×4的网格图,将图中标有①,②,③,④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.① B.② C.③ D.④9.如图,以正六边形ABCDEF的顶点D为旋转中心,按顺时针方向旋转,使得新正六边形A′B′C′D′E′F′的顶点落在直线CD上,则正六边形ABCDEF至少旋转()A.30° B.45° C.60° D.90°10.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为()A.90° B.135° C.150° D.180°11.如图,某园林内,在一块长33 m,宽21 m的长方形土地上,有两条斜交叉的小路,其余地方种植花卉进行绿化.已知小路的出路口均为1.5 m,则绿化地的面积为()A.693 B.614.25 C.78.75 D.58912.如图,△ABC≌△AEF,点F在BC上,下列结论:①AC=AF;②∠FAB=∠EAB;③∠FAC=∠BAE;④若∠C=50°,∠FAC=80°,则∠BFE=80°.其中错误的有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6个小题,每小题4分,共24分13.如图,如果△ABC和△A′B′C′关于点O中心对称,那么AA′必过点,且被这个点14.如图是一个轴对称图形,AD所在的直线是对称轴,则线段BO,CF的对称线段分别是;△ACE的对称三角形是15.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别是S1,S2,则S1 S2 (选填“>”“<”或“=”)16.如图,在正方形ABCD中,E为边CD上的一点,连接BE,∠BEC=60°,将△BEC绕点C按顺时针方向旋转90°得到△DFC,连接EF,则∠EFD的度数为17.用等腰直角三角尺画∠AOB=45°,并将三角尺沿OB方向平移到如图所示的虚线处,然后将其绕点M按逆时针方向旋转22°,则三角尺的斜边与边OA的夹角α为18.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持PP′=QQ′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移;②旋转;③轴对称;④中心对称,其中一定是“同步变换”的有 (选填序号)三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19.(10分)如图,△ABC和△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若∠BAC=108°,∠BAE=30°,求∠EAF的度数20.(10分)在如图的方格纸中,每个小正方形的边长都为1,△ABC与△A1B1C1构成的图形是中心对称图形(1)画出此中心对称图形的对称中心;(2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)以点C2为旋转中心将△A2B2C2顺时针方向旋转90°得到△A3B3C2,画出△A3B3C221.(10分)已知△ABC≌△EFG,AB=EF,BC=FG,∠A=58°,∠F-∠G=32°.求∠B与∠C的度数22.(10分)如图,△AOC逆时针旋转到△BOD,其中∠AOC=120°,点A,O,D 在同一直线上.(1)旋转中心是哪一点?(2)旋转了多少度?(3)指出对应线段、对应角及对应点23.(12分)将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6 cm,BC=8 cm,试求△ACD的周长;(2)如果∠CAD∶∠BAD=1∶2,求∠B的度数24.(12分)如图,已知△ABC≌△AEF,∠BAE=25°,∠F=57°(1)请证明∠BAE=∠CAF;(2)△ABC可以经过图形的变换得到△AEF.请描述这个变换;(3)求∠AMB的度数25.(14分)如图,已知直线l1∥l2,点A,B在直线l1上,点C,D在直线l2上,点C在点D的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE,DE交于点E,且点E在l1与l2之间(1)写出∠EDC的度数:________;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,使点B在点A的右侧,其他条件不变,请画出图形并直接写出∠BED的度数(用含n的代数式表示)参考答案1.( C )2.( B )3.( B )4.( C )5.( C )6.( C )7.( A )8.( C )9.( C )10.( B )11.( B )12.( A )13.O,平分14.CO,BE;△ABF15.S1=S216.15° 17.22° 18.①19、解:∵∠BAC =108°,∠BAE =30° ∴∠CAE =108°-30°=78° 再根据对称性,得∠EAF =∠CAF∴∠EAF =12∠CAE =39°20解:(1)对称中心点O 如图所示 (2)△A 2B 2C 2如图所示 (3)△A 3B 3C 2如图所示21、解:∵△ABC ≌△EFG ,AB =EF ,BC =FG ∴∠A =∠E ,∠B =∠F ,∠C =∠G∵∠A =58°,∴∠B +∠C =180°-∠A =180°-58°=122° ∵∠F -∠G =32°,即∠B -∠C =32°,∴∠B =77°,∠C =45° 22、解:(1)旋转中心为点O(2)∵∠BOD =∠AOC ,∠AOC =120°,点A ,O ,D 在同一直线上 ∴∠AOB =180°-120°=60°∵线段OA的对应线段为OB∴旋转角为∠AOB=60°.即旋转了60°(3)对应角:∠A对应∠OBD; ∠C对应∠D; ∠AOC对应∠ BOD;对应线段:OA对应OB;OC对应OD;CA对应DB;对应点:A对应 B; C对应D23、解:(1)由折叠的性质可得BD=AD,∠B=∠BAD∵△ACD的周长为AC+AD+CD∴△ACD的周长为AC+BD+CD=AC+BC=6+8=14(cm)(2)设∠CAD=x°,则∠BAD=2x°∵∠B=∠BAD,∴∠B=2x°∵∠B+∠DAB+∠CAD=90°,∴2x°+2x°+x°=90°,∴x=18 ∴∠B=36°24、(1)证明:∵△ABC≌△AEF∴∠BAC=∠EAF∴∠BAC-∠PAF=∠EAF-∠PAF∴∠BAE=∠CAF(2)解:由题意知△ABC绕点A顺时针旋转25°可以得到△AEF(3)解:∵△ABC≌△AEF,∠F=57°,∠BAE=25°∴∠C=∠F=57°,∠CAF=∠BAE=25°∴∠AMB=∠C+∠CAF=57°+25°=82°25第 11 页 共 11 页解:(1)∵DE 平分∠ADC ,∠ADC =80°,∴∠EDC =12∠ADC =40°(2)如题图,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ∴∠ABE =∠BEF ,∠CDE =∠DEF∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°∴∠BED =∠BEF +∠DEF =12n °+40°(3)如答图①,点A 在点B 的左边时∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°,∵AB ∥CD ,∴AB ∥CD ∥EF∴∠BEF =180°-∠ABE =180°-12n °,∠CDE =∠DEF =40°∴∠BED =∠BEF +∠DEF =180°-12n °+40°=220°-12n °;如答图②,∠BED =12n °+140°综上所述,当点B 在点A 右侧时,∠BED 的度数为12n °+140°或220°-12n °。
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、下列图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2、如图,直线是矩形的对称轴,点在边上,将沿折叠,点恰好落在线段与的交点处,,则线段的长是()A.8B.C.D.103、如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A. B. C. D.4、如图,在菱形ABCD中,∠A=60°,4D=4,点F是AB的中点,过点F作FE ⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E’F',设点P、P’分别是EF、E'F'的中点,当点A’与点B重合时,四边形PP’CD的面积为()A.7B.6C.8D.8 -45、如图,直线y=﹣2x+2与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线y=﹣x+3于点Q,△OPQ绕点O顺时针旋转45°,边PQ扫过区域(阴影部份)面积的最大值是()A. πB. πC. πD. π6、在图形的旋转中,下列说法错误的是()A.旋转前和旋转后的图形全等B.图形上的每一个点到旋转中心的距离都相等C.图形上的每一个点旋转的角度都相同D.图形上可能存在不动的点7、将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A. cmB. cmC. cmD.2cm8、如图:O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△OCDB.△OABC.△OAFD.以上都不对9、下列四个图案是小明家在瓷砖厂选购的四种地砖图案,其中既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是()A. B. C. D.10、如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种11、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?()A.4B.8C.9D.712、下列图标中属于轴对称图形的是()A. B. C. D.13、下列图形中,是轴对称图形的个数为()A.1个B.2个C.3个D.4个14、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ACB中,∠BAC=50°,AC=4,AB=6.现将△ACB绕点A逆时针旋转50°得到△AC1B1则阴影部分的面积为________.17、如图,扇形纸片AOB中,已知∠AOB=90º,OA=6,取OA的中点C,过点C作DC⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD、DF、FA依次剪下,则剩下的纸片(阴影部分)面积是________.18、如图,将一矩形OABC放在平面直角坐标系中,O为原点,点B、C分别在x 轴、y轴上,点A(4,3),点D为线段OC上一动点,将△BOD沿BD翻折,点O落在点E处,连接CE,则CE的最小值为________.19、如图,两个直角三角形重叠在一起,将其中一个三角形沿着BC边平移到△DEF的位置,∠B=90°,AB=10,DH=2,平移距离为3,则阴影部分的面积为________20、如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E 处,则sin∠ADF的值为________21、在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是________ .22、如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC .若AB =5cm , AC=6cm , BC=7cm ,则分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′,再连结A′C、A′B ,即可得△A′BC .23、将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=51°,∠2=20°,∠3的度数________.24、如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是________.25、将矩形ABCD折叠,使得对角线的两个端点A、C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为________.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABC成中心对称的三角形.28、(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:(3)计算△ABC的面积.29、张明的父亲打算在院子里种上蔬菜.已知院子是东西长为40m,南北宽为30m的长方形,为了行走方便,要修筑同样宽的三条道路(如图),东西方向两条,南北方向一条.南北方道路垂直于东西道路,余下的部分分别种上蔬菜.若每条道路的宽为1m,求种蔬菜的土地的总面积.30、如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、A5、A6、B7、B8、C9、C10、C11、D12、C13、D14、B15、A二、填空题(共10题,共计30分)16、17、19、20、21、23、25、三、解答题(共5题,共计25分)26、27、28、29、。
10.1 1.生活中的轴对称一、选择题1.2018·重庆B卷下列图形中,是轴对称图形的是 ( )图12.下列手机屏幕解锁图案中不是轴对称图形的是( )图23.如图3,一种滑翔伞的形状是左右对称的四边形ABCD,∠BAD=150°,∠D=∠B=40°,则∠ACB的度数是( )A.130° B.65° C.60° D.70°图34.一张菱形(四条边都相等的四边形是菱形)纸片按图4①②依次对折,再按图③打出1个圆形小孔,则展开铺平后的图案是( )图4图5二、填空题5.请同学们写出两个具有轴对称性的汉字:________.6.在英文字母及0~9这10个数字中有不少轴对称图形,如“A”“O”,请再找出三个是轴对称图形的英文字母:______、 ______ 、 ______,三个是轴对称图形的数字:________、________、________.7.如图6,∠A=30°,∠C′=60°,若△ABC与△A′B′C′关于直线l对称,则∠B=________°.图68.如图7,正方形ABCD的边长为4 cm,则图中阴影部分的面积为________cm2.三、解答题9.如图8,△ABC关于直线MN的对称图形为△A′B′C′,其中∠A=90°,AC=8 cm,A′C=12 cm.图7(1)求△A′B′C′的周长;(2)连结CC′,求△A′CC′的面积.图810.如图9,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD=________°;(2)求∠CAE的度数.图91.[解析]D 根据轴对称图形的定义,沿某条直线将图形折叠,直线两旁的部分能够完全重合的图形才是轴对称图形,故只有选项D满足要求,故选D.2.[解析]A 根据轴对称图形的概念判断.3.[答案]B4.[解析]C 经过两次对折,展开后得到的图案是轴对称图形,注意圆孔的位置.5.[答案]甲、由、中、田、日等,答案不唯一,写出两个即可6.[答案] H I X 8 3 0(答案不唯一)7.[答案] 90[解析]根据轴对称的性质,得∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=60°,由三角形内角和为180°,得∠B=90°.8.[答案] 89.解:(1)∵△ABC关于直线MN的对称图形为△A′B′C′,AC=8 cm,A′C=12 cm,∴AB=A′B′,BC=B′C′,AC=A′C′,∴△A′B′C′的周长为A′C′+B′C′+A′B′=AC+BC+A′B′=AC+A′C=8+12=20(cm).(2)由(1)得A′C′=AC=8 cm.又∵∠A′=∠A=90°,∴△A ′CC ′的面积为12A ′C ·A ′C ′=12×12×8=48(cm 2).10.解:(1)40(2)根据题意,△ABD 与△AED 关于直线AD 对称,则∠AED =∠B =50°, 由三角形外角的性质,得∠AED =∠C +∠CAE , 所以∠CAE =50°-30°=20°.。
七年级数学下册第10章轴对称、平移与旋转同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明将图案绕某点连续旋转若干次,每次旋转相同角度α,设计出一个外轮廓为正六边形的图案(如图),则α可以为()A.30°B.60°C.90°D.120°2、下列四个图形中,是中心对称图形的是()A.B.C .D .3、如图的4×4的正方形网格中,有A 、B 两点,在直线a 上求一点P ,使PA +PB 最短,则点P 应选在( )A .C 点B .D 点C .E 点D .F 点4、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中可以画出与△ABC 成轴对称的格点三角形的个数为( )A .2个B .3个C .4个D .5个5、如图,三角形ABC 中,90ACB ∠=︒,40ABC ∠=︒.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CBA '∠的度数是( )A .80︒B .50︒C .40︒D .20︒6、如图图案中,不是中心对称图形的是()A.∽B.C.>D.=7、甲骨文是中国的一种古代文字,是汉字的早期形式,有时候也被认为是汉字的书体之一,也是现存中国王朝时期最古老的一种成熟文字。
下图为甲骨文对照表中的部分文字,若把它们抽象为几何图形,其中最接近轴对称图形的甲骨文对应的汉字是()A.时B.康C.黄D.奚8、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.56°9、下列图形中,不一定...是轴对称图形的是()A.直角三角形B.等腰三角形C.等边三角形D.正方形10、如图,下列图形中,轴对称图形的个数是()A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把一张长方形纸片ABCD 的一角沿AE 折叠,点D 的对应点'D 落在∠BAC 的内部,若∠CAE =2∠'BAD ,且∠'CAD =15°,则∠DAE 的度数为____________.2、如图,△ABC 中,∠ACB =90°,∠A =28°,若以点C 为旋转中心,将△ABC 逆时针旋转到△DEC 的位置,点B 在边DE 上,则旋转角的度数是_______.3、已知点A 的坐标为(),a b ,O 为坐标原点,连结OA ,将线段OA 绕点О顺时针旋转90°得到线段1OA ,则点1A 的坐标为______.4、如图所示的四角风车至少旋转__________°就可以与原图形重合.5、数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是_________三、解答题(5小题,每小题10分,共计50分)A B C都是格点.1、如图,方格图中每个小正方形的边长都是1,点,,A BC;(1)画出ABC关于直线BM对称的11AA的长度.(2)写出12、经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.3、已知,在如图所示的网格中建立平面直角坐标系后,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在第一象限内找一点P,使得P到AB、AC的距离相等,且PA=PB;②在x轴上找一点Q,使得△QAB的周长最小,则Q点的坐标(_____,_____).4、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).5、阅读下面材料:活动1利用折纸作角平分线①画图:在透明纸片上画出PQR ∠(如图1-①);②折纸:让PQR ∠的两边QP 与QR 重合,得到折痕QH (如图1-②);③获得结论:展开纸片,QH 就是PQR ∠的平分线(如图1-③).活动2利用折纸求角如图2,纸片上的长方形ABCD ,直线EF 与边AB ,CD 分别相交于点E ,F .将AEF ∠对折,点A 落在直线EF 上的点A '处,折痕EN 与AD 的交点为N ;将BEF ∠对折,点B 落在直线EF 上的点B '处,折痕EM 与BC 的交点为M .这时NEM ∠的度数可知,而且图中存在互余或者互补的角.解答问题:(1)求NEM ∠的度数;(2)①图2中,用数字所表示的角,哪些与A EN '∠互为余角?②写出A EN '∠的一个补角.解:(1)利用活动1可知,EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,所以12A EN '∠=∠ ,12B EM '∠=∠ .由题意可知,AEB ∠是平角.所以12NEM A EN B EM ''∠=∠+∠=(∠ +∠ )= °. (2)①图2中,用数字所表示的角,所有与A EN '∠互余的角是: ;②A EN '∠的一个补角是 .-参考答案-一、单选题1、B【解析】【分析】由题意依据每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度α,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度α 360660︒=÷=.故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.2、B【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意;故选:B.【点睛】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解析】【分析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.【详解】解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故选:A.【点睛】此题考查了最短路径问题,成轴对称图形的性质.解题的关键是作出其中一点关于直线a的对称点,对称点与另一点的连线和直线a的交点就是所要找的点.4、D【解析】【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.5、A【解析】【分析】根据旋转的性质,可得ABC A BC ''∠=∠ ,即可求解.【详解】解:根据题意得:∠ABC =∠A'BC'∵40ABC ∠=︒.∴=404080ABC A BC CBA ''+∠︒+'=︒=∠∠︒.故选:A【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转前后对应角相等,对应边相等是解题的关键.6、C【解析】【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A 、是中心对称图形,故A 选项不合题意;B 、是中心对称图形,故B 选项不合题意;C 、不是中心对称图形,故C 选项符合题意;D 、是中心对称图形,故D 选项不合题意;故选:C .【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.7、C【解析】【分析】根据图形的特点及轴对称图形的定义即可辨别求解.【详解】由图可得最接近轴对称图形的甲骨文对应的汉字是黄故选C.【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.8、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.9、A【解析】【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.10、B【解析】【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.二、填空题1、39︒【解析】【分析】由折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,再根据长方形的性质可知90DAE D AE BAD ''∠++∠=︒,结合题意整理即可求出BAD '∠的大小,从而即可求出DAE ∠的大小.【详解】根据折叠的性质可知DAE D AE CAE CAD ''∠=∠=∠+∠,由长方形的性质可知90DAB ∠=︒,即90DAE D AE BAD ''∠++∠=︒,∵2CAE BAD '∠=∠,'15CAD ∠=︒,∴215DAE D AE BAD ''∠=∠=∠+︒,∴22151590BAD BAD BAD '''+︒++∠︒+∠=∠︒,∴12BAD '∠=︒,∴2152121539DAE BAD '∠=∠+︒=⨯︒+︒=︒.故答案为:39︒【点睛】本题考查矩形的性质,折叠的性质.利用数形结合的思想是解答本题的关键.2、56°【解析】【分析】直接利用旋转的性质得出EC =BC ,进而利用三角形内角和定理得出∠E =∠ABC =62°,即可得出∠ECB 的度数,得出答案即可.【详解】解:∵以点C为旋转中心,将△ABC旋转到△DEC的位置,点B在边DE上,∴EC=BC,∵∠ACB=90°,∠A=28°,∴∠E=∠ABC=62°,∴∠EBC=62°,∴∠ECB=180°-62°-62°=56°,∴则旋转角的度数是56°.故答案为:56°.【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出∠E=∠ABC的度数是解题关键.3、(b,-a)【解析】【分析】设A在第一象限,画出图分析,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.【详解】解:设A在第一象限,将线段OA绕点O按顺时针方向旋转90°得OA1,如图所示.∵A(a,b),∴OB=a,AB=b,∴A1B1=AB=b,OB1=OB=a,因为A1在第四象限,所以A1(b,﹣a),A在其它象限结论也成立.故答案为:(b,﹣a),【点睛】本题考查了图形的旋转,设点A在某一象限是解题的关键.4、90【解析】【分析】如图所示,∠AOB即为所求,由题意得∠AOB=90°,由此即可得到答案.【详解】解:如图所示,∠AOB即为所求,由题意得,∠AOB=90°,∴四角风车至少旋转90°就可以与原图形重合,故答案为:90.【点睛】本题主要考查了图形的旋转,解题的关键在于能够熟练掌握旋转的意义.5、乙【解析】【分析】观察图形,中间相当于一个圆心角被平分为8份,用一周角度数除以8,得45°,故旋转45°的整数倍,即可与自身重合【详解】圆被平分成八部分,则360845︒÷=︒则旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故答案为:乙【点睛】本题考查了旋转对称性,求得每一份的角度是解题的关键.三、解答题1、 (1)见解析(2)10【解析】【分析】(1)找到,,A B C 关于直线BM 的对称点111,,A B C ,顺次连接111,,A B C ,则11A BC 为所求作的三角形;(2)根据格点的特点,即可求得1AA 的长度.(1)如图所示,找到,,A B C 关于直线BM 的对称点111,,A B C ,顺次连接111,,A B C ,则11A BC 为所求作的三角形;(2)1AA 的长度为10【点睛】本题考查了画轴对称图形,掌握轴对称的性质是解题的关键.2、见解析【解析】【详解】3、(1)见详解;(2)①见详解;②2,0.【解析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)①由题意作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②由题意作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求.根据直线AB'的解析式即可得出点Q的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)①如图所示,作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②如图所示,作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求,∵A(1,1),B'(4,-2),∴可设直线AB'为y=kx+b,则124k bk b=+⎧⎨-=+⎩,解得:12kb=-⎧⎨=⎩,∴y=-x+2,当y=0时,-x+2=0,此时点Q 的坐标为(2,0).故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短.4、(1)30;(2)1902FEG α∠=︒+;(3)1902FEG α∠=︒-【解析】【分析】(1)由折叠的性质,得到A EF AEF '∠=∠,D EG DEG '∠=∠,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出1(180)2AEF DEG α∠+∠=︒-,然后求出∠FEG 的度数即可;(3)由折叠的性质,先求出1(180)2AEF DEG α∠+∠=︒+,然后求出∠FEG 的度数即可.【详解】解:(1)将∠AEF 沿折痕EF 翻折,点A 落在点A '处;将∠DEG 沿折痕EG 翻折,点D 落在点D '处, ∴40A EF AEF '∠=∠=︒,35D EG DEG '∠=∠=︒,∴1804040353530A ED ''∠=︒-︒-︒-︒-︒=︒;(2)根据题意,则A EF AEF '∠=∠,D EG DEG '∠=∠,∵A ED α''∠=,∴2()180AEF DEG α∠+∠=︒-, ∴1(180)2AEF DEG α∠+∠=︒-,∴11180(180)9022FEG αα∠=︒-︒-=︒+;(3)根据题意,A EF AEF '∠=∠,D EG DEG '∠=∠, ∵A ED α''∠=,∴2()180AEF DEG α∠+∠=︒+, ∴1(180)2AEF DEG α∠+∠=︒+, ∴11180(180)9022FEG αα∠=︒-︒+=︒-;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到A EF AEF '∠=∠,D EG DEG '∠=∠.5、(1)AEA ',BEB ',AEA BEB '',,90;(2)①∠1、∠2;②∠CME 或∠NEB .【解析】【分析】()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒ 【详解】解:(1)∵折叠∴EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,∴∠NEA =∠NEA ′=12AEA '∠,∠BEM =∠B′EM=12BEB '∠, ∵AEB ∠是平角.∴∠NEM =∠NEA ′+∠B′EM==12AEA '∠+()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒,故答案为:AEA ',BEB ',AEA BEB '',,90;(2)①∵∠1=∠2,∠A′EN =∠3,∠NEM =90°,∴∠A′EN +∠1=∠NEM =90°,∴A EN '∠互为余角为∠1和∠2,故答案为:∠1、∠2;②∵∠A′EN =∠3,∠3+∠NEB =180°,∴∠A′EN 的补角为∠NEB .∵∠B =90°,∴∠2+∠EMB =90°,∴∠3=∠EMB ,∵∠CME +∠EMB =180°,∴∠3+∠CME =180°,∴∠A′EN 的补角为∠CME ,∴∠A′EN 的补角为∠CME 或∠NEB .故答案为∠CME 或∠NEB .【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.。
第10章轴对称、平移与旋转一、单选题1.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是()A. B. C. D.2.如图将一矩形纸片对折后再对折,然后沿图中的虚线剪下,得到①和②两部分,将①展开后得到的平面图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形3.如图,两个直角三角形重叠在一起,将沿AB方向平移得到,,,下列结论:① ;② ;③ :④ ;⑤阴影部分的面积为.其中正确的是()A. ①②③④B. ②③④⑤C. ①②③⑤D. ①②④⑤4.如图,在4×4的正方形网格中,△MNP绕某点旋转90°,得到△M1N1P1,则其旋转中心可以是()5.下列银行标志是中心对称图形的是()A. B. C. D.6.如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A. 11B. 10C. 9D. 87.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是( )A. BE=4B. ∠F=30°C. AB∥DED. DF=58.如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为()A. 3cmB. 5cmC. 8cmD. 13cm9.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合.()A. B. C. D.10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A. ①②B. ②③C. ③④D. ②③④11.如图,将(其中,),绕点按顺时针方向旋转到的位置,使得点,,在同一直线上,则旋转角的度数为( )A. B. C. D.12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为( )A. 3B. 4C. 5D. 613.图中的两个梯形成中心对称,点P的对称点是()A. 点AB. 点BC. 点CD. 点D14.如图,已知图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点15.下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形.A. 1个B. 2个C. 3个D. 4个二、填空题16.如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=________.17.如图,将周长为12的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为________18.如图,在正方形ABCD中,,点E在CD边上,且,将绕点A顺时针旋转90°,得到,连接,则线段的长为________.19.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对.20.如图,△DEF是由△ABC沿BC方向向右平移2cm后得到,若△ABC的周长为10cm,则四边形ABFD的周长等于________ cm。
10.4 中心对称知识点 1 中心对称图形1.2018·深圳观察下列图形,是中心对称图形的是( )图10-4-12.2018·日照在下列图案中,既是轴对称图形又是中心对称图形的是( )图10-4-23.有下列图形:①线段;②等边三角形;③角;④正方形;⑤直角三角形;⑥圆.其中是中心对称图形的是______________(填序号).知识点 2 两个图形成中心对称4.下列两个电子数字成中心对称的是( )图10-4-3图10-4-45.如图10-4-4,已知图形是中心对称图形,则对称中心是( )A.点CB.点DC.线段BC的中点D.线段FC的中点6.如图10-4-5,已知△ABC与△ADE是成中心对称的两个图形,点A是对称中心,点B的对称点为点________.图10-4-5知识点 3 成中心对称的图形的特征7.下列描述中心对称的特征的语句中正确的是( )A.成中心对称的两个图形中,连结对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连结对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分8.如图10-4-6所示,△ABC与△A′B′C′关于点O成中心对称.下列结论不成立的是( )图10-4-6A.点A与点A′是对应点 B.BO=B′OC.AB=A′B′ D.∠ACB=∠C′A′B′9.如图10-4-7,在△ABC中,O是AC的中点,△CDA与△ABC关于点O成中心对称,若AB=6,∠BAC=40°,则CD的长为________,∠ACD的度数为________.10-4-710-4-810.如图10-4-8,△ABC与△DEC关于点C成中心对称,则线段AB与DE的位置关系是________.知识点 4 中心对称作图11.如图10-4-9所示,画出与已知图形关于点O成中心对称的图形.(不可以用量角器和刻度尺)图10-4-912.如图10-4-10,画出与四边形ABCD关于点O成中心对称的图形.图10-4-10【能力提升】图10-4-1113.如图10-4-11,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2种 B.3种C.4种 D.5种14.如图10-4-12,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是________.10-4-12图10-4-1315.如图10-4-13所示,长方形ABCD的对角线AC和BD相交于点O,过点O的直线EF 分别交AD,BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为________.16.如图10-4-14,在△ABC中,D是AB边的中点,已知AC=4,BC=6.(1)画出△BCD绕点D旋转180°的图形;(2)根据图形说明线段CD长的取值范围.图10-4-1417.将两个大小相等的圆部分重合,其中重叠的部分(如图10-4-15中的阴影部分)我们称之为一个“花瓣”,由“花瓣”及圆组成的图形被称为花瓣图形,图10-4-16是一些由“花瓣”和圆组成的图形.图10-4-15图10-4-16(1)以上5个图形中是轴对称图形的有________,是中心对称图形的有________.(分别用图形的代号A,B,C,D,E填空)(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律:__________________________________.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是______________;②十二瓣图形是__________________;③十五瓣图形是______________;④二十六瓣图形是________________.教师详解详析1.D [解析] 将试卷倒过来看,和原图形完全相同的图形就是中心对称图形.A ,B ,C 三个选项中的图案都是轴对称图形,但不是中心对称图形,故A ,B ,C 选项错误;而D 选项中的图案是中心对称图形,故D 选项正确.2.C [解析] A 图案既不是轴对称图形又不是中心对称图形;B 图案只是轴对称图形;C 图案既是轴对称图形又是中心对称图形;D 图案只是中心对称图形,故选C.3.①④⑥4.A [解析] B ,C 和D 选项中的两个电子数字旋转180度后的图形不能和原图形完全重合,故它们不成中心对称,而A 选项中的两个电子数字旋转180度后的图形能和原图形完全重合.故选A.5.D 6.D7.D 8.D 9.6 40°10.AB ∥DE [解析] ∵△ABC 与△DEC 关于点C 成中心对称,∴∠A =∠D ,∴AB ∥DE . 11.解:如图所示.12.解:①连结CO ,并延长至点C ′,使C ′O =CO ,即得点C 关于点O 的对称点C ′; ②用同样的方法分别画出点A ,B ,D 关于点O 的对称点A ′,B ′和D ′; ③顺次连结点A ′,B ′,C ′,D ′.所画的四边形A ′B ′C ′D ′即为所求作的图形.13.C [解析] 如图所示,组成的图形既是轴对称图形,又是中心对称图形,这个格点正方形的作法共有4种.故选C.14.4 [解析] 依题意有△DOC 的面积=△AOB 的面积=6,CD =AB =3. 根据三角形的面积公式,则CD 边上的高是 6×2÷3=4.15.3 [解析] 根据中心对称的性质,得S △BOF =S △DOE . 又因为CD =AB =2,AD =BC =3,所以S 阴影=S △ADC =12CD ·AD =12×2×3=3.16.[解析] (1)根据中心对称的性质找出各顶点的对应点,然后顺次连结即可;(2)根据三角形的三边关系求解即可.解:(1)所画图形如图所示.(2)由(1)知:△AED与△BCD能完全重合,则AE=BC,ED=CD,∴AE-AC<2CD<AE+AC,即BC-AC<2CD<BC+AC,∴2<2CD<10,解得1<CD<5.17.解:(1)A,B,C,D,E A,C,E(2)若“花瓣”是偶数个,则花瓣图形既是中心对称图形也是轴对称图形;若“花瓣”是奇数个,则花瓣图形是轴对称图形.(3)①轴对称图形②轴对称图形也是中心对称图形③轴对称图形④轴对称图形也是中心对称图形。
华师大版七年级数学下册第10章达标检测题(考试时间:120分钟满分:120分)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列各组的两个图形属于全等图形的是()2.下列图形中,不是轴对称图形的是()A B C D3.下列图形中既是轴对称图形,又是中心对称图形的是()A B C D4.如图,在图(1)-(4)中是旋转对称的图形有()(1)(2)(3)(4)A.4个B.3个C.2个D.1个5.如图,将△ABC绕着点C按顺时针方向旋转20°,点B落在B′位置,点A 落在A′位置.若A′C⊥AB,则∠B′A′C的度数是()A.50°B.60°C.70°D.80°第5题图第6题图6.如图,已知△ABC和△A′B′C′关于直线MN对称,点P是直线MN上一点,连结PA,PA′,AA′,下列结论错误的是()A.∠B=∠B′ B.PA=PA′C.BC=AA′ D.MN是线段AA′的垂直平分线7.如图,在9×6的方格纸中,小树从位置A经过平移旋转后到达位置B,下列说法中正确的是()A.先向右平移6格,再绕点B顺时针旋转45°B.先向右平移6格,再绕点B逆时针旋转45°C.先向右平移6格,再绕点B顺时针旋转90°D.先向右平移6格,再绕点B逆时针旋转90°第7题图第8题图8.(随州中考)如图,在等边△ABC中,D是边AC上一点,连结BD,将△BCD 绕点B逆时针旋转60°,得到△BAE,连结ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.如图,下列各图是旋转对称图形的有;是中心对称图形的有.10.如图,已知△ACB≌△DCB,且AB=8 cm,DC=3 cm,则BC的取值范围是.第10题图第11题图11.如图所示,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为.12.(天津中考)在下列图形中,左、右两边的图形成轴对称的是;左、右两边的图形成中心对称的是;右边的图形是由左边的图形旋转一定角度得到的是.①②③④13.两块大小一样,含有30°角的三角板如图所示水平放置,将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了度.第13题图第14题图14.如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是.第15题图15.两个完全相同的直角梯形重叠在一起,将其中一个直角梯形按如图所示平移,则图中阴影部分的面积为 .16.把∠A 是直角的△ABC 绕A 点沿顺时针方向旋转85°,点B 转到点E 得△AEF ,则以下结论:①∠BAE =85°;②∠EAF =85°;③AC =AF ;④EF =BC ;⑤∠BAF =5°.其中正确的有 . (填序号)三、解答题(本大题共8小题,共72分) 17.(10分)画出下列各图形的所有对称轴.18.(6分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC 向上平移4个单位长度后得到的△A 1B 1C 1; (2)在网格中画出△ABC 绕点A 逆时针旋转90°后得到的△AB 2C 2; (3)在(1)中△ABC 向上平移过程中,求边AC 所扫过区域的面积.19.(8分)如图所示,四边形ABCD与四边形AGFE关于点A成中心对称.(1)若BG=10 cm,求AB的长;(2)若∠B=95°,∠E=150°,∠BAD=40°,求∠C的度数.20.(8分)在如图所示的长方形草坪上,要修筑两条同样宽的“之”字形柏油路,路宽为2 m,则剩余草坪的面积是多少平方米?21.(8分)如图所示,AB=12米,CA⊥AB于点A,DB⊥AB于点B,P点从B向A运动,每秒钟移动1米,Q点从B向D运动,每秒钟移动2米,P,Q两点同时出发,运动几秒后△CAP≌△PBQ?此时AC的长应为多少米?22.(10分)如图所示,在正方形ABCD中,E为BC的中点,将△ABE旋转后得到△CBF.(1)指出旋转中心及旋转角度;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?23.(10分)如图所示,已知l1,l2和△ABC,且l1⊥l2于点O,点A在l1上,点B,C在l2上.(1)画△A1B1C1,使△A1B1C1与△ABC关于直线l1对称;(2)画△A2B2C2,使△A2B2C2与△A1B1C1关于直线l2对称;(3)探索:△ABC与△A2B2C2具有什么样的关系?24.(12分)如图所示,在△ABC中,AD是BC边上的中线,(1)画出与△ACD关于D点成中心对称的三角形;(2)找出与AC相等的线段;(3)探索线段AB和AC的和与中线AD之间的关系,并说明理由;(4)若AB=5,AC=3,求线段AD的取值范围.参考答案第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列各组的两个图形属于全等图形的是(D)2.(淄博中考)下列图形中,不是轴对称图形的是(C)A B C D3.(凉山州中考)下列图形中既是轴对称图形,又是中心对称图形的是(D)A B C D4.如图,在图(1)-(4)中是旋转对称的图形有(A)(1)(2)(3)(4)A.4个B.3个C.2个D.1个5.如图,将△ABC绕着点C按顺时针方向旋转20°,点B落在B′位置,点A 落在A′位置.若A′C⊥AB,则∠B′A′C的度数是(C)A.50°B.60°C.70°D.80°第5题图第6题图6.如图,已知△ABC和△A′B′C′关于直线MN对称,点P是直线MN上一点,连结PA,PA′,AA′,下列结论错误的是(C)A.∠B=∠B′ B.PA=PA′C.BC=AA′ D.MN是线段AA′的垂直平分线7.如图,在9×6的方格纸中,小树从位置A经过平移旋转后到达位置B,下列说法中正确的是(B)A.先向右平移6格,再绕点B顺时针旋转45°B.先向右平移6格,再绕点B逆时针旋转45°C.先向右平移6格,再绕点B顺时针旋转90°D.先向右平移6格,再绕点B逆时针旋转90°第7题图第8题图8.(随州中考)如图,在等边△ABC中,D是边AC上一点,连结BD,将△BCD 绕点B逆时针旋转60°,得到△BAE,连结ED,若BC=5,BD=4.则下列结论错误的是(B)A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.如图,下列各图是旋转对称图形的有(1)(2)(3)(4)(5)(7);是中心对称图形的有(1)(3)(4)(5)(7).10.如图,已知△ACB≌△DCB,且AB=8 cm,DC=3 cm,则BC的取值范围是5 cm<BC<11 cm.第10题图第11题图11.如图所示,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为8.12.(天津中考)在下列图形中,左、右两边的图形成轴对称的是④;左、右两边的图形成中心对称的是②;右边的图形是由左边的图形旋转一定角度得到的是①②.①②③④13.两块大小一样,含有30°角的三角板如图所示水平放置,将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了30度.第13题图第14题图14.如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是平行且相等.第15题图15.两个完全相同的直角梯形重叠在一起,将其中一个直角梯形按如图所示平移,则图中阴影部分的面积为140 cm2.16.把∠A是直角的△ABC绕A点沿顺时针方向旋转85°,点B转到点E得△AEF,则以下结论:①∠BAE=85°;②∠EAF=85°;③AC=AF;④EF=BC;⑤∠BAF =5°.其中正确的有①③④.(填序号)三、解答题(本大题共8小题,共72分)17.略18.略19.(8分)如图所示,四边形ABCD与四边形AGFE关于点A成中心对称.(1)若BG=10 cm,求AB的长;(2)若∠B=95°,∠E=150°,∠BAD=40°,求∠C的度数.解:(1)AB=5 cm;(2)∠C=75°.20.(8分)在如图所示的长方形草坪上,要修筑两条同样宽的“之”字形柏油路,路宽为2 m,则剩余草坪的面积是多少平方米?解:经过平移,可知剩余草坪的面积为(32-2)×(20-2)=540 m2.答:剩余草坪的面积为540 m2.21.(8分)如图所示,AB=12米,CA⊥AB于点A,DB⊥AB于点B,P点从B向A运动,每秒钟移动1米,Q点从B向D运动,每秒钟移动2米,P,Q两点同时出发,运动几秒后△CAP≌△PBQ?此时AC的长应为多少米?解:设P,Q两点同时出发,运动x秒后△CAP≌△PBQ,则PB=x米,AP=(12-x)米,BQ=2x米,BQ=AP,所以2x=12-x,解得x=4,所以AC=PB=4米所以当P,Q两点同时出发,运动4秒后△CAP≌△PBQ,此时AC的长为4米.22.(10分)如图所示,在正方形ABCD中,E为BC的中点,将△ABE旋转后得到△CBF.(1)指出旋转中心及旋转角度;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?解:(1)旋转中心为B点,旋转角度为90°;(2)AE⊥CF;(3)∵△ABE≌△CBF,∴S四边形AECD=18-4=14 cm2.23.(10分)如图所示,已知l1,l2和△ABC,且l1⊥l2于点O,点A在l1上,点B,C在l2上.(1)画△A1B1C1,使△A1B1C1与△ABC关于直线l1对称;(2)画△A2B2C2,使△A2B2C2与△A1B1C1关于直线l2对称;(3)探索:△ABC与△A2B2C2具有什么样的关系?解:(1)(2)如图;(3)△ABC与△A2B2C2关于点O成中心对称.24.(12分)如图所示,在△ABC中,AD是BC边上的中线,(1)画出与△ACD关于D点成中心对称的三角形;(2)找出与AC相等的线段;(3)探索线段AB和AC的和与中线AD之间的关系,并说明理由;(4)若AB=5,AC=3,求线段AD的取值范围.解:(1)如图;(2)A′B=AC;(3)AB+AC>2AD,理由如下:△ACD与△A′BD关于点D成中心对称,∴A′B=AC,A′D=AD,在△ABA′中,AB+A′B>AA′,即AB+AC>2AD;(4)同(3)在△ABA′中,AB-A′B<AA′<AB+A′B,即AB-AC<AA′<AB+AC,即2<2AD<8,因此1<AD<4.。
第10章轴对称、平移与旋转一、选择题(本大题共10个小题,每题3分,共30分)1.以下标志中,轴对称图形的个数是()A.0B.1C.2D.32.将如图所示的图案以圆心为中心旋转180°后得到的图案是()A B C D3.在下列各组图形中,是全等图形的是()A B C D4.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A B C D5.某学校足球场的平面示意图如图所示,它是轴对称图形,其对称轴的条数为()A.1B.2C.3D.4第5题图第6题图6.如图,要使此图形旋转后与自身重合,至少应将它绕中心旋转的度数为()A.30°B.60°C.120°D.180°7.如图,△ABC≌△CDA,那么下列结论错误的是()A.∠1=∠2B.AC=CAC.∠B=∠DD.AC=BC第7题图第8题图8.如图,正方形硬纸片ABCD的边长是4,点E,F分别是AB,BC的中点.若沿左图中的虚线剪开,拼成如右图所示的一座“小别墅”,则右图中阴影部分的面积是() A.2 B.4 C.8 D.109.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中阴影部分),余下部分绿化,小路的宽为2 m,则两条小路的总面积是() A.108 m2 B.104 m2 C.100 m2 D.98 m2第9题图第10题图10.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为()A.135°B.130°C.125°D.120°二、填空题(本大题共5个小题,每题3分,共15分)11.下列四种图案中,是中心对称图形的有个.12.如图,△ABC沿直线AB平移可以得到△DEF.如果AB=8,BD=5,那么BE=.第12题图第13题图13.如图,四边形ABCD为正方形,则△ADF绕点A顺时针旋转°可以得到△ABE;若AF=4 cm,AB=7 cm,则DE=cm.14.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于.第14题图第15题图15.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有个.三、解答题(本大题共8个小题,共75分)16.(8分)如图是两张10×10的方格纸,方格纸中的每个小正方形的边长均为1.请在方格纸中分别画出符合要求的格点四边形(格点四边形是指各顶点均在小正方形的顶点上的四边形).(1)请在图1中画出一个面积为24的格点四边形,且它是中心对称图形不是轴对称图形;(2)请在图2中画出一个周长为24的格点四边形,且它既是中心对称图形也是轴对称图形.17.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点三角形ABC,设网格中小正方形的边长均为1个单位.(1)在网格中画出△ABC向下平移4个单位后得到的△A1B1C1;(2)在网格中画出由(1)得到的△A1B1C1绕着点A1逆时针旋转90°后得到的△A1B2C2.18.(8分)如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN上.若ED=4 cm,FC=1cm,∠BAC=76°,∠EAC=58°.(1)求BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?并说明理由.19.(9分)世界上因为有了圆的图案,万物才显得富有生机,如图所示的几个图形,是来自现实生活中的圆与其他图形结合在一起构成的轴对称图形,请你在后面的两个图中,分别画出与前面不重复的轴对称图形.20.(10分)如图,在直角三角形ABC中,∠ACB=90°,∠A=37°,将△ABC沿AB方向平移得到△DEF.(1)试求出∠E的度数;(2)若AE=9 cm,DB=2 cm,求出CF的长度.21.(10分)如图,△ABC≌△ADE,∠BAD=52°.(1)求∠EAC的度数;(2)△ABC怎样运动才能和△ADE重合?22.(10分)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.若DE=7,BC=4,∠D=35°,∠C=60°.(1)求线段AE的长;(2)求∠DFA的度数.23.(12分)取一副直角三角尺按图1拼接,其中∠ACD=30°,∠ACB=45°.(1)如图2,三角尺ACD固定,将三角尺ABC绕点A按顺时针方向旋转一定的角度得到△ABC'.当∠CAC'=15°时,请你判断AB与CD的位置关系,并说明理由.(2)如图3,三角尺ACD固定,将三角尺ABC绕点A按逆时针方向旋转一定的角度得到△ABC',猜想当∠CAC'为多少度时,能使CD∥BC',并说明理由.答案题号 1 2 3 4 5 6 7 8 9 10答案 D D A C B B D B C D11.212.313.90314.60°15.816.答案不唯一.(1)如图1所示.(2)如图2所示.17.(1)(2)如图所示.18.(1)∵△ABC与△ADE关于直线MN对称,∴BC=ED=4 cm,∴BF=BC-FC=3 cm.(2)∵△ABC与△ADE关于直线MN对称,∴∠EAD=∠BAC=76°,∴∠CAD=∠EAD-∠EAC=76°-58°=18°.(3)直线MN垂直平分线段EC.理由如下:∵E,C关于直线MN对称,∴直线MN垂直平分线段EC.19.此题为开放性试题,只要是轴对称图形即可,以下图形供参考.(画出两种即可)20.(1)∵在直角三角形ABC中,∠ACB=90°,∠A=37°,∴∠CBA=90°-37°=53°,由平移得,∠E=∠CBA=53°.(2)由平移得,AD=BE=CF,∵AE=9 cm,DB=2 cm,×(9-2)=3.5(cm),∴AD=BE=12∴CF=3.5 cm.21.(1)由△ABC≌△ADE,得∠BAC=∠DAE,所以∠BAC-∠BAE=∠DAE-∠BAE,所以∠EAC=∠BAD=52°.(2)△ABC绕点A顺时针旋转52°即可与△ADE重合.(答案不唯一) 22.(1)因为△ABC≌△DEB,所以AB=DE,BE=BC,所以AE=AB-BE=DE-BC=7-4=3.(2)因为△ABC≌△DEB,所以∠A=∠D,∠C=∠ABD,由三角形外角的性质,得∠AED=∠D+∠ABD=∠D+∠C=35°+60°=95°,所以∠DFA=∠A+∠AED=35°+95°=130°.23.(1)AB∥CD.理由如下:∵∠BAC=∠BAC'-∠CAC'=45°-15°=30°,∴∠BAC=∠C=30°,∴AB∥CD.(2)当∠CAC'=75°时,能使CD∥BC'.理由如下:延长BA交CD于点E.当∠CAC'=75°时,∵∠BAC'=45°,∴∠BAC=75°+45°=120°.又∵∠BAC=∠AEC+∠ACD,∴∠AEC=120°-30°=90°,又∵∠B=90°,∴∠B+∠AEC=90°+90°=180°,∴CD∥BC'.。
七年级数学下册第10章轴对称、平移与旋转同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个B.3个C.4个D.5个2、如图图案中,不是中心对称图形的是()A.∽B.C.>D.=3、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()A.50°B.65°C.75°D.80°4、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()A.平移B.翻折C.旋转D.以上三种都不对5、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是()A.50°B.60°C.40°D.30°6、第24届冬季奥林匹克运动会将于2022年2月在北京和张家界举行,下列四个图案分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.7、下列图形中,不一定...是轴对称图形的是()A.直角三角形B.等腰三角形C.等边三角形D.正方形8、下列车标是中心对称图形的是()A .B .C .D .9、下列汽车标志中既是轴对称图形又是中心对称图形的是( )A .B .C .D .10、如图,在Rt ACB ∆中,90ACB ︒∠=,25A ︒∠=,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使B 点落在AC 边上的E 处,则ADE ∠等于( )A .25︒B .30︒C .35︒D .40︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC 中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F .并连接AE 、AF .根据图中标示的角度,则∠EAF 的度数为 ___.2、现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,如:中、甲;请另写一个是轴对称图形的汉字__________.3、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.4、在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是 ______(填序号).5、如图,∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,点O 和ABC 的三个顶点正好在正方形网格的格点上,按要求完成下列问题:(1)画出ABC 绕点O 顺时针旋转90︒后的111A B C △;(2)画出ABC 绕点O 旋转180︒后的222A B C △.2、如图 1,O为直线DE上一点,过点O在直线DE上方作射线OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒5°的速度逆时针旋转一周,设旋转时间为t秒.(1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;(2)当三角板旋转至边AB与射线OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出t的取值,若不存在,请说明理由.3、如图所示,(1)作出ABC关于y轴对称的图形A 1B1C1;(2)在x轴上确定一点P,使得PA+PC最小.4、如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.5、已知ABC ∆是等腰三角形,AB AC =,将ABC ∆绕点B 逆时针旋转得到A B C '''∆,点A 、点C 的对应点分别是点A '、点C '.感知:(1)如图①,当BC '落在AB 边上时,A AB ∠'与C CB ∠'之间的数量关系是___________(不需要证明);探究:(2)如图②,当BC '不落在AB 边上时,A AB ∠'与C CB ∠'是否相等?如果相等,请证明;如果不相等,请说明理由;应用:(3)如图③,若90BAC ∠=︒,AA '、CC '交于点E ,则A EC '∠=__________度.-参考答案-一、单选题1、A【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2、C【解析】【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.3、B【解析】【分析】根据题意得:BG ∥AF ,可得∠FAE =∠BED =50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG ∥AF ,∴∠FAE =∠BED =50°,∵AG 为折痕, ∴()1180652FAE α=︒-∠=︒ . 故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.4、C【解析】【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C .【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.5、A【解析】【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.6、D【解析】【分析】根据轴对称图形定义进行分析即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、A【解析】【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.8、B【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.【点睛】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【解析】【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CED的度数,再由三角形外角的性质即可得出结论.【详解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故选:D.【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出∠ADE=∠CED-∠A是解题关键.二、填空题1、132°【解析】【分析】根据三角形内角和定理求出∠BAC的度数,连接AD,由轴对称得∠BAE=∠BAD,∠CAF=∠CAD,由此得到答案.【详解】解:∵∠B=62°,∠C=52°,∴∠BAC=180°-∠B-∠C=66°,连接AD,由轴对称得∠BAE=∠BAD,∠CAF=∠CAD,∴∠EAF=2∠BAD+2∠CAD=2∠BAC=132°,故答案为:132°.【点睛】此题考查轴对称的性质,三角形内角和定理,熟记轴对称的性质是解题的关键.2、王【解析】【分析】直接利用轴对称图形的定义得出答案.【详解】解:“王”是轴对称图形,故答案为:王(答案为唯一) .【点睛】本题考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3、60【解析】【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.4、②⑤⑥【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:①平行四边形是中心对称图形,不是轴对称图形,不符合题意;②正方形既是轴对称图形,也是中心对称图形,符合题意;③等边三角形既是轴对称图形,不是中心对称图形,不符合题意;④等腰梯形是轴对称图形,不是中心对称图形,不符合题意.⑤圆既是轴对称图形,也是中心对称图形,符合题意.⑥正八边形是轴对称图形,也是中心对称图形,符合题意.故答案为:② ⑤ ⑥.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5、5cm【解析】【分析】根据轴对称的性质得到PM =MP 1,PN =NP 2,然后等量代换可得△PMN 的周长为P 1P 2.【详解】解:∵∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于M ,交OB 于N , ∴OA 、OB 分别是P 与P 1和P 与P 2的对称轴∴PM =MP 1,PN =NP 2;∴P 1M +MN +NP 2=PM +MN +PN =P 1P 2=5cm ,∴△PMN 的周长为5cm .故填5cm .【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.三、解答题1、 (1)见解析(2)见解析【解析】【分析】把各点连接至点O ,再把每根连线旋转要求的度数即可得到旋转后的各个点,再连接这些点即可得到旋转后的图像.(1)把各点连接至点O ,再把每根连线顺时针旋转90°即可得到旋转后的各个点,再连接这些点即可得到旋转后的111A B C △(2)把各点连接至点O ,再把每根连线顺时针旋转180°即可得到旋转后的各个点,再连接这些点即可得到旋转后的222A B C △,由于顺时针旋转180°和逆时针旋转180°效果相同,故该题只存在一种可能:【点睛】本题考查图形的旋转的作图,掌握连接旋转中心和图片中的点是本题关键.2、 (1)30°,70°,40°;(2)∠AOC -∠BOE =40°,理由见解析;(3)t 的取值为5或20或62【解析】【分析】(1)先根据已知求出∠DOC 、∠BOC ,再求出当t =4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x ,用x 表示∠AOC 和∠BOE ,即可得出结论;(3)分①OA 为∠DOC 的平分线;②OC 为∠DOA 的平分线;③OD 为∠COA 的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边AB与射线OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,∠DOC=25,①当OA为∠DOC的平分线时,旋转角5t =12∴t=5;②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,∴t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.3、(1)见解析;(2)见解析【解析】【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可得;(2)作点C 关于x 轴的对称点C ′,再连接AC ′,与x 轴的交点即为所求.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,点P 即为所求.【点睛】本题考查轴对称的综合应用,熟练掌握轴对称图形的性质及“两点之间线段最短”的基本事实是解题关键.4、平行的线段:AE ∥CG ∥DH ∥BF ,AB EF ∥,BC ∥FG ,CD HG ∥,AD EH ∥;相等的线段:AE =BF =CG =DH ,AB EF =,BC FG =,CD HG =,AD EH =;【解析】【分析】根据平移的性质判断即可;【详解】由题可知:平行的线段有AE ∥CG ∥DH ∥BF ,AB EF ∥,BC ∥FG ,CD HG ∥,AD EH ∥; 相等的线段有AE =BF =CG =DH ,AB EF =,BC FG =,CD HG =,AD EH =;【点睛】本题主要考查了平移的性质,准确分析判断是解题的关键.5、(1)A AB C CB ''∠=∠;(2)A AB C CB ''∠=∠,利用见解析;(3)135【解析】【分析】(1)根据旋转的性质和等腰三角形的性质证明即可;(2)根据已知条件证明CBC ABA ''∆∆,即可得解;(3)根据等腰三角形的性质和旋转性质计算即可;【详解】解:感知:由旋转可得BC BC '=,BA BA '=,CBC ABA ''∠=∠, ∴18018022A BA C BC ''︒-∠︒-∠=, ∴A ABC CB ''∠=∠,探究:A AB C CB ''∠=∠,证明:∵由旋转可得BC BC '=,BA BA '=,CBC ABA ''∠=∠, ∴BC BC BA BA '=', ∴CBC ABA ''∆∆,∴A AB C CB ''∠=∠.应用:∵A B AB '=,∴A AB AA B ''∠=∠,由探究可得A AB C CB ''∠=∠,∴AA B CC B ''∠=∠,∵C B CB '=,∴C CB CC B ''∠=,∴AA B CC B ''∠=∠,设C B '与AE 的交点为O ,∴A OB C OE ''∠=∠,∴C EO OBA ACB ''∠=∠=,∵AB AC =,90BAC ∠=︒,∴45ACB C EO '∠=︒=∠,∴180135A EO C EO ''∠=︒-∠=︒;故答案是135.【点睛】本题主要考查了旋转的性质和等腰三角形的性质,准确分析计算是解题的关键.。
10.4 第2课时中心对称与轴对称
、选择题
1. 下列说法不正确的是()
A. 长方形既是轴对称图形,又是中心对称图形
B. 线段既是轴对称图形,又是中心对称图形
C. 正五角星是旋转对称图形
D. 角既是轴对称图形,又是旋转对称图形
2. 2018 -南充下列图形中,既是轴对称图形又是中心对称图形的是()
A. 扇形
B. 正五边形
C. 正方形
D. 平行四边形
3•顺次连结正六边形的三个不相邻的顶点,得到如图1所示的图形,该图()
A. 既是轴对称图形又是中心对称图形
B. 是轴对称图形但不是中心对称图形
C. 是中心对称图形但不是轴对称图形
D. 既不是轴对称图形也不是中心对称图形
4. 在线段、平行四边形、长方形、等腰三角形、圆这几个图形中,既是轴对称图形又是
中心对称图形的有()
A. 2 个B . 3 个C . 4 个D . 5
5. 直线I 1丄I 2于点O,线段AB与AB关于I 1成轴对称,线段AB与关于丨2成轴对称,则下列说法中正确的有()
①连结AA,则AA被I 1平分;②若AB与AB(或其延长线)相交,则交点在I 2上;③连结AA,贝U AA —定过点O④AB与AB关于点O成中心对称.
A. 1个B . 2个
C. 3个D . 4个
6. 学校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集设计方案,有等边三角形、正方形、平行四边形、正五边形四种图案.你认为符合条件的是()
A. 等边三角形
B. 正方形
C. 平行四边形
D. 正五边形
7. 下面是一位美术爱好
者利用网格图设计的几个英文字母的图形,你认为其中既是轴对称图形又是中心对称图形的是()
■
^H|»IIIIIH | ^HI IIKIIIII
■ i r
■ ■■■ ■ ■ ;^\!l : - :■: 1 :|S»3 ■ ya ■■■ ■ ■ ■ ■ ■ ■ ■■■
■■■■・
■■■・■ ■ ■■■■■ . ■■■曬蠶
B
图2
&如图3,两个“心”形有一个公共点 0,且点 F 列说法中,错误的有 (
)
①这两个“心”形关于点 0成中心对称;②点 C, E 是以点0为对称中心的一对对称点; ③这两个“心”形成轴对称,对称轴是过点
0且与直线AB 垂直的直线和直线 AB ④若把这
两个“心”形看作一个整体,则它又是一个中心对称图形.
A . 0个
B . 1个
C . 2个
D . 3个
9. 如图4, 8X 8的方格纸中的两条直线 EF, MN 相
M
图4
交于点0,对图形a 分别作下列变换:①先以直线 移4格;②先以点0为中心旋转180°,再向右平移 变换,再向右平移 4格.其中能将图形 a 变换成图形
A .①②
B .①③
C .②③
D .③
图5
10. 如图5,在4X 4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分 是一个以格点为顶点的正方形 (简称格点正方形).若再作一个格点正方形,并涂上阴影,使 这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点 正方形的作法共有
A . 2 种
B . C. 4 种 D . 二、填空题
11. 线段是轴对称图形,它的对称轴是
C, 0, E 在同一条直线上, 0C= OE= OD
MN 为对称轴作轴对称变换,再向上平 1格;③先以直线 EF 为对称轴作轴对称
b 的是(
)
;它又是中心对称
图形,它的对称中心是 ___________ .
三、解答题
12. 如图6,在平面直角坐标系中,△ ABC 的顶点坐标分别为 A (2 , - 1) , B (1 , - 3), q4,一 4).
(1) 作出△ ABC 关于原点0对称的△ ABC ; (2) 写出点A , B , C 的坐标.
13. 如图7,方格纸中的每个小正方形的边长均为
1.
(1) 观察图①,②中所画的“ L ”形图案,然后各补画一个小正方形,使图①中所成的图 形是轴对称图形,图②中所成的图形是中心对称图形;
(2) 补画后,图①,②中的图形是不是正方体的表面展开图?
14. 按下列要求作图:
(1) 在图8①中,作出圆0关于直线l 成轴对称 的图形;
(2) 在图②中,作出△ ABC 关于点E 成中心对称 的图形.
15 [方案设计]为了美化环境,需在一块正方形的空地上种植四种不同的花草,现将这 块空地按下列要求分割成四块:
/.:
图7
① ®
(1) 分割后整个图形必须是轴对称图形;
(2) 四块图形形状相同.
(I )分别作两条对角线,如图9①所示;
(n)过一条边的四等分点作对边的垂线段,如图②,③所示,两个图形的分割看作同一种方法. 请你按照上述两个要求分别在所给的正方形中给出另外三种不同的分割方法.
教师详解详析
[课堂达标]
1. [答案]D
2. [解析]C扇形是轴对称图形,不是中心对称图形,故A选项不符合题意;正五边形
是轴对称图形,不是中心对称图形,故B选项不符合题意;正方形既是轴对称图形,又是中
心对称图形,故C选项符合题意;平行四边形不是轴对称图形,是中心对称图形,故D选项不符合题意•故选C
3. [答案]B
4.[答案]B
5.[答案]D
6.[答案]B
7.[答案]C
8. [解析]A 这两个图形成中心对称和轴对称.因为0C= OE所以点C, E是以点0为对称中心的一对对称点.把两个“心”形看作一个整体时,它又是一个中心对称图形,所以
①②③④的说法都正确.故选 A.
9. [答案]D
10. [解析]C先确定正方形的中心位置,如图所示,再画出图形.
::::@;
::®:::
I h ■<i •
11. [答案]它的垂直平分线和它本身所在的直线……
它的中点
12. 解:(1)如图所示,△ ABQ即为所求.
⑵由图可知点A的坐标为(一2, 1),点B的坐标为(一1, 3),点G的坐标为(一4, 4).
13. 解:(1)如图所示.
或
(2)图①一1不是,图①一2是,图②是.
14. 解:(1)如图①,圆O即为所求. (2)如图②,△ A B' C'即为所求.
① ②[素养提升]解:答案
不唯一,如图.。