1中国科学院等离子体物理研究所.
- 格式:ppt
- 大小:1.93 MB
- 文档页数:21
中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术我国生活垃圾处理方式主要是填埋和焚烧。
填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。
尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。
焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。
等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。
通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。
可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H)。
不可2燃的无机成分经等离子体高温处理后成为无害的渣体。
采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。
与焚烧法相比,等离子体技术最突出的优点有:(1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解;(2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的;(3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本;(4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%;(5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统;(6)整套设备紧凑,占地小,经济效益好。
更为重要的是,等离子体技术将垃圾看作是生产合成气的原料,符合新能源、环保、零碳排放以及可持续发展的概念。
等离子体法不仅在技术上比焚烧先进,而且经济效益也要更好,但投资略高。
等离子体工艺配套的后处理设备及发电系统与焚烧配套的差异很大,这也会影响系统造价及经济效益。
中国科学院物理研究所简介中国科学院物理研究所前身是成立于1928年的中央研究院物理研究所和成立于1929年的北平研究院物理研究所。
1950年在两所合并的基础上成立了中国科学院应用物理研究所。
1958年更名为物理研究所。
至今,已有50余位院士先后在物理所工作过,包括吴有训、赵忠尧、严济慈、吴健雄、钱三强等著名科学家。
经过几代人不懈努力,物理所现已发展成为以物理学基础研究与应用基础研究为主的多学科、综合性研究机构。
研究方向以凝聚态物理为主,包括凝聚态物理、光物理、原子分子物理、等离子体物理、软物质物理、凝聚态理论和计算物理等。
进入中科院知识创新工程后,物理所围绕凝练出的科研目标调整学科布局,经过整合和新建,拥有磁学、超导、表面物理等3个国家重点实验室和光物理、先进材料与结构分析(电镜)、纳米物理与器件(真空物理)、极端条件物理等4个院重点实验室以及凝聚态理论、软物质物理、固态量子信息与计算、微加工实验室等4个所级实验室,并成立了国际量子结构中心和量子模拟科学中心,构成了物理所的研究体系;由微加工实验室、电子学仪器部、分析测试部、图书馆、网络中心、机械加工工厂构成了全所的技术支撑体系。
长期以来,物理所始终坚持积极引进和培养杰出人才,经过多年的努力,物理所已经形成了一支结构合理、具有较强科研实力和创新能力的人才队伍。
截止2006年底,物理所共有各类人员404人,其中科研人员186人(含正高职人员104名,副高职71人),技术支撑人员62人,中国科学院院士13人,中国工程院院士2人,第三世界科学院院士4人。
“百人计划”入选者累计达到38人;“海外知名学者”20人;国家杰出青年基金获得者累计达51人(其中B类20人)。
物理所是国务院学位委员会批准的物理学一级学科授予单位,也是全国首批建立博士后流动站的单位之一;2006年在读研究生总数648人,其中硕士研究生236人,博士研究生412人。
在站博士后25人。
多年来,物理所先后与美国、英国、德国、法国、日本等十几个国家开展了合作,包括与英国皇家学会、法国国家科研中心、德国马普学会、荷兰皇家科学院、日本学术振兴会等国家级科学研究机构建立起了长期、稳固的友好合作关系,还与其它国家的数十个科研机构和大学建立了广泛的所级国际合作关系。
第30讲:EAST托卡马克装置离子回旋共振加热系统介绍
主讲:赵燕平
时间:12月13日14:00
地点:601会议室
时数:1.5-2个小时
授课内容摘要:
离子回旋频段波作为加热、维持、控制高温等离子体的重要手段之一,根据所选的运行模式不同,它与等离子体作用机制也不相同,它不仅可以加热电子、离子,还可以用于控制等离子体某些重要参数空间分布等。
离子回旋系统无论是用于加热还是电流驱动对等离子体都有很好的可近性,并且技术相对较为成熟,系统的造价也相对较低,因而被广泛用于各托卡马克聚变装置上。
在EAST上,利用离子回旋系统实现对等离子体有效的加热和参数分布控制,是实现高约束稳态运行的关键之一。
本报告将主要介绍EAST装置离子回旋系统关键技术和壁处理技术及近年来EAST上离子回旋加热所取得的实验结果。
授课人介绍:
赵燕平,中国科学院等离子体物理研究所研究员,博士生导师,1982年毕业于南开大学物理系,现从事托卡马克离子回旋射频波加热技术及波与高温磁约束等离子体相互作用物理过程的研究,主持建成了EAST装置上的稳态离子回旋加热系统。
作为负责人承担了多项国家自然科学基金和国家磁约束核聚变配套项目。
欢迎感兴趣的职工及学生参加!。
专题实习报告中科院合肥等离子体物理研究所学校:哈尔滨工程大学班级:20100002学号:**********一实习目的此次前往合肥等离子体物理研究所的实习是我们专业实习校外实习的重要组成部分之一,是前三学期理论专业课的一次检验以及理论与实践的结合。
特别是对于以后有意从事核聚变工程以及对相关技术感兴趣的同学而言是一次很好地实地考察的机会。
此外在当前国内核工程专业整体就业不景气的环境下,这次实习对于大三升大四、站在升学就业路口的我们意义重大。
二实习地点--中科院合肥等离子体物理研究所中国科学院等离子体物理研究所(简称“等离子体所”,英文缩写为ASIPP)筹建于20世纪七十年代初,正式成立于1978年9月,其前身为“合肥受控热核反应研究实验站”。
主要从事高温等离子体物理、磁约束核聚变工程技术及相关高技术研究和开发,以解决人类未来战略新能源——受控热核聚变能为目标。
等离子体所是我国热核聚变研究的重要基地:先后建成并运行了三代托卡马克核聚变实验装置——常规磁体托卡马克HT-6B、HT-6M,我国第一个圆截面超导托卡马克HT-7,世界上第一个非圆截面全超导托卡马克EAST。
随着EAST辅助加热系统建设和装置升级改造,EAST将在国际聚变界上起到更加重要的作用,为ITER和我国下一代聚变堆奠定必要的科学技术基础。
等离子体所属于中科院合肥物质研究院大家庭中的一员,位于合肥市西郊风景秀丽的蜀山湖畔的董铺岛(又称科学岛)上,岛上三面环水,绿树成荫,环境优美,是科研学习的好地方。
三实习过程1,前期准备为了保证我们在所期间能够学有所得,在充分重视实习专业背景与兴趣基础上,学院带队老师与等离子体所综合办人事部进行了精心的准备与安排。
这次我们一共30人到等离子所实习一共分为了4个小组。
我所在的第一小组被分到了装置总体设计研究室,也就是一室。
我们在去等离子所之前也已经做了一些准备,对该研究室的机构设置与研究方向有了大致的了解。
等离子体等离子体等体又叫做电浆,是由部份电子被剥夺后的及原子被后产生的正负电子组成的离子化气体状物质,它普遍存在于中,常被视为是除去固、液、气外,物质存在的第四态。
等离子体是一种专门好的,利用通过巧妙设计的磁场能够捕捉、移动和加速等离子体。
的进展为材料、能源、信息、环境空间,,地球物理等科学的进一步进展提新的技术和工艺。
简介看似“神秘”的等离子体,实际上是中一种常见的物质,在、、中都存在等离子体,它占了整个宇宙的99%。
21世纪人们已经把握和利用电场和磁场产生来操纵等离子体。
例如焊工们用焊接金属。
等离子体可分为两种:高温和。
低温等离子体普遍运用于多种等离子体生产领域。
例如:,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。
更重要的是在中的蚀刻运用,让成为现实。
只有在温度足够高时发生的。
和恒星不断地发出这种等离子体,组成了宇宙的99%。
是在下发生的等离子体(尽管电子的温度很高)。
低温等离子体体能够被用于、变性等表面处置或在和上进行沉淀涂层处置。
等离子体(Plasma)是一种由和带电为要紧成份的物质形态,普遍存在于中,常被视为是物质的第四态,被称为等离子态,或“超气态”,也称“电浆体”。
等离子体具有很高的,与存在极强的作用。
等离子体是由在1879年发觉的,1928年美国科学家和汤克斯(Tonks)第一次将“等离子体”(plasma)一词引入,用来描述气体放电管里的物质形态[1]。
严格来讲,等离子体是具有高动能的气体团,等离子体的总带电量仍是中性,借由或磁场的高动能将外层的电子击出,结果电子已再也不被束缚于,而成为高位能高动能的自由电子。
等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳固态,其中包括(具有不同符号和电荷)、电子、原子和分子。
其实,人们对等离子表现象并非生疏。
在里,灼热烁烁的火焰、辉煌夺目的、和绚烂壮丽的等都是等离子体作用的结果。
关于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如和行星际空间等都是由等离子体组成的。
物理学中的高温等离子体研究高温等离子体是一种非常特殊的物质状态,其在物理和工程学中发挥着至关重要的作用。
简单来说,等离子体是由大量高能电子和正离子组成的气体,这种物质是人们研究太阳、星体等高温天体物理以及现代工业中等离子体技术的重要基础。
近年来,随着相关科技的不断发展,高温等离子体的研究也越来越深入,而其中的物理学研究更是备受关注。
一、什么是高温等离子体高温等离子体是一种热力学状态一般就是指在几千度到几百万度之间的温度下,气体中的原子、分子和电子的相互作用产生等离子体。
在这种高温条件下,气体原子和分子的运动能力变得更加强大,以至于它们甚至可以从分子中脱离出来,成为独立的带正、负电荷的物质粒子。
这些电荷带正、负离子和自由电子组成了等离子体中的“亲密拥抱”,并且控制着等离子体的物理和化学特性。
二、高温等离子体的研究意义(一)太阳等恒星的研究热核聚变是一种人类向太阳取能路径的探索,是未来能源发展的一个重要领域。
而高温等离子体物理研究在聚变科学中具有重要地位。
因为非常高温、强磁场和等离子体特性是实现聚变反应的基本条件。
而通过高温等离子体物理的 study,人们可以更好地理解恒星内部星核的物理过程和能量广播方式,进而为太阳系外、外太阳系及宇宙中高能天文现象的研究提供资料和理论基础。
(二)工程与应用研究等离子体物理在工程和应用方面有着广泛的使用和研究。
高温等离子体不但可以用于聚变实验和聚变能源的开发研究中,还可以被用于各个领域,如太空技术,医疗卫生,半导体、量子信息、材料加工等领域,具有巨大的前景和应用价值,被观察到的等离子体现象也为多种工程应用提供了理论指导和数据支持。
三、高温等离子体的研究中心目前,全世界有许多著名的等离子体物理研究机构和实验室。
其中,美国的普林斯顿聚变能源项目(PPPL),瑞典的欧洲聚变开发机构(EFDA),法国的大西洋聚变实验中心(CEA)等都是全球著名的等离子体物理研究中心。
在我国,中国科学院等离子体物理研究所(ASIPP)是进行聚变物理的理论和实验研究的主要机构之一。
稳态高约束模式等离子体运行是什么稳态高约束模式等离子体运行是什么?实现高性能等离子体稳态运行是未来聚变堆必须要解决的关键科学问题。
近期,中国科学院合肥物质科学研究院等离子体物理研究所核聚变大科学团队发挥体系化建制化优势,取得了系列原创性的前沿物理基础研究成果。
1月7日,国际学术期刊《科学进展》(Science Advances)发表了团队在高能量约束先进模式等离子体运行方面取得的重要成果。
托卡马克先进运行模式是当前磁约束核聚变研究的热点之一。
核聚变大科学团队在托卡马克装置等离子体物理实验研究中发现并证明了一种新的高能量约束和自组织模式,即超级I模(Super I-mode)。
其特点是等离子体中心的电子内部输运垒和等离子体边界的I模共存,从而大幅度提高了能量约束。
该先进模式具有芯部无杂质积累,便于聚变反应生成物排出,维持平稳温度台基等优点,并实现了芯部高约束与无边界密度台基及边界不稳定性的兼容,使得等离子体与壁相互作用同长时间尺度上的高性能等离子体运行方面的优势能够比较好地结合起来。
这种无需通过外部控制来确保等离子体稳态运行的高能量约束模式,可应用于国际热核聚变实验堆长脉冲运行,对于未来聚变堆运行具有重要意义。
日前,核聚变大科学团队还首次证明了托卡马克等离子体中存在湍流驱动的电流成份,是保持高电子温度稳定运行的关键物理机制。
借助湍流回旋动理学模拟计算证实了实验中观察到的湍流是电子温度梯度模,其产生的剩余协强可驱动这一电流。
湍流驱动的电流和压强梯度共同驱动内扭曲模,形成湍流-湍动电流-内扭曲模自我调节系统,从而维持芯部电子温度梯度稳定。
相关研究成果日前发表在《物理评论快报》(Physical Review Letters)上。
此外,核聚变大科学团队在托卡马克装置中外联合实验中利用封闭偏滤器下的杂质注入脱靶控制,以及高极向比压运行模式下双输运垒带来的约束增强,实现了高比压高参数芯部等离子体与偏滤器全脱靶状态的有效兼容集成。