2011年1月自考线性代数(经管类)试题和参考答案
- 格式:doc
- 大小:552.50 KB
- 文档页数:4
自考线性代数试题及答案一、选择题(每题2分,共20分)1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 设向量v = (1, 2, 3),向量w = (4, 5, 6),则向量v与向量w 的点积为:A. 32B. 34C. 36D. 38答案:A3. 对于线性变换T: R^3 → R^2,如果T(x, y, z) = (x + z, y - z),那么T的秩是:A. 1B. 2C. 3D. 4答案:B4. 设A和B是两个n阶方阵,若AB = BA,则称矩阵A和B是可交换的。
若A和B是两个n阶实对称矩阵,且AB = BA,那么:A. A和B一定可交换B. A和B一定不可交换C. A和B可交换或不可交换D. 无法判断A和B是否可交换答案:A5. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. trace(A) = trace(A^T)D. A * A^T 一定是对称矩阵答案:C6. 设A是m×n矩阵,B是n×p矩阵,若AB = 0,则:A. 必有B = 0B. 必有A = 0C. 必有rank(A) + rank(B) ≤ max(m, p)D. rank(AB) ≤ rank(A)答案:D7. 对于n维向量空间V,以下哪个命题是线性代数的基本定理?A. 每个向量都可以由V的一组基唯一表示B. V中任意两个不同的向量都是线性无关的C. V中任意非零向量都是可逆的D. V中任意两个向量都线性相关答案:A8. 设λ是n阶方阵A的一个特征值,对应的特征向量为v,则:A. (A - λI)v = 0B. Av = vC. A^2v = λ^2vD. (A + I)v = λv答案:A9. 对于任意矩阵A,以下哪个选项是正确的?A. |A| = |A^2|B. det(A) = det(A^2)C. trace(A) = trace(A^2)D. A^2 一定是可逆的答案:B10. 设A是m×n矩阵,B是n×m矩阵,且AB = Im,则:A. B一定是A的逆矩阵B. A一定是B的逆矩阵C. A和B互为逆矩阵D. A和B不一定是方阵答案:C二、填空题(每题3分,共15分)11. 设矩阵A = [1, 2; 3, 4],则A的特征多项式为f(λ) = _______。
全国年1月自考《线性代数(经管类)》试题及答案l只供学习与交流全国2010年1月高等教育自学考试《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304z y x z y x 则行列式() A.32 B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=()A. A -1B -1C -1B. C -1B -1A -1C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=()A.-32B.-4C.4D.324.设α1,α2,α3,α4 是三维实向量,则()A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为()A.1B.2C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是()A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系 8.设矩阵A =---496375254,则以下向量中是A 的特征向量的是()只供学习与交流 A.(1,1,1)TB.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T9.设矩阵A =--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为()A.963642321B.963640341 C.960642621 D.??9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
全国2012年4月高等教育自学考试线性代数(经管类)试题 课程代码:04184说明:在本卷中,A T表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r (A)表示矩阵A 的秩.一、 单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( ) A.-12B.-6C.6D.122.设矩阵A =120120003⎛⎫⎪⎪ ⎪⎝⎭,则A *中位于第1行第2列的元素是( )A.-6B.-3C.3D.63.设A 为3阶矩阵,且|A |=3,则1()A --=( ) A.-3B.13-C.13D.34.已知4⨯3矩阵A 的列向量组线性无关,则A T 的秩等于( ) A.1B.2C.3D.45.设A 为3阶矩阵,P =100210001⎛⎫ ⎪⎪ ⎪⎝⎭,则用P 左乘A ,相当于将A ( )A.第1行的2倍加到第2行B.第1列的2倍加到第2列C.第2行的2倍加到第1行D.第2列的2倍加到第1列 6.齐次线性方程组123234230+= 0x x x x x x ++=⎧⎨--⎩的基础解系所含解向量的个数为( )A.1B.2C.3D.47.设4阶矩阵A 的秩为3,12ηη,为非齐次线性方程组Ax =b 的两个不同的解,c 为任意常数,则该方程组的通解为( ) A.1212cηηη-+ B.1212c ηηη-+ C.1212cηηη++ D.1212c ηηη++8.设A 是n 阶方阵,且|5A +3E |=0,则A 必有一个特征值为( )A.53-B.35-C.35D.539.若矩阵A 与对角矩阵D =100010001-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则A 3=( )A.EB.DC.AD.-E10.二次型f 123(,,)x x x =22212332x x x +-是( ) A.正定的 B.负定的 C.半正定的 D.不定的二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
参考答案一.选择题(本大题共 5 小题,每小题 2 分,共 10 分)1—5 C A B B D二. 填空题(本大题共10 小题,每小题 2 分,共 20 分)6. ___6_____.7. 2111⎛⎫⎪⎝⎭8. 13 9. ()10,25,16- 10. ()2,1,0T- 11. -2 12. 3 13. 60 14. 43,55⎛⎫⎪⎝⎭15. 2 三.计算题(本大题共 7 小题,每小题 9 分,共 63 分)16 . 解一 100100010010011001001001a a a b a b D c a b c d d ++==-++--100010001000aa ba b c d a b c a b c d+==++++++++解二 ()()111410111111101101001bD c a d++-=-⋅⋅-+-⋅---a b c d =+++ 17.解: 2AB -A =B -E2∴AB -B =A -E ()2A-E B =A -E()()12-∴B =A -E A-E()()()1-=A -E A -E A +E()=A+E315052432⎛⎫ ⎪B =- ⎪⎪-⎝⎭()12412112412118.,123012001113233012015234T T --⎛⎫⎛⎫⎪ ⎪A B =→--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解:12412112032110152340103211001113001113---⎛⎫⎛⎫ ⎪ ⎪→----→-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 1003211100321101032110103211001113001113--⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭ 3211=3211113T -⎛⎫ ⎪X -- ⎪ ⎪-⎝⎭则,331=22111113-⎛⎫⎪X - ⎪ ⎪--⎝⎭故.19.解:()12345,,,,αααααT T T T TA =1114311143113210113121355000003156700000--⎛⎫⎛⎫⎪⎪----- ⎪ ⎪=→⎪ ⎪-⎪⎪-⎝⎭⎝⎭∴向量组的秩=2且1α,2α是一个极大无关组(回答1α,3α;1α,4α;1α,5α也可).20.解:对增广矩阵作初等行变换()101211012110121213140113201132=123450226400000112130113200000b ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-----⎪ ⎪ ⎪A A =→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭, 同解方程组为1342342132x x x x x x =---⎧⎨=-+-⎩,34x x ,是自由未知量,特解()*=1200ηT --,,, 导出组同解方程组为13423423x x x x x x =--⎧⎨=-+⎩,34x x ,是自由未知量,基础解系()1=1110ξT--,,,,()2=2301ξT-,,,,通解为*1122=k k ηηξξ++,12k k R ∈,21.解:特征方程()()2200=0212221001a a aλλλλλλλλ-E -A --=---+-=-- 将特征值=1λ代入特征方程有()()=1212210a a E-A ---+-=,则2a =. 故()()()=213=0λλλλE-A ---,特征值为123=2=1=3λλλ,,.1=2λ对应的齐次线性方程组为123000000100100x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为23=0=0x x ⎧⎨⎩,1x 是自由未知量,特征向量1100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1ξ单位化为1100p ⎛⎫⎪= ⎪ ⎪⎝⎭,2=1λ对应的齐次线性方程组为123100001100110x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨-⎩,3x 是自由未知量,特征向量2011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,2ξ单位化为2011p ⎛⎫⎪=-⎪⎪⎭,3=3λ对应的齐次线性方程组为123100001100110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨⎩,3x 是自由未知量,特征向量3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3ξ单位化为3011p ⎛⎫⎪=⎪⎪⎭, 正交矩阵()123100,,00Q p p p ⎛⎫⎪⎪==⎝,213⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,使得1Q Q -A =Λ.011101110-⎛⎫ ⎪A =- ⎪ ⎪⎝⎭22.解:二次型矩阵()()211=11=21=011λλλλλλ--A -E ---+--令,123=2==1λλλ-得,.1211101=22=121011112000λ-⎛⎫⎛⎫⎪ ⎪-A +E -→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当时,132333x x x x x x =-⎧⎪∴=-⎨⎪=⎩ 1111ξ-⎛⎫ ⎪∴=- ⎪ ⎪⎝⎭ 则1111-⎛⎫⎪P =-⎪⎪⎭ 23111111==1=111000111000λλ---⎛⎫⎛⎫ ⎪ ⎪A +E --→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当时,1232233x x x x x x x =-+⎧⎪∴=⎨⎪=⎩ 2110ξ-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭, 3112ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭则2110-⎛⎫⎪P =⎪⎪⎭,3112⎛⎫⎪P =⎪⎪⎭因此=0⎛ ⎪T ⎪ ⎪ ⎪ ⎪⎝⎭,X=TY . 化二次型为2221232f y y y =-++.四.证明题(本大题7分)23.证明:基础解系中向量个数为3.设()()()1123212331232220k k k ααααααααα++++++++=即()()()1231123212332220k k k k k k k k k ααα++++++++=123,,ααα是基础解系,故线性无关,因此123123123202020k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩,系数行列式21112140112A ==≠,则齐次线性方程组只有零解, 故1230k k k ===.因此1232ααα++,1232ααα++,1232ααα++线性无关. 又()()()1231231231231231232=2=02=2=02=2=0ααααααααααααααααααA ++A +A +A A ++A +A +A A ++A +A +A 则1232ααα++,1232ααα++,1232ααα++也是该方程组的基础解系.说明:1.试卷题目均要求为自学考试真题;2.命题参照自学考试试卷的题型、题量;3.根据课程性质不同,可以更换或调整题型;4.试卷格式统一为:宋体 五号 单倍行距;选择题选项尽量排在一行;其他题型留出适当的答题区域。
全国2011年1月高等教育自学考试高等数学(一)试题和答案课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f (x )=+ln(3-x )的定义域是( )2+x A .[-3,2]B .[-3,2)C .[-2,3)D .[-2,3]2.已知函数f (x )=在x =0处连续,则常数k 的取值范围为( )⎪⎩⎪⎨⎧≤>0,00,1sin x x x x k A .k ≤0B .k >0C .k >1D .k >23.曲线y =2ln的水平渐近线为( )33-+x x A .y =-3B .y =-1C .y =0D .y =24.定积分=( )⎰---11d 2e e x xx A .0B .e 1C .1D .e5.若,则点(x 0,y 0)是函数f (x ,y )的()0),(,0),(0000==''y x f y x f y x A .极小值点B .极大值点C .最值点D .驻点二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知,则f (x )=_________.2ln )1(222-=-x x x f 7.函数f (x )=的间断点是_________.6512--+x x x 8.设函数y =sin(2x +2x ),则d y =_________.9.极限=_________.xx x x ln 1lim 1-→10.曲线y =ln(1+x 2)的凹区间为_________.11.函数f (x )=的单调减少区间是_________.2e xx12.定积分=_________.⎰--222d 4x x 13.极限=_________.x t t x x ⎰→020d sin lim 14.无穷限反常积分=_________.⎰∞-02d e x x 15.设二元函数z =cos(2y -x ),则=_________.yx z ∂∂∂2三、计算题(一)(本大题共5小题,每小题5分,共25分)16.求极限.xx x x sin 11lim 0--+→17.设函数y =,求导数y '.x arctan e 18.已知f (x )的一个原函数是,求.2e x -⎰x x xf d )('19.求微分方程y '+y =0在初始条件y (0)=1下的特解.20.计算二重积分,其中D 是由直线y =2-x 与⎰⎰=Dy x I d d 2抛物线y =x 2所围成的平面区域.四、计算题(二)(本大题共3小题,每小题7分,共21分)21.设函数f (x )=(1+x 2)arctan x ,求f (x )的三阶导数.22.求函数f (x )=的极值.21e x x 23.试确定常数a ,b 的值,使得(1,3)是曲线y =ax 3+3x 2+b 的拐点.五、应用题(本题9分)24.某工厂生产两种产品I 和II,销售单价分别为10元与9元,生产x 件产品I 与生产y 件产品II 的总费用为C =400+2x +3y +0.01(3x 2+xy +3y 2)(元).问两种产品的产量各为多少时,才能使总利润最大?六、证明题(本题5分)25.设函数f (u )可导,,证明: .)(xy f z =0=∂∂+∂∂y z y x z x 全国2011年1月高等教育自学考试高等数学(一)参考答案课程代码:00020。
自考试题线性代数题库及答案线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
以下是一套自考试题线性代数题库及答案,供学习者参考。
一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. \( A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \)B. \( B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)C. \( C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)D. \( D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \)答案: C2. 设 \( A \) 是一个 \( n \times n \) 矩阵,\( I \) 是 \( n\times n \) 的单位矩阵,若 \( A^2 = I \),则 \( A \) 称为:A. 正交矩阵B. 反对称矩阵C. 正交变换矩阵D. 反射变换矩阵答案: D二、填空题1. 设向量 \( \mathbf{v} = (1, 2, 3) \),向量 \( \mathbf{w} =(4, 5, 6) \),这两个向量的点积为 __________。
答案: 322. 若 \( A \) 是一个 \( m \times n \) 矩阵,\( B \) 是一个\( n \times p \) 矩阵,则 \( AB \) 的行列数为 __________。
答案: \( m \times p \)三、解答题1. 证明:若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^n =I \),则 \( A \) 必定可逆。
解答:由于 \( A^n = I \),我们可以得出 \( A \) 的 \( n \) 次幂是单位矩阵。
自考线性代数试题及答案线性代数是数学中的一个重要分支,其应用广泛而深入。
对于参加自考线性代数考试的考生来说,熟悉并掌握相关的试题及答案是非常重要的。
本文将为大家提供一些常见的自考线性代数试题及答案,希望能对广大考生有所帮助。
第一部分:选择题1. 下列哪个不是线性代数的基本概念?A. 向量B. 矩阵C. 整数D. 行列式答案:C2. 在矩阵运算中,AB≠BA时,那么A和B一定是什么关系?A. 逆矩阵关系B. 对称矩阵关系C. 反对称矩阵关系D. 非方阵关系答案:D3. 线性方程组Ax=b,若有解,则必须满足下列哪个条件?A. 矩阵A可逆B. 矩阵A不可逆C. 矩阵A是对称阵D. 矩阵A的秩为0答案:A第二部分:填空题1. 设A为3×3矩阵,|A|=-2,那么A的行列式展开式中,元素a11、a12、a13分别是多少?答案:a11=-2,a12=0,a13=02. 矩阵的秩与其行数、列数之间有何关系?答案:矩阵的秩小于等于其行数和列数的最小值。
3. 矩阵的转置运算满足什么性质?答案:(AB)ᵀ = BᵀAᵀ第三部分:计算题1. 计算矩阵乘法:A = 2 1 3B = 0 -10 1 2 2 1-1 0 1 1 2答案:AB = (2*0 + 1*2 + 3*1) (2*-1 + 1*1 + 3*2)(0*0 + 1*2 + 2*1) (0*-1 + 1*1 + 2*2)(-1*0 + 0*2 + 1*1) (-1*-1 + 0*1 + 1*2)= 7 64 31 3第四部分:解答题1. 证明以下等式成立:(A + B)C = AC + BC证明:设A、B、C都是m×n的矩阵,按矩阵乘法的定义,左边的矩阵乘积为:(A + B)C = [(a11 + b11)*c11 + (a12 + b12)*c21 + ... + (a1n + b1n)*cn1][(a21 + b21)*c12 + (a22 + b22)*c22 + ... + (a2n + b2n)*cn2] ...[(am1 + bm1)*c1n + (am2 + bm2)*c2n + ... + (amn + bmn)*cnn]右边的矩阵乘积为:AC + BC = [a11*c11 + a12*c21 + ... + a1n*cn1] + [b11*c11 + b12*c21 + ... + b1n*cn1][a21*c12 + a22*c22 + ... + a2n*cn2] + [b21*c12 + b22*c22+ ... + b2n*cn2]...[am1*c1n + am2*c2n + ... + amn*cnn] + [bm1*c1n + bm2*c2n + ... + bmn*cnn]可以观察到左右两边的每一项是相等的,因此左边的矩阵乘积等于右边的矩阵乘积,得证。
全国20XX 年1月线性代数(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( )A.12B.24C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -1 3.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +E D.-A +E4.设54321,,,,ααααα是四维向量,则( ) A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示 D.1α一定可以由5432,,,αααα线性表出5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0B.A =EC.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( )A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( )A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21 B.1 C.23D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)11.行列式1221---k k =0,则k =_________________________. 12.设A =⎥⎦⎤⎢⎣⎡1101,k 为正整数,则A k =_________________________. 13.设2阶可逆矩阵A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡4321,则矩阵A =_________________________.14.设向量α=(6,-2,0,4),β=(-3,1,5,7),向量γ满足βγα32=+,则γ=_________________________.15.设A是m ×n矩阵,A x =0,只有零解,则r (A )=_________________________.16.设21,αα是齐次线性方程组A x =0的两个解,则A (3217αα+)=________.17.实数向量空间V ={(x 1,x 2,x 3)|x 1-x 2+x 3=0}的维数是______________________. 18.设方阵A有一个特征值为0,则|A 3|=________________________.19.设向量=1α(-1,1,-3),=2α(2,-1,λ)正交,则λ=__________________.20.设f (x 1,x 2,x 3)=31212322212224x x x tx x x x ++++是正定二次型,则t 满足_________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式ba c c cbc a b b aa cb a ------222222 22.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---16101512211λλ,对参数λ讨论矩阵A 的秩.23.求解矩阵方程⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100152131X =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--315241 24.求向量组:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=21211α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=56522α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11133α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=37214α的一个极大线性无关组,并将其余向量通过该极大线性无关组表示出来.25.求齐次线性方程组⎪⎩⎪⎨⎧=++--=-++-=++-03204230532432143214321x x x x x x x x x x x x 的一个基础解系及其通解.26.求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3142281232的特征值和特征向量. 四、证明题(本大题共1小题,6分) 27.设向量1α,2α,….,k α线性无关,1<j ≤k . 证明:1α+j α,2α,…,k α线性无关. 全国20XX 年7月1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6 D.122.计算行列式32 3 20 2 0 0 05 10 20 2 0 3 ----=( )A.-180B.-120C.120D.1803.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21B.2C.4D.8 4.设α1,α2,α3,α4都是3维向量,则必有( )A.α1,α2,α3,α4线性无关B.α1,α2,α3,α4线性相关C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则r (A )=( )A.2B.3C.4D.56.设A 、B 为同阶方阵,且r (A )=r (B ),则( ) A.A 与B B.| A |=| B |C.A 与B 等价D.A 与B 合同7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( )A.0B.2C.3D.248.若A 、B 相似,则下列说法错误..的是( ) A.A 与B 等价B.A 与B 合同 C.| A |=| B |D.A 与B 有相同特征值9.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2B.0C.2D.410.设3阶实对称矩阵A 的特征值分别为2,1,0,则( ) A.A 正定B.A 半正定C.A 负定D.A 半负定二、填空题(本大题共10小题,每小题2分,共2011.设A =⎪⎪⎪⎭⎫⎝⎛-4 21 02 3,B =⎥⎦⎤⎢⎣⎡--0 1 01 1 2,则AB =_________________.12.设A 为3阶方阵,且| A |=3,则| 3A -1 |=______________. 13.三元方程x 1+x 2+x 3=1的通解是_______________.14.设α=(-1,2,2),则与α反方向的单位向量是_________________.15.设A 为5阶方阵,且r (A )=3,则线性空间W ={x | Ax =0}的维数是______________.16.设A 为3阶方阵,特征值分别为-2,21,1,则| 5A -1 |=______________.17.若A 、B 为5阶方阵,且Ax =0只有零解,且r (B )=3,则r (AB )=_________________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--1 1 0 1 0 10 1 2 所对应的二次型 f (x 1, x 2,x 3)=________________.19.设3元非齐次线性方程组Ax =b 有解α1=⎪⎪⎪⎭⎫ ⎝⎛321,α2=⎪⎪⎪⎭⎫⎝⎛-3 2 1且r (A )=2,则Ax =b 的通解是_______________.20.设α=⎪⎪⎪⎭⎫⎝⎛321,则A =ααT 的非零特征值是_______________.三、计算题(本大题共6小题,每小题9分,共5421.计算5阶行列式D =20 0 0 1 00 2 0 0 0 0 0 2 0 1 0 0 0 222.设矩阵X 满足方程 ⎪⎪⎪⎭⎫ ⎝⎛-2 0 00 1 00 0 2X ⎪⎪⎪⎭⎫ ⎝⎛0 1 01 0 00 0 1=⎪⎪⎪⎭⎫ ⎝⎛---0 2 11 0 23 4 1求X . 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解. 24.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组.25.已知A =⎪⎪⎪⎭⎫ ⎝⎛---2 13 5 2 1 2 b a 的一个特征向量ξ=(1,1,-1)T,求a ,b 及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.26.设A =⎪⎪⎪⎭⎫ ⎝⎛----2 2 1 1 1 2 1 2 1 1 2a ,试确定a 使r (A )=2.四、证明题(本大题共1小题,6分)27.若α1,α2,α3是Ax=b (b ≠0)的线性无关解,证明α2-αl ,α3-αl 是对应齐次线性方程组Ax =0的线性无关解.全国20XX 年4月一、单项选择题(本大题共20小题,每小题1分,共 1.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )2.设A , B , C 均为n 阶方阵,AB=BA ,AC=CA ,则ABC=( ) A.ACB B.CAB C.CBA D.BCA3.设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |之值为( ) A.-8B.-2C.2D.84.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫⎝⎛100013001,则B =( ) A.P A B.AP C.QA D.AQ5.已知A 是一个3×4矩阵,下列命题中正确的是( ) A.若矩阵A 中所有3阶子式都为0,则秩(A )=2B.若A 中存在2阶子式不为0,则秩(A )=2C.若秩(A )=2,则A 中所有3阶子式都为0D.若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( ) A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关 7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )A.α1必能由α2,α3,β线性表出B.α2必能由α1,α3,β线性表出C.α3必能由α1,α2,β线性表出 D .β必能由α1,α2,α3线性表出8.设A 为m ×n 矩阵,m ≠n ,则齐次线性方程组Ax =0只有零解的充分必要条件是A 的秩( ) A.小于m B.等于m C.小于nD.等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( ) A.A T B.A 2 C.A -1 D.A *10.二次型f (x 1,x 2,x 3)=212322212x x x x x +++的正惯性指数为( )A.0 B.1 C. D.3二、填空题(本大题共10小题,每小题2分,共20分)请在11.行列式2010200820092007的值为_________________________.12.设矩阵A=⎪⎪⎭⎫⎝⎛-102311,B=⎪⎪⎭⎫⎝⎛1002,则A T B=____________________________.13.设4维向量=α(3,-1,0,2)T ,β=(3,1,-1,4)T ,若向量γ满足2+αγ=3β,则γ=__________. 14.设A为n阶可逆矩阵,且|A |=n1-,则|A -1|=___________________________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则|A |=__________________. 16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为________________.17.设n 阶可逆矩阵A 的一个特征值是-3,则矩阵1231-⎪⎭⎫⎝⎛A 必有一个特征值为_____________.18.设矩阵A=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----00202221x 的特征值为4,1,-2,则数x=________________________.19.已知A =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛100021021b a 是正交矩阵,则a +b =_______________________________。
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称: 工商企业管理专业代码: Y020202第一部分习题一、选择题3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题319、关于初等矩阵下列结论成立的是()A,都是可逆阵 B.所对应的行列式的值为1 C.相乘仍为初等矩阵D.相加仍为初等矩阵\ 2、10、设2阶矩阵A=「),则人=()第一部分习题 一、选择题1、若〃阶方阵A 的秩为r,则结论(A. IAWOB. IAI=OC. 2、下列结论正确的是()A.若 AB=0,则 A=0 或 B=0. C.两个同阶对角矩阵是可交换的. 3、下列结论错误的是()A. n+1个n 维向量一定线性相关. C. n 个n 维列向量/。
D. n n4,/>/?B. D. B. )成立。
D. r< n若 AB=AC,则 B 二C AB 二 BA n 个n+1维向量一定线性相关一,%线性相关,则同%…= 0 若同%…%| =。
则。
a x a 2 a ya\a2 %4、若 A b? b 3=m ,则2bl 2b 2 2b3=( )G 5 c 33cj 3c2 3c35、设 A, B, C 均为 n 阶方阵,AB=BA, AC=CA,则 ABC=( )6、二次型/(占,々/3)= *:+工;+4事工2-2々工的秩为( )A 、0 B. 1C 、2D 、37、若A 、B 为,邛介方阵,下列说法正确的是()A 、若A,B 都是可逆的,则A+B 是可逆的 B 、若A, B 都是可逆的,则A8是可逆的C 、若A+B 是可逆的,则A-B 是可逆的D 、若A+B 是可逆的,则A, B 都是可逆的A. 6mB. -6mC. 2333m D. -2333/n[3 4J4 一2、f-4 31 (-4 2 ] ( 4 一3、Ax B% C、I D、1-3 1 )U -1J 13 -1J 1-2 1 J11、设片,外是非齐次线性方程组AX = A的两个解,则下列向量中仍为方程组4X = 77解的是()A、月+旦B、4-色C,汽& D、吟也12、向量组囚,。