Fisher zeros and Potts zeros of the Q-state Potts model for nonzero external magnetic field
- 格式:pdf
- 大小:380.17 KB
- 文档页数:41
综合能力-复合命题及其推理-3(总分:75.00,做题时间:90分钟)一、单项选择题(总题数:25,分数:75.00)1.据《科学日报》消息,1998年5月,瑞典科学家在研究中首次提出,一种对防治老年痴呆症有特殊功效的微量元素,只有在未经加工的加勒比椰果中才能提取。
如果《科学日报》的上述消息是真实的,那么,以下哪项不可能是真实的?Ⅰ.1977年4月,芬兰科学家在相关领域的研究中提出过,对防治老年痴呆症有特殊功效的微量元素,除了未经加工的加勒比椰果,不可能在其他对象中提取。
Ⅱ.荷兰科学家在相关领域的研究中证明,在未经加工的加勒比椰果中,并不能提取对防治老年痴呆症有特殊功效的微量元素,这种微量元素可以在某些深海微生物中提取。
Ⅲ.著名的苏格兰医生查理博士在相关的研究领域中证明,该微量元素对防治老年痴呆症并没有特殊功效。
A.只有Ⅰ。
B.只有Ⅱ。
C.只有Ⅲ。
D.只有Ⅱ和Ⅲ。
E.Ⅰ、Ⅱ和Ⅲ。
A. √B.C.D.E.由于题干中所述瑞典科学家的发现是“只有在未经加工的加勒比椰果中,才能提取一种对防治老年痴呆症有特殊功效的微量元素”,Ⅰ说芬兰科学家的发现是“除了未经加工的加勒比椰果,不可能在其他对象中提取对防治老年痴呆症有特殊功效的微量元素”,讲的都是“未经加工的加勒比椰果”是“提取一种对防治老年痴呆症有特殊功效的微量元素”的必要条件。
既然这一发现足1998年5月才由瑞典科学家首次提出,因此,也就不可能早在1977年4月就已经由芬兰科学家提出来了,所以,Ⅰ是不可能真实的。
Ⅱ和Ⅲ与题干所说的发现不一致,所以还可以由别的科学家来提出,因此,它们都可能是真实的。
这里需要注意的是,提问中所说“上述消息是真实的”,并不意味着该消息中的“科学发现一定是真实的”。
2.某地有两个奇怪的村庄,张庄的人在星期一、三、五说谎,李村的人在星期二、四、六说谎。
在其他日子他们说实话。
一天,外地的王聪明来到这里,见到两个人,分别向他们提出关于日期的问题。
波普尔和拉卡托斯的科学发展模式思想对比评述科学发展模式是关于科学发展的规律性、主要特征和内在机理的概括和描述。
20世纪以来,对于科学发展模式的研究一直是西方科学家和哲学家们关注的重要课题之一,先后主要有以维也纳学派为代表的逻辑实证主义的积微渐进模式、波普尔的证伪主义模式、库恩的“范式”革命模式和拉卡托斯的科学研究纲领模式。
本文就波普尔和其学生拉卡托斯的科学发展模式思想进行比较述评。
1 波普尔的证伪主义模式波普尔(K. R. Popper, 1902 - 1989),英籍奥地利人,当代着名的哲学家,代表作有《科学发现的逻辑》、《猜测与反驳》等,是批判理性主义的创始人。
在波普尔之前,科学发展的模式结构主要是以逻辑实证主义为主流,代表人物是以石里克和卡尔纳普为代表的维也纳学派。
在科学方法上逻辑实证主义认为,科学是建立在归纳方法基础上的,科学发展是一种逐渐累积的模式,只有当知识通过纯粹累积的经验和获取科学理论的形式时,才可以谈论科学的进步与发展。
科学发展的过程, 首先是感觉经验,之后通过归纳先形成假说,假说通过观察和实验形成科学理论。
对于经验是否具有真理的内容,是否有意义,他们推崇“意义标准”和“可证实原则”。
凡是能被经验所证实的,是有意义的,即是科学的,反之属于非科学。
逻辑实证主义的科学观主要是来自对牛顿以来的自然科学,其中机械论占统治地位。
20世纪初,以爱因斯坦的相对论为代表的新科学理论, 开始与牛顿力学所包含的机械论相冲突。
着名英国科学家爱丁顿设计的日蚀观测实验彻底震惊了波普尔。
牛顿理论曾被无数次地证实过,但在这一次重要的反驳中失败了。
波普尔通过对科学在动态过程中所表现出的知识的猜测性、否定性和假说性进行了深入研究,提出科学发展模式的“证伪”原则。
他认为科学是通过不断猜测、不断否证、不断推翻旧理论建立新理论的突变方式向前发展的。
科学中不存在证实为真的理论,只存在可以否证,可以反驳和可以推翻的猜测和假设,整个科学的发展过程就是一系列的猜测、反驳,再猜测再反驳的过程。
应用归结反演方法证明理发师悖论1. 引言理发师悖论是一种著名的逻辑悖论,提出者是英国数学家贝雷尔·帕利。
这个悖论以一种类似的方式再现了“亚里士多德悖论”的结构。
在理发师悖论中,一个理发师宣布,他只给那些不给自己剃头的人剃头,然后问题就产生了:这个理发师能给自己剃头吗?2. 理发师悖论的分析理发师悖论中的逻辑陈述包含了自指和自我引用的结构。
具体来说,问题的核心在于理发师对自己的描述是否包含在了他所说的“只给不给自己剃头的人剃头”的条件之内。
这种自指和自我引用的逻辑结构导致了悖论的产生。
3. 归结反演方法在理发师悖论中的应用归结反演方法是一种常用的逻辑推理方法,它主要用于证明逻辑命题。
在理发师悖论中,我们可以尝试应用归结反演方法来证明这一悖论的逻辑矛盾性。
4. 我们可以将“只给那些不给自己剃头的人剃头”这个命题进行反设,即假设存在一个人A,他给自己剃头。
根据这个假设,我们可以得出结论,根据理发师的说法,他应该给A剃头。
5. 接下来,我们再假设理发师给A剃头。
根据悖论的设定,理发师只给那些不给自己剃头的人剃头,因此这与我们的假设矛盾。
6. 通过以上推理,我们可以得出结论,理发师给自己剃头是一个逻辑矛盾的命题。
这充分说明了理发师悖论的逻辑矛盾性。
7. 总结回顾通过应用归结反演方法,我们成功地证明了理发师悖论的逻辑矛盾性。
在这个过程中,我们深入分析了悖论的涵义,并展示了归结反演方法的强大推理能力。
8. 个人观点和理解对于理发师悖论这样的逻辑悖论,我认为其中蕴含了人类思维的一些局限性。
逻辑悖论的出现表明了在某些自指和自我引用的条件下,我们的逻辑系统可能会陷入矛盾和混乱之中。
对于这类悖论,我们需要更加谨慎地审视其逻辑结构,以免受到逻辑混乱的影响。
9. 结论通过以上文章的全面探讨,我们对于理发师悖论有了更深入的理解。
我们应用了归结反演方法来证明悖论的逻辑矛盾性,并共享了个人观点和理解。
希望这篇文章可以帮助读者更加全面、深刻和灵活地理解理发师悖论这一有趣的逻辑问题。
《主动推理:心智、大脑与行为的自由能原理》读书札记目录一、内容描述 (2)1.1 书籍简介 (3)1.2 作者介绍 (4)1.3 研究背景与意义 (5)二、主动推理的理论基础 (6)2.1 主动推理的定义 (8)2.2 主动推理的核心要素 (9)2.3 主动推理与被动推理的比较 (10)三、心智在主动推理中的作用 (12)3.1 意识与认知的关系 (13)3.2 大脑结构与功能 (14)3.3 认知过程与决策机制 (16)四、大脑在主动推理中的功能 (17)4.1 大脑皮层与主动推理 (19)4.2 神经元与主动推理 (20)4.3 内分泌系统与主动推理 (21)五、行为在主动推理中的表现 (22)5.1 行为与思维的关系 (23)5.2 行为习惯与主动推理 (24)5.3 行为调整与主动推理 (25)六、主动推理的实践应用 (26)6.1 学习策略与主动推理 (28)6.2 工作效率与主动推理 (30)6.3 生活决策与主动推理 (31)七、结论 (33)7.1 主动推理的重要性 (34)7.2 主动推理的局限性 (35)7.3 对未来研究的展望 (37)一、内容描述《主动推理:心智、大脑与行为的自由能原理》是一本关于心理学、神经科学和行为经济学的综合性著作。
作者通过对心智、大脑和行为的深入研究,揭示了人类思维、决策和行为的内在机制。
本书的核心观点是:人类的思维、决策和行为并非随机产生,而是受到自由能原理的支配。
自由能原理是指在一个封闭系统中,能量的流动具有一定的规律性,这种规律性在心智、大脑和行为中同样存在。
书中首先介绍了自由能原理的基本概念和内涵,然后通过大量的实验数据和案例分析,详细阐述了自由能原理在心智、大脑和行为中的体现。
人类的心智活动、大脑结构以及行为表现都受到自由能原理的影响,这种影响表现为一种内在的规律性和组织性。
通过对这些规律性和组织性的揭示,我们可以更好地理解人类思维、决策和行为的运作过程,从而为心理学研究和实践提供新的思路和方法。
费舍尔泰格费舍尔泰格是一位20世纪著名的德国哲学家、物理学家和数学家,他以其在统计学和流体力学领域的贡献而闻名。
费舍尔泰格的研究对现代科学和数学的发展产生了深远的影响。
费舍尔泰格于1845年出生在德国的杜塞尔多夫市。
他的父亲是一位成功的商人,他的母亲则是一位受过良好教育的妇女。
在父母的教育下,费舍尔泰格从小就展现出了出色的数学才华。
他在学校里的表现非常出色,很快便成为同龄人羡慕的对象。
费舍尔泰格在校期间对数学产生了浓厚的兴趣,尤其是对几何学和代数学的研究。
后来,他决定在大学里深入学习数学,并为此放弃了其他可能的职业选择。
费舍尔泰格进入了柏林大学,开始了他深入学习数学的旅程。
在柏林大学,费舍尔泰格的数学才华得到了进一步的培养和发展。
他师从于著名的数学家戴德金,并迅速成为他最优秀的学生之一。
费舍尔泰格在大学期间专注于研究几何学和分析学,他在这些领域的研究取得了卓越的成果。
费舍尔泰格的突破性研究之一是对无穷小量和无穷大量的理解和定义。
他提出了一种新的方法来描述和处理这些概念,这一方法后来被称为费舍尔泰格理论。
这一理论对物理学和统计学的发展产生了重大影响,被广泛应用于各个领域的研究中。
费舍尔泰格在流体力学方面的研究也非常有影响力。
他提出了一种新的流体力学模型,称为费舍尔泰格方程。
这种方程通过描述流体的运动和变形来帮助科学家们更好地理解和预测自然界中的现象。
费舍尔泰格方程被广泛应用于气象学、地质学和海洋学等领域的研究中。
除了在科学研究方面的成就,费舍尔泰格还在教育领域做出了巨大贡献。
他积极推动数学和科学的教育改革,致力于培养更多对科学有兴趣的学生。
他的教学方法和教材被广泛采用,并对整个教育体系产生了深远的影响。
费舍尔泰格在1898年逝世,但他的学术贡献至今仍被广泛赞誉和学习。
他的思想和理论在数学、物理学和统计学等领域的研究中仍然发挥着重要作用。
费舍尔泰格的学术成就让我们对科学的发展和进步有了更深入的理解,并且激励着后人不断追求知识和创新。
2016物理诺奖:由拓扑学开启的未知世界蔡丽君【期刊名称】《中国经济报告》【年(卷),期】2016(0)11【摘要】索利斯、霍尔丹和科斯特利茨的理论开创了把拓扑概念应用到凝聚态物理研究的领域,打开了通往丰富的拓扑物态世界的大门10月4日北京时间17时45分(瑞典当地时间11时45分),诺贝尔奖评选委员会宣布,将2016年诺贝尔物理学奖的一半奖金颁给美国华盛顿大学的大卫·索利斯(David J.Thouless),另一半由美国普林斯顿大学的邓肯·霍尔丹(F.Duncan M.Haldane)与布朗大学的迈克尔·科斯特利茨(J.Michael Kosterlitz)共享,以表彰他们发现了物质拓扑相以及在拓扑相变方面作出的理论贡献。
【总页数】3页(P115-117)【关键词】拓扑学;科斯特;物态;大门;利茨;几何学;索利斯;未知世界;拓扑性;霍尔丹;物理【作者】蔡丽君【作者单位】美国旧金山州立大学物理与天文系【正文语种】中文【中图分类】O189【相关文献】1.FABRICSCHINA携手国际羊毛局打造美丽诺羊毛创新产品--“2016中国国际面料设计大赛”首设“最佳美丽诺创新奖”及“最佳美丽诺品质奖” [J], 覃晓2.2016年诺贝尔物理学奖揭晓拓扑相变:开启一个未知世界 [J], 俞陶然;彭德倩3.从2016年诺贝尔物理奖“物质拓扑相”看物理学在未知领域探索的影响 [J], 郑佳安;4.富丽华德新动力是真正世界级一氧化氮诺奖精品专家教您如何鉴别真正世界级一氧化氮诺奖精品 [J], 无5.富丽华德新动力是真正世界级一氧化氮诺奖精品专家教您如何鉴别真正世界级一氧化氮诺奖精品 [J], 无因版权原因,仅展示原文概要,查看原文内容请购买。
叶贝斯公式
贝叶斯公式(Bayes" theorem)是概率论中的一条基本公式,用于计算条件概率。
它被命名为托马斯·贝叶斯,原始版本由于找不到而由皮埃尔-西蒙·拉普拉斯进行了重新发现和推广。
贝叶斯公式如下所示:
P(A|B) = P(B|A) * P(A) / P(B)
其中,P(A|B) 表示在已知 B 发生的情况下 A 发生的概率,
P(B|A) 表示在已知 A 发生的情况下 B 发生的概率,P(A) 和 P(B) 分别表示 A、B 事件发生的概率。
贝叶斯公式可以用来更新先验概率,即根据新的证据调整原有的判断。
例如,在医学诊断中,我们可以利用贝叶斯公式计算出一个病人在得到某项检查结果后,患有某种疾病的后验概率。
a r X i v :c o n d -m a t /0307010v 1 [c o n d -m a t .s t a t -m e c h ] 1 J u l 2003Fisher zeros and Potts zeros of the Q -state Potts model fornonzero external magnetic fieldSeung-Yeon Kim ∗School of Computational Sciences,Korea Institute for Advanced Study,207-43Cheongryangri-dong,Dongdaemun-gu,Seoul 130-722,Korea Abstract The properties of the partition function zeros in the complex temperature plane (Fisher zeros)and in the complex Q plane (Potts zeros)are investigated for the Q -state Potts model in an arbitrary nonzero external magnetic field H q ,using the exact partition function of the one-dimensional model.The Fisher zeros of the Potts model in an external magnetic field are discussed for any real value of Q ≥0.The Potts zeros in the complex Q plane for nonzero magnetic field are studied for the ferromagnetic and antiferromagnetic Potts models.Some circle theorems exist for these zeros.All Fisher zeros lie on a circle for Q >1and H q ≥0except Q =2(Ising model)whose zeros lie on the imaginary axis.All Fisher zeros also lie on a circle for any value of Q when H q =0(except Q =0,1and 2)or H q =−∞(except Q =1,2and 3).All Potts zeros of the ferromagnetic model lie on a circle for H q ≥0.When H q =0or −∞,all Potts zeros lie on a circle for both the ferromagnetic and antiferromagnetic models.All Potts zeros of the antiferromagnetic model with H q <0also lie on a circle for (x +1)−1≤a <1,where a =e βJ and x =e βH q .It is found that a part of the Fisher zeros or the Potts zeros lie on a circle for the specific ranges of H q .It is shown that some Fisher or Potts zeros can cut the positive real axis.Furthermore,the Fisher zeros or the Potts zeros lie on the positive real axis for the specific ranges of H q .The densities of zeros are also calculated and discussed.The density of zeros at the Fisher edge singularity diverges,and the edge critical exponents at the singularity satisfy the scaling law.There exists the Potts edge singularity in the complex Q plane which is similar to the Fisher edge singularity in the complex temperature plane.PACS numbers:05.50.+q;;75.10.Hk;02.10.OxI.INTRODUCTIONThe Q-state Potts model[1,2,3,4,5]is a generalization of the Ising(Q=2)model. The Q-state Potts model exhibits a rich variety of critical behavior and is very fertile ground for the analytical and numerical investigations offirst-and second-order phase transitions. The Potts model is also related to other outstanding problems in physics and mathematics. Fortuin and Kasteleyn[6,7]have shown that the Q-state Potts model in the limit Q→1 defines the problem of bond percolation.They[7]also showed that the problem of resistor network is related to a Q=0limit of the partition function of the Potts model.In addition, the zero-state Potts model describes the statistics of treelike percolation[8],and is equivalent to the undirected Abelian sandpile model[9].The Q=1on the negative real axis[28].Thefirst zero,which we call the edge zero,and its complex conjugate of a circular distribution of the Yang-Lee zeros of the Potts model cut the positive real axis at the physical critical point x c=1for T≤T c in the thermodynamic limit.However,for T>T c the edge zero does not cut the positive real axis in the thermodynamic limit,that is,there is a gap in the distribution of zeros around the positive real axis.Within this gap,the free energy is analytic and there is no phase transition.Kortman and Griffiths[29]carried out thefirst systematic investigation of the magnetization at the edge zero,based on the high-field,high-temperature series expansion for the Ising model on the square lattice and the diamond lattice.They found that above T c the magnetization at the edge zero diverges for the square lattice and is singular for the diamond lattice.For T>T c we rename the edge zero as the Yang-Lee edge singularity.The divergence of the magnetization at the Yang-Lee edge singularity means the divergence of the density of zeros,which does not occur at a physical critical point.Fisher[30]proposed the idea that the Yang-Lee edge singularity can be thought of as a new second-order phase transition with associated critical exponents and the Yang-Lee edge singularity can be considered as a conventional critical point.The critical point of the Yang-Lee edge singularity is associated with aφ3theory,different from the usual critical point associated with theφ4theory.The crossover dimension of the Yang-Lee edge singularity is d c=6.Fisher[31]emphasized that the partition function zeros in the complex temperature plane (Fisher zeros)are also very useful in understanding phase transitions,and showed that for the square lattice Ising model in the absence of an external magneticfield the Fisher zeros in√the complex y=e−βJ plane lie on two circles(the ferromagnetic circle y FM=−1+2e iθ)in the thermodynamic limit.In particular, using the Fisher zeros both the ferromagnetic phase and the antiferromagnetic phase can be considered at the same time.The critical behavior of the square-lattice Potts model in both the ferromagnetic and antiferromagnetic phases has been studied using the distribution of the Fisher zeros,and the Baxter conjecture[32]for the antiferromagnetic critical temperature has been verified[33,34].Recently,the Fisher zeros of the Q-state Potts model on square lattices have been studied extensively for integer Q>2[5,16,18,19,20,34,35,36,37,38, 39,40,41,42,43,44,45,46,47,48,49,50,51]and noninteger Q[33,34,48,49].Exact numerical studies have shown[5,16,33,34,37,38,42,44,47]that for self-dual boundary3conditions the Fisher zeros of the Q>1Potts models on afinite square lattice are located on the unit circle in the complex p plane for Re(p)>0,where p=(eβJ−1)/√investigated for general Q except few integer values of Q.The partition function of the Q-state Potts model in the absence of an external magnetic field is also known as the Tutte dichromatic polynomial[54]or the Whitney rank function[55] in graph theory and combinatorics of mathematics.One of the most interesting properties of the antiferromagnetic Potts model is that for Q>2the ground-state is highly degenerate and the ground-state entropy is nonzero.The ground states of the antiferromagnetic Potts model are equivalent to the chromatic polynomials[56]in mathematics,which play a central role in the famous four-color problem[57].The partition function zeros in the complex Q plane(Potts zeros)of the Q-state Potts model have been studied both in mathematics and in physics.The Potts zeros atβJ=−∞,corresponding to T=0for the antiferromagnetic model,have been investigated extensively to understand the chromatic polynomials and the ground states of the antiferromagnetic Potts model[34,51,58,59,60,61,62,63,64,65, 66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85].Recently,the Potts zeros atfinite temperatures have been studied for ladder graphs[48,51],L×L square lattices[34],and the model with long-range interactions[86].However,the properties of the Potts zeros for nonzero magneticfield have never been known until now.In this paper,we investigate the exact results on the partition function zeros of the ferromagnetic and antiferromagnetc Q-state Potts models in one dimension,and we unveil the unknown properties of the Fisher zeros and the Potts zeros in an external magneticfield. In the next section we obtain two master equations to determine the partition function zeros of the one-dimensional Potts model.In Sec.III we calculate and discuss the Fisher zeros of the Q-state Potts model for any value of Q and in an arbitrary magneticfield.In Sec.IV we study the Potts zeros in the complex Q plane of the ferromagnetic and antiferromagnetic Potts models in an arbitrary external magneticfield.II.THE Q-STATE POTTS MODELThe Q-state Potts model in an external magneticfield H q on a lattice G with N s sites and N b bonds is defined by the HamiltonianH Q=−J i,j δ(σi,σj)−H q kδ(σk,q),(1)5where J is the coupling constant(ferromagnetic model for J>0and antiferromagnetic model for J<0), i,j indicates a sum over nearest-neighbor pairs,σi=1,2,...,Q,and q is afixed integer between1and Q.The partition function of the model isZ Q= {σn}e−βH Q,(2) where{σn}denotes a sum over Q N s possible spin configurations andβ=(k B T)−1.The partition function can be written asZ(a,x,Q)=N bE=0N s M=0ΩQ(E,M)a E x M,(3)where a=y−1=eβJ,x=eβH q,E and M are positive integers0≤E≤N b and0≤M≤N s, respectively,andΩQ(E,M)is the number of states withfixed E andfixed M.The states with E=0(E=N b)correspond to the antiferromagnetic(ferromagnetic)ground states. The parameter Q enters the Potts model as an integer.However,the study of the Q-state Potts model has been extended to continuous Q due to the Fortuin-Kasteleyn representation of the partition function[6,7]and its extension[87].For the one-dimensional Potts model in an externalfield the eigenvalues of the transfer matrix were found by Glumac and Uzelac[27].The eigenvalues areλ±=(A±iB)/2,where A=a(1+x)+Q−2and B=−i(a−1)(a+Q−1)x, thenλ±=C exp(±iψ),and the partition function isZ N=2C N cos Nψ.(6)The zeros of the partition function are then given byψ=ψk=2k+1In the thermodynamic limit the locus of the partition function zeros is determined by the solution ofA=2C cosψ,(8) where0≤ψ≤π.In the special case Q=2the contribution by the eigenvalueλ0disappears from the partition function,Eq.(4),and the equation(8)determines all the locus even for finite systems.On the other hand,whenλ+andλ0are two dominant eigenvalues,we haveZ N≃λN++(Q−2)λN0(9) for large N.The partition function zeros are then determined byλ+N,k=0,1,2,...,N−1.(11) In the thermodynamic limit the locus of the partition function zeros is determined by the solution ofa2x2+(Q−1)x−axA+(a−1)Ae iφ−(a−1)2e2iφ=0,(12) where0≤φ≤2π.The equation(12)also determines the locus of the zeros whenλ−and λ0are two dominant eigenvalues.III.FISHER ZEROSFrom the equation(8)the locus of the Fisher zeros is obtained to bey1(ψ)=(Q−2)(x cos2ψ−1)±i2√(Q−2)2+4(Q−1)x cos2ψ,(13)where f=x cos2ψ[(Q+x−1)(Qx−x+1)−Q2x cos2ψ].The edge zeros of y1(ψ)are given byy±=y1(0)=(Q−2)(x−1)±i2|x−1|(Q−2)2+4(Q−1)x.(14)In the absence of an externalfield,H q=0(x=1),these edge zeros cut the real axis at the origin,y±=0,(15)7which corresponds to the T=0ferromagnetic transition point.If f<0,the zeros of y1(ψ) lie on the real axis.However,if f>0,the zeros of y1(ψ)lie on a circley1(ψ)=y c+De±iθ(ψ)(16)in the complex y plane,where y c(the center of the circle)and D are given byy c=1(Q−2)2(x−1)+E(x+1)(17)andD=1(Q−2)2(x−1)+E(x+1).(18)E is defined byE=(Q−2)2+4(Q−1)x,(19) the argumentθis given bycosθ(ψ)=1(Q−2)2+4(Q−1)x cos2ψ−y c,(20)and the radius r of the circle isr=|D|.(21) The one point of the circle y1(ψ),y1 ψ=π2−Q,(22) always lies on the real axis.The point y1(πe i2φ+(Q−2)e iφ−(Q−1)x.(23) The two points of y2(φ),y2(0)=0(24) andy2(π)=2(x+1)(Q−1)x+1.(26)8A.Q>1In the special case Q=2all the Fisher zeros lie on the imaginary axis,and they meet the real axis at the origin only for x=1.At x=1(H q=0),the loci y1(ψ)and y2(φ)become the identical locus as a circle[48]y(ρ)=−1Q−2e iρ(27)for any value of Q except Q=0,1,and2.On this circle three eigenvalues have the same magnitude|λ+|2=|λ−|2=|λ0|2=(Q−1)(Q−1−2cosρ)+12−Q.(30) The point y(ρ=0)is the T=0ferromagnetic transition point.The point y(ρ=π)has no physical meaning for Q>2,but it may correspond to an antiferromagnetic transition point for Q<2because the physical interval is1≤y≤∞(∞≥T≥0)(31) for antiferromagnetic interaction J<0.For x>1(H q>0)all the Fisher zeros lie on the circle y1(ψ)(f>0for Q>1and x>1),whereas for x<1(H q<0)they are located on the loop y2(φ).Figure1shows the locus of the Fisher zeros in the complex y plane of the three-state Potts model for x=1,2and3.For Q=3the center y c and the radius r of the circle y1(ψ) are given byy c=−1,r=1(x=1),(32)y c=−1913(x=2),(33)andy c=−3317(x=3).(34) 9For x=1two edge zeros y±cut the real axis at the origin which is the T=0ferromagnetic transition point.However,as x increases,they move away from the origin,and there is a gap in the distribution of zeros,centered atθ=0,that is,the density of zeros is zero, g(θ)=0,for|θ|<θ0.The edge angleθ0(=θ(ψ=0))is given bycosθ0=1E−y c,(35)and the edge zeros are expressed asy±=y c+De±iθ0.(36) For example,for the three-state Potts model,the edge zeros are located aty±=0(x=1),(37)y±=125(2±4√2π [(Q−2)−2(Q−1)(y c+D cosθ)]2πQ|Q−2|2πQthat is,the density of zeros diverges at the Fisher edge zeros y±for x>1.In this case, the Fisher edge zero is called the Fisher edge singularity because of the divergence of the density of zeros.The edge critical exponentsαe,βe andγe associated with the Fisher edge singularity are defined in the usual way,C e∼(y−y±)−αe,(45)m e∼(y−y±)βe,(46) andχe∼(y−y±)−γe,(47) where C e,m e,andχe are the singular parts of the specific heat,magnetization,and sus-ceptibility,respectively.The density of zeros near the Fisher edge singularity is also given byg(θ∼θ0)∼(y−y±)1−αe.(48) The Fisher edge singularity is characterized by the edge critical exponentsαe=32, andγe=32state Potts model for x=1and x=3.For Q=317,r=7025(−1±2√2orθ=π),Eq.(22),of the circle y1(θ(ψ)).The point y1(π)lies on the negative real axis for Q>2,whereas it lies on the negative real axis for1<Q<2.For1<Q<2and x≥1we havey1(π)>2,(52)and the point y1(π)may correspond to an antiferromagnetic transition point.11In the limit H q→∞(x→∞)the positivefield H q favors the state q for every site and the Q-state Potts model is transformed into the one-state model.The Fisher zeros aredetermined byZ(y,x→∞,Q)∼N bE=0ΩQ(E,M=N s)y−E=0(53)for any Q.BecauseΩQ(E,M=N s)=1for E=N b and0otherwise,Eq.(53)isy−N b=0.(54)As x increases,|y|for all the zeros increases without bound[47].Now we turn to the distributions of Fisher zeros for x<1(H q<0)which are completely determined by the loop y2(φ).The locus cuts the real axis at two points y2(0)and y2(π). The pointy2(0)=0(55)is the T=0ferromagnetic transition point.For Q≥3the point y2(π)lies on the negative real axis,and it has no physical meaning.Figure3shows the locus of the Fisher zeros in the complex y plane of the three-state Potts model for x=12state Pottsmodel for x=12and x=15.(58) For2<Q<3,the value of y2(π)diverges at¯x1=3−Q2<Q<3and x<¯x,y2(π)>1,and the distributions of the zeros are similar to that in Fig.4.In the limit H q→−∞(x→0)the partition function of the Q-state Potts model,Eq.(4), becomesZ(a,x=0,Q)=(a+Q−2)N+(Q−2)(a−1)N.(60) For an externalfield H q<0,one of the Potts states is supressed relative to the others,and the symmetry of the Hamiltonian is that of the(Q−1)-state Potts model in zero external field.Therefore,the partition function Z(a,x=0,Q+1)of the(Q+1)state Potts model in the limit H q→−∞is the same as the partition functionZ(a,x=1,Q)=(a+Q−1)N+(Q−1)(a−1)N.(61) of the Q-state Potts model in the absence of an external magneticfield.As x decreases from 1to0,the Q-state Potts model is transformed into the(Q−1)-state Potts model in zero externalfield[47].At x=0,the Fisher zeros of the Q-state Potts model lie on a circley(ρ)=−1Q−3e iρ(62)for any value of Q except Q=1,2,and3.The zeros lie on the imaginary axis for the three-state Potts model at x=0.B.Q<1and x>1For x<¯x2,where¯x2=12and x=3√13.(65)13At x=¯x2,y∗=−∞,and the line y1(ψ)lies on the real axis between−∞and y−(<0).In the region¯x2<x<¯x3,where¯x3=1+√1−√2and x=3,from which we obtainy−=46)=−0.506,y2(π)=2,y∗=4.(67)At x=¯x3,φ∗=π,the other edge zero y+appears,and the loop y2(φ)shrinks to thepointy+=y∗=y2(π)=−2√Q+(Q−2)√x2)(y∗<y01<y−<y1(π2)are given byy01=y1(ψ0)=y1(π−ψ0)=y c+D=2(Q−2)x(x−1)2 =y c−D=x+1respectively.Similarly,the loop also cuts the real axis at two points y2(0)and y∗(0= y2(0)<y∗).For example,figure7shows the locus for Q=110.For these values we obtainy∗=611,y−=172 =17165,r=26QQ,(75)the locus consists of the loop y2(φ)and the line y1(ψ)on the real axis between y∗and y−(y2(0)<y∗<y−≤1).The loop y2meets with the line y1at the point y∗,and also cuts thereal axis at the point y2(0)(=0).At x=¯x4,the line Q1(φ)shrinks to the pointy−=y∗=y2(π)=2√Q+(2−Q)√IV.POTTS ZEROSFrom the equation(8)the locus of the Potts zeros is obtained to beQ1(ψ)=1−a+ √g2 2,(79) where g1=(a−1)x and g2=g1sin2ψ+x−1.The edge zeros of Q1(ψ)are given byQ±=(a−2)(x−1)±2cos2ψ−1.(86)ax−1The one point of the circle Q1(ψ),Q1 ψ=πe iφ−x.(88)16The two points of Q2(φ),Q2(0)=1(89) andx+3Q2(π)=.(91)xA.Three special cases:x=1,x=0,and a=1In the absence of an externalfield(H q=0or x=1),the locus Q1(ψ)becomesQ1(ψ)=1−a+(a−1)e iθ,(92) where the argumentθ(ψ)is simply given byθ(ψ)=2ψ.(93) At the same time,the locus Q2(φ)reduces toQ2(φ)=(a−1)(e iφ−1),(94) which is the identical circle to the locus Q1(ψ).The equation(93)means that the Potts zeros are uniformly distributed on this circle.In particular,the Potts zeros lie on the unit circle at a=0[68,69].The circle Q1(ψ)or Q2(φ)cuts the real axis at two points Q=0 and2(1−a).For ferromagnetic interaction J>0the physical interval is1≤a≤∞(∞≥T≥0),(95) whereas for antiferromagnetic interaction J<0the physical interval0≤a≤1(0≤T≤∞).(96) It should be noted that the point2(1−a)lies on the positive real axis for the Potts an-tiferromagnet.For1it does in1<2(1−a)≤2.The locus of the Potts zeros consists of the circle and 2the isolated point at Q=1for0≤a<1In the limit H q→−∞(x→0),the partition function of the Q-state Potts model is again given by Eq.(60),and the symmetry of the Hamiltonian is that of the(Q−1)-state Potts model in zero externalfield.At x=0,the locus Q2(φ)(Eq.(88))of the Q-state Potts model reduces toQ2(φ)=2−a+(a−1)e iφ,(97) which is a circle with center Q c=2−a and radius r=|a−1|.The equation(97)is also obtained by replacing Q in Eq.(94)with Q−1.The circle Q2(φ)cuts the real axis at two points Q=1and3−2a.For12it does in2<3−2a≤3.The locus of the Potts zeros consists of the circle Q2(φ) and the isolated point at Q=2for0≤a<1|λ0|=a−1>1,(99)which implies that the locus Q2(φ)does not appear.The circle Q1(ψ)always cuts the real axis at the point Q1(πfor a=3.For x=1two edge zeros Q±cut the real axis at the origin,whereas they move away from the origin as x increases.The Potts edge zeros are determined by the edge angleθ0=θ(ψ=0)=cos−1 (a−2)x+13i(x=3).(105) On the circle Q1(ψ),the density of zeros g(θ(ψ))is given byg(θ)=|sinθ2π 2−sin2θ02π.(108)However,for x>1the density of zeros at the Potts edge zeros Q±diverges,that is,g(θ∼θ0)∼1Q(θ)−Q±(θ0).(109)In this case,the Potts edge zero can be called the Potts edge singularity with the edge critical exponentµe(=−1(x+1)2(111)19and¯a2=12(x+1),(114) and negative for¯a3<a<¯a2.Figure9shows the locus of the Potts zeros for a=3 2from which we obtainQ2(π)=−22,Q+=1√x+1 2.(116)For a<¯a1,the only locus is the line Q1(ψ)on the positive real axis between Q−and Q+ (0<Q−<Q+).On the other hand,at a=¯a2,φ∗=0,and the line Q1(ψ)shrinks to the pointQ+=Q∗=Q2(0)=1.(117) For a>¯a2,all the Potts zeros lie on the loop Q2(φ)which again cuts the real axis at two points Q2(π)and Q2(0)(Q2(π)<Q2(0)=1).The sign of Q2(π)is positive for¯a2<a<¯a3 and negative for a>¯a3.D.a<1and x>1Because g1is always negative,the zeros of Q1(ψ)lie on a circle if g2<0(ψ0<ψ<π−ψ0) and on the real axis if g2>0(0≤ψ<ψ0orπ−ψ0<ψ≤π).For0≤a<¯a4,where¯a4=1the locus of the Potts zeros of the antiferromagnetic model(antiferromagnetic Potts zeros) consists of the line Q1(ψ)(0≤ψ≤ψ0andπ−ψ0≤ψ≤ψ∗)on the real axis betweenQ−=Q1(0)(<0)and Q∗=Q1(ψ∗)(>0),the circle Q1(ψ)(ψ0≤ψ≤π−ψ0),and the loop Q2(φ)(−φ∗≤φ≤φ∗),inside the circle Q1.The loop Q2meets with the line Q1at the pointQ∗=Q2(φ∗)=Q2(−φ∗),(119) where|λ+|=|λ−|=|λ0|.The circle Q1(ψ)cuts the real axis at two points Q01(≥0)andQ1(π2)≤2),where the points Q01and Q1(π2 =Q c−S=2−a(x+1),(121) respectively.Similarly,the loop also cuts the real axis at two points Q∗and Q2(0)(0< Q∗<Q2(0)=1).For example,figure10shows the locus for a=110−65=−4.583,Q01=120,Q1 π10,(122)and the center Q c and the radius r for the circleQ c=95.(123)At a=¯a4,two points Q∗and Q01on the real axis meet atQ∗=Q01=x−12),Q2(0)and Q2(π)on the real axis also meet atQ1 πx+1(126)and radius1On this circle three eigenvalues have the same magnitude|λ+|=|λ−|=|λ0|=xx+1 2.(129) For a>¯a1,the loop disappears,and the only locus is the line Q1(ψ)on the real axis between Q−(<0)and Q+(>Q−).The sign of Q+is positive(negative)if a<¯a5(a>¯a5),where¯a5=−2(1−√x+1.(130)In the limit x→∞,the boundary curves a=¯a1and a=¯a4approach the line a=0,and the Potts zeros lie on the line Q1(ψ)which approaches the point−∞.E.a<1and x<1For a<1and x<1,g1and g2are always negative,and the antiferromagnetic Potts zeros of the locus Q1(ψ)lie on a circle.At a=¯a4,the loci Q1(ψ)and Q2(φ)become identical to be a circle on which three eigenvalues again have the same magnitude|λ+|=|λ−|=|λ0|=x2 =Q2(0)=Q2(π)=1.(132) For a>¯a4,all the Potts zeros lie on the circle Q1(ψ)(0≤ψ≤π)which cuts the real axisat the point Q1(π2)<1).Figure11shows the locus of the Potts zeros for a=310which has the center2the radiusr=2350±i322 =432and x=110and x=13,(137)whilefigure13has an egg-like shape andQ2(π)=1442(x+1),(139) the point Q2(π)locates in1<Q2(π)≤2,while for0≤a<¯a6it does in2<Q2(π)<3. The locus of the Potts zeros consists of the loop Q2(φ)and the isolated point at Q=2for 0≤a<¯a6.V.CONCLUSIONWe have investigated the properties of the Fisher zeros in the complex temperature plane and the Potts zeros in the complex Q plane of the Q-state Potts model in an arbitrary nonzero external magneticfield,finding two master equations to determine the partition function zeros from the exact partition function of the one-dimensional model.The distribution of the Fisher zeros or the Potts zeros is determined by the interplay between these master equations.We have discussed the Fisher zeros of the Potts model in an external magneticfield for any real value of Q≥0.We have also studied the Potts zeros in the complex Q plane of the ferromagnetic and antiferromagnetic Potts models for nonzero magneticfield.Some circle theorems have been found for both the Fisher zeros and the Potts zeros.All Fisher zeros lie on a circle for Q>1and x≥1except Q=2(Ising model)whose zeros lie on the imaginary axis.All Fisher zeros also lie on a circle for any value of Q when x=1(except Q=0,1and2)or x=0(except Q=1,2and3).All Potts zeros of the ferromagnetic model lie on a circle for x≥1.When x=1or x=0,all Potts zeros lie on a circle for both the ferromagnetic and antiferromagnetic models.All Potts zeros of the antiferromagnetic model with x<1also lie on a circle for(x+1)−1≤a<1.It has been found that a part ofthe Fisher zeros or the Potts zeros lie on a circle for the specific ranges of x.We have shown that some Fisher or Potts zeros can cut the positive real axis.Further-more,the Fisher zeros or the Potts zeros lie on the positive real axis for the specific ranges of x.We have also calculated and discussed the density of zeros.The density of zeros at the Fisher edge singularity diverges,and the edge critical exponents at the singularity satisfy the Rushbrooke scaling law.We have found the Potts edge singularity in the complex Q plane which is similar to the Fisher edge singularity in the complex temperature plane.AcknowledgmentsThe author thanks Prof.R.J.Creswick for valuable discussions.[1]R.B.Potts,Proc.Camb.Philos.Soc.48,106(1952).[2] F.Y.Wu,Rev.Mod.Phys.54,235(1982).[3] F.Y.Wu,J.Appl.Phys.55,2421(1984).[4]R.J.Baxter,Exactly Solved Models in Statistical Mechanics(Academic Press,London,1982).[5]P.P.Martin,Potts Models and Related Problems in Statistical Mechanics(World Scientific,Singapore,1991).[6]P.W.Kasteleyn and C.M.Fortuin,J.Phys.Soc.Jpn.Suppl.26,11(1969).[7] C.M.Fortuin and P.W.Kasteleyn,Physica57,536(1972).[8]M.J.Stephen,Phys.Lett.A56,149(1976).[9]S.N.Majumdar and D.Dhar,Physica A185,129(1992).[10] A.Aharony,J.Phys.C11,L457(1978).[11]T.C.Lubensky and J.Isaacson,Phys.Rev.Lett.41,829(1978).[12] C.N.Yang and T.D.Lee,Phys.Rev.87,404(1952).[13]T.D.Lee and C.N.Yang,Phys.Rev.87,410(1952).[14] C.Itzykson,R.B.Pearson,and J.B.Zuber,Nucl.Phys.B220,415(1983).[15]R.J.Creswick and S.-Y.Kim,Phys.Rev.E56,2418(1997).[16]R.J.Creswick and S.-Y.Kim,in Computer Simulation Studies in Condensed-Matter Physics,edited by ndau,K.K.Mon,and H.-B.Sch¨u ttler(Springer,Berlin,1998),Vol.10,p.224.[17]R.J.Creswick and S.-Y.Kim,mun.121,26(1999).[18]W.Janke and R.Kenna,J.Stat.Phys.102,1211(2001).[19]W.Janke and R.Kenna,mun.147,443(2002).[20]W.Janke and R.Kenna,Nucl.Phys.B,Proc.Suppl.106,905(2002).[21]R.A.Kromhout,Physica B301,389(2001).[22]S.-Y.Kim and R.J.Creswick,Phys.Rev.Lett.81,2000(1998).[23]S.-Y.Kim and R.J.Creswick,Phys.Rev.Lett.82,3924(1999).[24]S.-Y.Kim and R.J.Creswick,Physica A281,252(2000).[25]S.-Y.Kim,Nucl.Phys.B637,409(2002).[26]L.Mittag and M.J.Stephen,J.Stat.Phys.35,303(1984).[27]Z.Glumac and K.Uzelac,J.Phys.A27,7709(1994).[28] C.N.Yang,Special Problems of Statistical Mechanics(Lectures at the University of Wash-ington,1952).[29]P.J.Kortman and R.B.Griffiths,Phys.Rev.Lett.27,1439(1971).[30]M.E.Fisher,Phys.Rev.Lett.40,1610(1978).[31]M.E.Fisher,in Lectures in Theoretical Physics,edited by W.E.Brittin(University of Col-orado Press,Boulder,1965),Vol.7c,p.1.[32]R.J.Baxter,Proc.R.Soc.London,Ser.A383,43(1982).[33]S.-Y.Kim,R.J.Creswick,C.-N.Chen,and C.-K.Hu,Physica A281,262(2000).[34]S.-Y.Kim and R.J.Creswick,Phys.Rev.E63,066107(2001).[35]J.M.Maillard and R.Rammal,J.Phys.A16,353(1983).[36]P.P.Martin,Nucl.Phys.B225,497(1983).[37]P.P.Martin,in Integrable Systems in Statistical Mechanics,edited by G.M.D’Ariano,A.Montorsi,and M.G.Rasetti(World Scientific,Singapore,1985),p.129.[38]P.P.Martin,J.Phys.A19,3267(1986).[39] D.W.Wood,R.W.Turnbull,and J.K.Ball,J.Phys.A20,3465(1987).[40]G.Bhanot,J.Stat.Phys.60,55(1990).[41]N.A.Alves,B.A.Berg,and R.Villanova,Phys.Rev.B43,5846(1991).[42] C.-N.Chen,C.-K.Hu,and F.Y.Wu,Phys.Rev.Lett.76,169(1996).[43] F.Y.Wu,G.Rollet,H.Y.Huang,J.M.Maillard,C.-K.Hu,and C.-N.Chen,Phys.Rev.Lett.76,173(1996).[44]V.Matveev and R.Shrock,Phys.Rev.E54,6174(1996).[45]R.Kenna,J.Phys.A31,9419(1998).[46]R.Kenna,Nucl.Phys.B,Proc.Suppl.63,646(1998).[47]S.-Y.Kim and R.J.Creswick,Phys.Rev.E58,7006(1998).[48]R.Shrock,Physica A283,388(2000).[49]S.-C.Chang and R.Shrock,Phys.Rev.E64,066116(2001).[50]N.A.Alves,J.P.N.Ferrite,and U.H.E.Hansmann,Phys.Rev.E65,036110(2002).[51]S.-C.Chang,J.Salas,and R.Shrock,J.Stat.Phys.107,1207(2002).[52]V.Matveev and R.Shrock,J.Phys.A28,4859(1995).[53]V.Matveev and R.Shrock,Phys.Rev.E53,254(1996).。