第3节:G蛋白偶联受体介导的信号转导
- 格式:docx
- 大小:1.73 MB
- 文档页数:4
信号转导系统信号转导生物体对环境(包括外环境和内环境)信号变化有极高的反应性。
如细菌趋向营养物的运动,视觉细胞对光的感觉,饥饿时激素信号使燃料分子(feul molecules)如糖、脂肪、蛋白质等释放内部能量,生长因子诱导分化等都是典型的例子。
细胞对外界刺激的感受和反应都是通过信号转导系统(signal transduction system)的介导实现的。
该系统由受体、酶、通道和调节蛋白等构成。
通过信号转导系统、细胞能感受、放大和整合各种外界信号。
第一节细胞信号的概况一、细胞外信号分子的识别在多细胞高等生物体内,细胞间的相互影响是通过信号分子实现的,信号分子包括蛋白质、肽、氨基酸、核苷酸、类固醇、脂肪酸衍生物和一些溶于水的气体分子,如一氧化碳、一氧化氮等。
这些信号分子大多数由信号细胞(signaling cells)分泌产生,有些是通过扩散透过细胞膜释放,有些则是和细胞膜紧密结合,需要通过细胞接触才能影响到和信号细胞相接触的其他细胞。
信号分子对靶细胞的作用都是通过一类特异的蛋白质——受体实现的,受体能特异地识别信号分子。
靶细胞上的受体大多数是跨膜蛋白质(transmembrane proteins),当受体蛋白和细胞外信号分子(也称配体ligand)结合后就被激活,从而启动靶细胞内信号转导系统的级联反应(cascade)。
有些受体位于细胞内,信号分子必须进入细胞才能与受体结合,并使受体激活,这些信号分子都是分子量很小而且是脂溶性的,能扩散通过细胞膜进入细胞。
二、分泌性信号分子作用途径旁分泌(paracrine)由细胞分泌的信号分子只是作为局部的介导物,作用于邻近的靶细胞,称为旁分泌。
旁分泌的信号分子由细胞分泌后,不能扩散至较远的距离,这种信号分子很快地被邻近的靶细胞摄入,或被细胞外酶降解(图17-1A)。
突触(synapses)在较高等的多细胞生物体内,神经细胞(或神经元)能通过轴突与相距较远的靶细胞接触。
G蛋白在信号转导中的作用摘要:G蛋白是一种特殊的调节蛋白,它们都具有GTP结合位点,且活性受GTP的调节。
G蛋白以其特定的方式偶联许多膜受体及其效应器,其中包括腺苷酸环化酶,cGMP磷酸二酯酶(PDE),离子通道以及磷脂肌醇特异的磷脂酶C(PLC)等,是跨膜信息传递机制中的一个关键因素。
G蛋白也称GTP酶开关蛋白,属于GTP酶超大家族中的特殊亚型,可通过结合或水解GTP进行活性控制,是一类广泛分布在细胞中,并在许多生物学过程中执行重要功能的一类蛋白。
G蛋白介导的信号转导系统是细胞中最常见的信号传递方式,G蛋白参与了G蛋白偶联受体所介导的信号转导途径和酶联受体信号传导途径,在信号转导中发挥的重要的作用。
关键词:G蛋白,信号转导,G蛋白偶联受体G蛋白的种类和基本结构:G蛋白是一类能与鸟嘌呤核苷酸结合、具有GTP酶(GTPase)活性的蛋白。
G蛋白位于质膜胞质侧,是一个超级家族,包括异源三聚体G蛋白(heterotrimeric G protein ) 或称大G蛋白和小G蛋白( Small G protein)。
异源三聚G蛋白( heterotrmieric GTP binding protein ),由α,β,γ三个亚基组成。
它变动于它的GDP形式(对环化酶无活性)及它的GTP 形式(有活性) 之间。
根据不同的a亚基的功能特性可将大G蛋白分为四类:(1) Gs:其活性能被霍乱毒素抑制;(2) Gi:对腺苷酸环化酶有抑制效应;(3) Gq:百日咳毒素和霍乱毒素不能调节其活性;(4) G12:活化需通过血栓素和凝酶素的介导。
目前已经确定了23种Gα,5种Gβ,10种Gγ,这样体内就有上千种G蛋白三聚体组合的可能性,这无疑增加了信号转导的可变性和灵活性。
小分子G蛋白,它们的激活不是直接通过与激动型的G蛋白偶联受体相互作用而调节其活性,而是通过鸟嘌呤核苷交换因子(GEF)来控制这类小分子G蛋白的GTP交换,由GEF催化这类小分子单聚体G蛋白的无活性GDP结合状态向有活性的GTP结合状态转换。
G蛋白偶联受体及其信号转导与疼痛综述:孙磊审校:曾帮雄G蛋白是细胞信息传递的基本中间物质。
许多研究表明[1]在很多细胞,突触后细胞缓慢的电位改变或根本观察不到电位改变,这与刺激突触前细胞形成了鲜明对比。
突触后细胞则是通过第二信使和酶的活化来调节其胞内的生化过程。
突触后细胞上的慢反应受体称为代谢型受体。
G蛋白相关受体家族属此型受体且最大。
本文综述G蛋白偶联受体及其信号转导在临床疼痛中的意义。
一、G蛋白的分子生理学—G蛋白循环[2-7]G蛋白循环可描述为一系列相对独立的步骤。
“G蛋白”系因能通过三磷酸鸟苷[GTP]的结合与水解以限制其作用时间而得名。
第一步:排列于细胞表面的特殊受体识别配体,一旦结合此配体发生形态改变,使受体激活特定等级的G蛋白。
G蛋白激活的关键是受体一配体刺激引起的GTP转化为5-二磷酸鸟苷[GDP]的过程(第二步)。
此转变受GDP水解速率控制。
一旦激活后G蛋白可自由弥散入细胞膜与效应蛋白相遇(第三步)。
通常这些效应蛋白是细胞内的酶或细胞膜上的离子通道。
这一步调节效应蛋白,产生酶的激话与抑制离子通道的开放与关闭等。
并改变细胞内第二信使浓度和细胞膜电位。
G蛋白保持着激活状态,直到将GTP末端磷酸盐水解为GDP,G蛋白失活后和GDP与另一受体配体结合进入下次循环。
通常G蛋白有三大特征:1放大作用:激活靶细胞上的一个受体可激活500个G蛋白,使得由一个G蛋白调节效应蛋白在其失活前可产生大量的第二信使。
2 G蛋白的由于减慢GTP 水解的速率而产生“作用时间延长”。
3自我调控,G蛋白被激活后必须自我关闭,否则将持续地产生放大作用。
二、G蛋白偶联受体激活蛋白级联反应突触后细胞上的受体多属于G蛋白偶联受体家族[5],这些受体的活动需要一系列被称为G 蛋白的分子有序地参与,G蛋白通过和其他细胞内成分相互作用引起第二信使水平的变化或离子通道的激活等反应。
(同上G蛋白循环)三、G蛋白偶联受体具有共同结构特点G蛋白偶联受体间高度的同源性反映在它有共同的预测结构,它们均有7个跨膜段,所以又称为7次跨膜受体,它们都有一个大小变化很大的细胞外N末端和一个胞浆内C末端,按其结合区域有G蛋白偶联受体配体结合域;G蛋白偶联受体与G蛋白作用的胞内结构域等。
《G蛋白偶联受体介导的信号通路共同点》近年来,G蛋白偶联受体(GPCR)介导的信号通路在细胞生物学和药物开发领域备受关注。
GPCR是一类跨膜受体蛋白,能感知细胞外的信号分子,从而引发细胞内的信号传导,对多种生理过程发挥重要作用。
在不同的细胞类型和组织中,不同种类的GPCR可能介导不同的信号通路,但同时也存在一些共同点。
本文将深入探讨G蛋白偶联受体介导的信号通路的共同点,并分析其对细胞生物学和临床治疗的意义。
共同点一:二级信号转导通路研究表明,GPCR介导的信号通路大多通过二级信号转导分子传递信号。
当细胞外的信号分子结合GPCR时,GPCR会激活其内在的G蛋白,并进而激活腺苷酸环化酶(AC)、磷脂酶C(PLC)、或细胞内钙离子等二级信号转导分子,最终引发细胞内信号传导级联反应。
这种二级信号转导通路是大多数GPCR共有的特点,为理解和干预GPCR介导的信号通路提供了重要线索。
共同点二:调控蛋白激活另一个共同点是,许多GPCR介导的信号通路均涉及调控蛋白的激活。
其中,蛋白激酶A(PKA)和蛋白激酶C(PKC)是最为典型的调控蛋白。
当GPCR被激活后,G蛋白会激活腺苷酸环化酶,进而使细胞内的cAMP水平升高,激活PKA。
另一些GPCR激活PLC,使细胞内的钙离子浓度升高,最终激活PKC。
这些调控蛋白激酶的激活对于细胞的功能和生理过程至关重要,因此成为了GPCR信号通路共同的重要环节。
共同点三:可能的信号转导交叉一些研究还发现,不同种类的GPCR介导的信号通路可能存在交叉。
某些GPCR激活PLC产生二酰甘油(DAG)和肌醇三磷酸(IP3),而IP3则可促使细胞内钙离子升高,从而激活PKC。
这种信号转导的交叉现象使得不同种类的GPCR之间产生相互影响和相互调节的可能性,增加了GPCR信号通路的复杂性和多样性。
总结与展望G蛋白偶联受体介导的信号通路具有一些共同的特点,如二级信号转导通路、调控蛋白激活和信号转导交叉等。
千里之行 始于足下1途径一:激活离子通道的G 蛋白偶联受体所介导的信号通路G 蛋白偶联受体介导的信号转导受体:G 蛋白结构三个亚基组成G α:分子开关锚定在膜上G β、G γ:二聚体形式,锚定在膜上7次跨膜α螺旋(右图上)N 端在胞外、C 端在胞内激活的普遍机制(右图下)根据效应蛋白分类1、激活离子通道的G 蛋白偶联受体2、激活或抑制腺苷酸环化酶,以cAMP 为第二信使的G 蛋白偶联受体3、激活磷脂酶C ,以IP 3和DGA 作为双信使的G 蛋白偶联受体三类方式比较千里之行 始于足下2图⑤ 图⑥典型例子心肌细胞M 乙酰胆碱受体激活G 蛋白开启K +通道附图p168(下图⑤)Gt 蛋白偶联的光敏感受体的活化诱发cGMP 门控阳离子通道的关闭附图p168(下图⑥)第二信使:cGMP千里之行 始于足下 3途径二:激活或抑制腺苷酸环化酶的G 蛋白偶联受体环化酶的G 蛋白偶联受体刺激AC 的物质肾上腺素、胰高血糖素、促肾上腺皮质激素受体:刺激性激素受体(Rs ),Gs α抑制AC 的物质前列腺素、腺苷受体:抑制性激素受体(Ri ),Gi αACAC 结构12次跨膜蛋白C 端与N 端均在细胞内胞质侧有两个大的相似的结构域,跨膜区有两个整合结构域AC 功能在Mg 2+或Mn 2+存在下,催化ATP 生成cAMP蛋白激酶A (PKA )未激活状态2个调节亚基与2个催化亚基结合激活状态激活物:cAMP调节亚基与催化亚基分开图⑦4 千里之行始于足下图⑧ 图⑨图115千里之行始于足下6 千里之行始于足下千里之行 始于足下7激活磷脂酶C 、以IP 3和DGA 作为双信使G 蛋白偶联受体介导的信号通路 图10第三条途径双信使(图10)来源磷脂酰肌醇(PI)代谢(图11)双信使介绍肌醇三磷酸(IP 3)机制与内质网上IP 3R 结合,开放Ca 2+通道功能引发贮存在内质网中的Ca 2+转移到细胞质基质中,使胞质中Ca 2+浓度升高二酰甘油(DAG)机制激活蛋白激酶C(PKC)降解DAG 激酶磷酸化后进入磷脂肌醇代谢DAG 脂酶水解成单酰甘油DAG 的维持原因细胞增殖、分化需要维持DAG 活性生成途径磷脂酶催化膜上磷脂酰胆碱断裂产生DAG蛋白激酶C(PKC)(图12)激活的信号分子与细胞分泌、肌肉收缩、细胞增殖、分化有关的信号分子作用途径一:磷酸化MAP 激酶途径二:磷酸化一种抑制蛋白8 千里之行始于足下千里之行 始于足下9激活离子通道的G 蛋白偶联受体激活/抑制腺苷酸环化酶的G 蛋白偶联受体 激活磷脂酶C 的G 蛋白偶联受体心肌细胞上K +通道的启闭 视杆细胞的光受体启闭效应蛋白 G 蛋白 PDE 腺苷酸环化酶(AC) 磷脂酶C(PLC)第二信使 无 cGMP cAMP IP 3、DAG生物学功能调节心肌细胞内外K +浓度,影响心肌收缩频率生物感光 调节肝细胞和肌细胞糖原代谢,对真核细胞基因表达调控 调节基因表达,与肌肉收缩、细胞增殖、分化有关图1210 千里之行始于足下。
G蛋白与细胞信号转导【摘要】本文主要阐述了G蛋白结构、偶联受体、下游效应器以及蛋白信号转导的有效途径,并且说明了在进行植物细胞信号转导的过程中,植物细胞G蛋白具有非常重要的作用。
【关键词】G蛋白偶联受体;下游效应器;信号转导G蛋白主要存在于真核生物细胞中的一个GTP结合蛋白家族,并且大多数的G蛋白都位于细胞膜上,主要由三个亚基构成,分别为α、β、γ。
其总分子量大约为100kDa。
G蛋白在结构上的特点不是很多,不具有跨膜蛋白的诸多特点,其主要固定在细胞膜的内侧,然后对位于起亚基上的氨基酸残基起到了脂化修饰作用,在这个作用下有效将G蛋白锚定在细胞膜上,与受体相邻。
G蛋白属于一种中介体,在进行生物信息转导时具有非常重要的作用,诸多的受体都能够在多种G蛋白的激烈刺激下来进行激素的传递以及进行另外一些胞外“第一信使”信息的传递,并且G蛋白能与细胞质膜的内表面有效结合并对膜上的偶联受体进行作用。
一般情况下受体主要是某种酶,这种酶也具有重要的作用,能够将已经失活的前体分子进行有效的转变,最终转变成具有有活性的“第二信使”,之后通过细胞质扩散有效将信号传递到膜外,之后就发生了诸多的分子反应【1】。
1、G蛋白偶联受体简介G蛋白偶联受体属于一类最大的细胞表面受体,对于这种受体,其进化地位比较原始,在亲缘关系很远的真核生物中能够看到它生存的身影,像我们所用到的酵母中,并且在细菌中也能够发现和G蛋白偶联受体非常相似的膜蛋白。
在细胞中存在着非常多的具有特异性的G蛋白偶联受体。
像一些识别激素,能够有效将新陈代谢的水平进行相关的改变;还有一些则在神经系统中快速的进行神经信号的传递。
到目前为止,已经发现了许多种G蛋白偶联受体,已达300种以上,这些受体在结构上都具有诸多相同的特征,其分子量在45kDa左右,由多种氨基酸组成,种类达到了400种左右,最终有效形成了7个α螺旋区段,其主要室友疏水氨基酸组成,并且能够穿透细胞膜的脂质双层,并且这种情况会重复7次。
途径一:激活离子通道的G 蛋白偶联受体所介导的信号通路
G 蛋白偶联受体介导的信号转导受体:G 蛋白
结构三个亚基组成
G α:分子开关锚定在膜上
G β、G γ:二聚体形式,锚定在膜上
7次跨膜α螺旋(右图上)
N 端在胞外、C 端在胞内激活的普遍机制(右图下)
根据效应蛋白分类
1、激活离子通道的G 蛋白偶联受体
2、激活或抑制腺苷酸环化酶,以cAMP 为第二信使的G 蛋白偶联受体
3、激活磷脂酶C ,以IP 3和DGA 作为双信使的G 蛋白偶联受体
三类方式比较典型例子心肌细胞M 乙酰胆碱受体激活G 蛋白开启K +通道附图p168(下图⑤)Gt 蛋白偶联的光敏感受体的活化诱
发cGMP 门控阳离子通道的关闭
附图p168(下图⑥)
第二信使:cGMP
图⑤ 图⑥
途径二:激活或抑制腺苷酸环化酶的G 蛋白偶联受体
腺苷酸环化酶的G 蛋白偶联受体
刺激AC 的物质
肾上腺素、胰高血糖素、促肾上腺皮质激素受体:刺激性激素受体(Rs ),Gs α抑制AC 的物质前列腺素、腺苷
受体:抑制性激素受体(Ri ),Gi αAC AC 结构12次跨膜蛋白C 端与N 端均在细胞内胞质侧有两个大的相似的结构域,跨膜区有两个整合结构域
AC 功能在Mg 2+或Mn 2+存在下,催化ATP 生成cAMP 蛋白激酶A (PKA )未激活状态2个调节亚基与2个催化亚基结合激活状态激活物:cAMP
调节亚基与催化亚基分开作用底物特点磷酸化基序:X-Arg-(Arg/Lys)-X-(Ser/Thr)-Φ(X :任意AA ,Φ:疏水AA )cAMP 与PKA 的结合协同方式(类似血红蛋白结合氧)
cAMP 的降解环腺苷酸磷酸二酯酶(PED )降解cAMP 生成5'-AMP 信号通路模式图p169(图⑦)cAMP-PKA 信号通道对肝细胞和肌细胞糖原代谢的调节p171(下图⑧)、对真核细胞基因表达的调控p171(下图⑨)
图⑧ 图⑨ 图11
激活磷脂酶C 、以IP 3和DGA 作为双信使G 蛋白偶联受体介导的信号通路 图10
第三条途径
双信使(图10)来源磷脂酰肌醇(PI)代谢(图11)双信使介绍肌醇三磷酸(IP 3)机制与内质网上IP 3R 结合,开放Ca 2+通道功能引发贮存在内质网中的Ca 2+转移到细胞质基质中,使胞质中Ca 2+浓度升高
二酰甘油(DAG)机制激活蛋白激酶C(PKC)
降解
DAG 激酶磷酸化后进入磷脂肌醇代谢DAG 脂酶水解成单酰甘油DAG 的维持原因细胞增殖、分化需要维持DAG 活性
生成途径磷脂酶催化膜上磷脂酰胆碱断裂产生DAG 蛋白激酶C(PKC)(图12)激活的信号分子与细胞分泌、肌肉收缩、细胞增殖、分化有关的信号分子作用途径一:磷酸化MAP 激酶
途径二:磷酸化一种抑制蛋白
激活离子通道的G蛋白偶联受体
激活/抑制腺苷酸环化酶的G蛋白偶联受体激活磷脂酶C的G蛋白偶联受体心肌细胞上K+通道的启闭视杆细胞的光受体启闭
效应蛋白G蛋白PDE 腺苷酸环化酶(AC) 磷脂酶C(PLC)
第二信使无cGMP cAMP IP3、DAG
生物学功能调节心肌细胞内外K+浓度,
影响心肌收缩频率
生物感光调节肝细胞和肌细胞糖原代谢,对真核细胞基因表达调控调节基因表达,与肌肉收缩、细胞增殖、分化有关
图12。