PVD基础知识
- 格式:ppt
- 大小:133.00 KB
- 文档页数:15
时代芯存半导体科普系列——物理气相沉积(PVD)介绍薄膜所用的成膜方式, 可分为PVD与CVD两种,物理气相沉积(Physical Vapor Deposition, 简称PVD) :是指气体(或电浆)透过物理反应的方式, 生成固态薄膜的技术。
传统上的PVD可分为蒸镀、溅镀、离子镀。
化学气相沉积 (Chemical Vapor Deposition, 简称CVD) :是指利用反应物(通常为气体)产生化学反应, 生成固态薄膜的技术。
PVD 一般沉积金属膜层(例如:AL、AlCu、Ti、TiN等),CVD一般沉积介电材料(例如:SiN、SiO2等)。
薄膜沉积一般可分为5个步骤:1.孕核 / 成核;2.晶粒成长;3.晶粒聚集;4.细缝填补;5薄膜成长。
溅镀的原理: 靶材(如:AlCu、Ti等),加热器或静电夹用于放置晶圆和加热晶圆;直流电源产生等离子体,提供直流电压去吸引氩离子撞击靶材;射频偏压(可选),产生偏压电压吸引金属离子;遮挡板用于保护腔体壁不被沉积到;真空腔体保持一定压力。
PVD最大的限制是填洞能力较差,容易产生悬突,在洞口转角的地方,由于薄膜沉积的角度广,容易造成突出的现象,悬突的形成会导致洞口封口,在却在洞中形成空洞。
PVD沉积技术,为改善填孔能力,由传统溅射升级为准直器和长腔距两种类型,之后发展为IMP(Ionized Metal Plasma)。
准直器(Collimator) PVD原理是在靶材和圆片之间加一个六角孔状的准直器,用于筛除掉从靶材溅射下来的较大入射角金属材料,准直器腔体沉积速率较慢,PM周期较短。
长距PVD原理是增大晶圆到靶材的距(传统溅射一般为190mm,长距溅射为240mm),筛除掉从靶材溅射下来的较大入射角金属材料,长距腔体沉积速率较慢,均匀性较差,PM周期短。
IMP(Ionized Metal Plasma) RF线圈用于电离金属原子,使其变成金属离子,RF BIAS 在晶圆表面形成负偏压吸引金属离子垂直的进入孔内,提高底部台阶覆盖。
物理气相沉积(PVD)技术第一节概述物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。
,并向着环保型、清洁型趋势发展。
20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。
物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。
发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。
溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。
如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。
磁控(M)辉光放电引起的称磁控溅射。
电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。
因为有多弧斑,所以也称多弧蒸发离化过程。
离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。