【数学】2015学年天津一中八年级下学期期中数学试卷带解析答案PDF
- 格式:pdf
- 大小:703.43 KB
- 文档页数:23
2015-2016学年天津市蓟县八年级(下)期中数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是( )A.B.C.D.2.若=x﹣5,则x的取值范围是( )A.x<5 B.x≤5 C.x≥5 D.x>53.下列二次根式中属于最简二次根式的是( )A. B.C.D.4.若有意义,则m能取的最小整数值是( )A.﹣1B.0 C.1 D.25.下列计算错误的是( )A.B.C. D.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3、4、5 B.6、8、10 C.、2、D.5、12、137.已知平行四边形ABCD中,∠B=4∠A,则∠C=( )A.18° B.36° C.72° D.144°8.如图,▱ABCD中,下列说法一定正确的是( )A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是( )A.正方形B.对角线相等的四边形C.菱形 D.对角线相互垂直的四边形10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为( )A.16π B.12π C.10π D.8π11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )...代数式有意义的条件是 .是正整数,是整数,则满足+|y+3|=0三、解答题:共46分.19.计算:(1)(2)20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.21.已知x=+,y=﹣,求x3y﹣xy3的值.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D 作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年天津市蓟县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是( )A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,无意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,无意义,此选项错误;C、当x=﹣1时,无意义,此选项错误;D、∵x2+2≥2,∴符合二次根式定义,此选项正确;故选:D.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根.2.若=x﹣5,则x的取值范围是( )A.x<5 B.x≤5 C.x≥5 D.x>5【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法: =a(a≥0),=﹣a(a≤0).3.下列二次根式中属于最简二次根式的是( )A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含开的尽的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数或因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的两个条件:被开方数不含分母,被开方数不含开的尽的因数或因式.4.若有意义,则m能取的最小整数值是( )A.﹣1B.0 C.1 D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2m+1≥0,解得m≥﹣,所以,m能取的最小整数值是0.故选B.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.下列计算错误的是( )A.B.C. D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式==,所以A选项的计算正确;B、与不能合并,所以B选项的计算错误;C、原式==3,所以C选项的计算正确;D、原式=2,所以D选项的计算正确.故选B.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3、4、5 B.6、8、10 C.、2、D.5、12、13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=( )A.18° B.36° C.72° D.144°【考点】平行四边形的性质;平行线的性质.【专题】计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.8.如图,▱ABCD中,下列说法一定正确的是( )A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是( )A.正方形B.对角线相等的四边形C.菱形 D.对角线相互垂直的四边形【考点】中点四边形.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD 的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选D.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为( )A.16π B.12π C.10π D.8π【考点】勾股定理.【分析】首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.【解答】解:根据题意画图如下;在Rt△ABC中,AB===8,则S半圆=π•42=8π.故答案为:故选D.【点评】此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4 B.8 C.16 D.64【考点】勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为( )A.B.C.2 D.1【考点】翻折变换(折叠问题).【分析】设DF=FD′=x,在RT△CFD′中利用勾股定理求出x即可解决问题.【解答】解:如图,∵△EFD′是由△EFD翻折得到,∴DF=FD′,设DF=FD′=x,在RT△CFD′中,∵∠C=90°,CF=6﹣x,CD′=BC=4,∴x2=42+(6﹣x)2,∴x=,∴CF=6﹣x=.故选B..代数式有意义的条件是 是正整数,是整数,则【分析】首先把进行化简,然后确定【解答】解: ==3,∵是整数,【点评】此题主要考查了二次根式的定义,关键是掌握=|a|满足+|y+3|=0,【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.①大正方形的边长为 .②画出分割线及拼接图.【解答】解:①大正方形的边长为:;故答案为:;)()【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,再进行计算.(2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 21.已知x=+,y=﹣,求x3y﹣xy3的值.【考点】因式分解的应用.【分析】首先把代数式利用提取公因式法和平方差公式因式分解,进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x3y﹣xy3=xy(x+y)(x﹣y)=(+)(﹣)×2×2=4.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式因式分解是解决问题的关键.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再由BE=DF可证出AF=EC,进而可得四边形AECF 是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE.【解答】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=,即BE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;矩形的判定.【分析】(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAF=∠CFA.∵E为BC的中点,∴BE=CE.在△AEB和△FEC中,,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC(AAS)是解题关键.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D 作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF 的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键. 。
天津一中2015-2016学年八年级数学下学期期中试题一.选择题1.下列根式不是最简二次根式的是()A.B.C.D.2.下列根式中,与是同类二次根式的是()A. B. C.D.3.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.下列命题的逆命题是真命题的个数为()(1)对顶角相等;(2)等腰三角形的两个底角相等;(3)三组边分别相等的两个三角形全等.A.0个B.1个C.2个D.3个5.一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边为 B.三角形的周长为25C.三角形的面积为48 D.第三边可能为106.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边7.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm28.若=a, =b,则=()A. B. C.D.9.下列四个说法:①一组对角相等,一组邻角互补的四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形;其中说法正确的个数是()A.1个B.2个C.3个D.4个10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.1111.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①② B.①②③C.①②④D.①②③④12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.2 C.2 D.3二.填空题13.函数y=有意义,则x范围是.14.若0<a<1,且,则= .15.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .16.在平行四边形ABCD中,对角线AC,BD相交于点O,若BD与AC的和为18,CD:DA=2:3,△AOB的周长为13,则BC的长为.17.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.18.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是.三、解答题19.有10个边长为1的正方形,排列形式如下左图.请在左图中把它们分割,使之拼接成一个大正方形,并把分割后的图形画在右图的正方形网格中.(正方形网格中的每个小正方形边长都是1,每个小格顶点为格点,要求以格点为顶点画大正方形)20.计算:(1)()()﹣()2(2)﹣.21.先化简,再求值:(÷,其中x=.22.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.24.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形;(3)请利用备用图分析,在(2)的条件下,若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,求PF+PM的最小值,并求出此时线段BP的长.25.将矩形纸片OABC放在平面直角坐标系中,O为原点,点A在y轴上,点C在x轴上,点B坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图1,当点Q恰好落在OB上时,求点P的坐标;(2)如图2,当点P是AB中点时,直线OQ交BC于点M点.①求证:MB=MQ;②求点Q的坐标.2015-2016学年天津一中八年级(下)期中数学试卷参考答案与试题解析一.选择题1.下列根式不是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的判断标准即可得到正确的选项.【解答】解: =.故选D2.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.4.下列命题的逆命题是真命题的个数为()(1)对顶角相等;(2)等腰三角形的两个底角相等;(3)三组边分别相等的两个三角形全等.A.0个B.1个C.2个D.3个【考点】命题与定理.【分析】利用对顶角的性质、等腰三角形的性质及三角形的全等的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对顶角相等,正确,为真命题;(2)等腰三角形的两个底角相等,正确,为真命题;(3)三组边分别相等的两个三角形全等,正确,为真命题,故选D.5.一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边为 B.三角形的周长为25C.三角形的面积为48 D.第三边可能为10【考点】勾股定理.【分析】分情况讨论:主要看两个数中较大的数的情况,8是斜边和8不是斜边两种情况求解.【解答】解:当8是直角边时,第三边==10,【解答】当8是斜边时,第三边==2.故选D.6.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A.平行四边形B.对角线相等的四边形C.矩形 D.对角线互相垂直的四边【考点】菱形的判定;三角形中位线定理.【分析】根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.7.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【考点】菱形的性质.【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【解答】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选B.8.若=a, =b,则=()A. B. C.D.【考点】算术平方根;二次根式的性质与化简.【分析】先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.【解答】解: =====;故选C.9.下列四个说法:①一组对角相等,一组邻角互补的四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形;其中说法正确的个数是()A.1个B.2个C.3个D.4个【考点】平行四边形的判定.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【解答】解:①一组对角相等,一组邻角互补.可得到任意两对邻角互补,那么可得到两组对边分别平行,为平行四边形,此选项正确;②一组对边平行,另一组对边相等的四边形不是平行四边形,此选项错误;③由一组对边平行,一组对角相等可得另一组对边平行,所以是平行四边形,此选项正确;④一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行,所以该四边形不一定是平行四边形,故本选项错误;所以①③共2项正确,故选B.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11【考点】三角形中位线定理;勾股定理.【分析】根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.【解答】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.11.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①② B.①②③C.①②④D.①②③④【考点】勾股定理.【分析】大正方形的面积是49,则其边长是7,显然,利用勾股定理可得①x2+y2=49;小正方形的面积是4,则其边长是2,根据图可发现y+2=x,即②x﹣y=2;还可以得出四个三角形的面积+小正方形的面积=大正方形的面积,即4×xy+4=49,化简得③2xy+4=49;其中④x+y=,故不成立.【解答】解:①大正方形的面积是49,则其边长是7,显然,利用勾股定理可得x2+y2=49,故选项①正确;②小正方形的面积是4,则其边长是2,根据图可发现y+2=x,即x﹣y=2,故选项②正确;③根据图形可得四个三角形的面积+小正方形的面积=大正方形的面积,即4×xy+4=49,化简得2xy+4=49,故选项③正确;④,则x+y=,故此选项不正确.故选B.12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.2 C.2 D.3【考点】翻折变换(折叠问题).【分析】由折叠的性质得出△CBE≌△COE,再由全等三角形的性质得出∠B=∠COE=90° CO=CB,∠BCE=∠ACE,证出OE是AC的垂直平分线,由线段垂直平分线的性质得出CE=AE,由等边对等角得出∠ACE=∠CAE,因此∠BCE=∠ACE=∠CAE,由直角三角形的性质得出∠BCE=30°,然后解直角三角形求出折痕CE的长即可.【解答】解:由折叠的性质得:△CBE≌△COE,∴∠B=∠COE=90°,CO=CB=3,∠BCE=∠ACE,∵O是矩形ABCD中心,∴CO=AO,∴OE垂直平分AC,∴CE=AE,∴∠ACE=∠CAE,∴∠BCE=∠ACE=∠CAE,在Rt△BCE中,∠BCE=30°,∵BC=3,∴CE==2;故选:B.二.填空题13.函数y=有意义,则x范围是x≥0且x≠4 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以得到,从而求解.【解答】解:根据二次根式的意义和分式有意义的条件,可得,解得x≥0且x≠4.所以自变量的范围是x≥0且x≠4.故答案为:x≥0且x≠4.14.若0<a<1,且,则= ﹣2 .【考点】完全平方公式.【分析】根据完全平方公式把﹣两边平方并代入数据求出值,再根据平方根的定义求解.【解答】解:∵a+=6,∴(﹣)2=a﹣2+=6﹣2=4,∵0<a<1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.15.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .【考点】菱形的性质;点到直线的距离;勾股定理.【分析】因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.【解答】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.16.在平行四边形ABCD中,对角线AC,BD相交于点O,若BD与AC的和为18,CD:DA=2:3,△AOB的周长为13,则BC的长为 6 .【考点】平行四边形的性质.【分析】根据平行四边形的性质可得AB=CD,AD=BC,AO=CO=AC,BO=DO=,然后再根据条件求出AO+BO的长,进而可得AB的长,从而得到CD的长,再根据CD:DA=2:3可得AD的长,进而可得BC的长.【解答】解:如图:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AO=CO=AC,BO=DO=,∵BD与AC的和为18,∴AO+BO=18=9,∵△AOB的周长为13,∴AB=13﹣9=4,∴CD=4,∵CD:DA=2:3,∴AD=6,∴BC=6,故答案为:6.17.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为15 cm.【考点】平面展开-最短路径问题.【分析】过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故答案为:15.18.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是①②③.【考点】翻折变换(折叠问题);正方形的性质.【分析】根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.【解答】解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为: ==,∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)=≠3.故答案为:①②③.三、解答题19.有10个边长为1的正方形,排列形式如下左图.请在左图中把它们分割,使之拼接成一个大正方形,并把分割后的图形画在右图的正方形网格中.(正方形网格中的每个小正方形边长都是1,每个小格顶点为格点,要求以格点为顶点画大正方形)【考点】图形的剪拼.【分析】直接利用网格结合正方形面积得出其边长,即可得出答案.【解答】解:如图所示:四边形ABCD即为所求.20.计算:(1)()()﹣()2(2)﹣.【考点】二次根式的混合运算;零指数幂.【分析】(1)直接利用乘法公式化简二次根式,进而合并求出答案;(2)首先化简二次根式,进而合并同类二次根式求出答案.【解答】解:(1)()()﹣()2=3﹣5﹣(10+2﹣4)=﹣2﹣12+4=﹣14+4;(2)﹣=9﹣1﹣+1+﹣1=8.21.先化简,再求值:(÷,其中x=.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,分式化为最简根式后,把x的值代入进行计算即可.【解答】解:原式=•=•=•=2x,当x=时,原式==﹣1﹣.22.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)由题意正方形ABCD的边AD=DC,在等边三角形CDE中,CE=DE,∠EDC等于∠ECD,即能证其全等.(2)根据等边三角形、等腰三角形、平行线的角度关系,可以求得∠AFB的度数.【解答】(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵三角形CDE是等边三角形∴CE=DE,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE.(2)解:∵△CDE是等边三角形,∴CE=CD=DE,∵四边形ABCD是正方形∴CD=BC,∴CE=BC,∴△CBE为等腰三角形,且顶角∠ECB=90°﹣60°=30°∴∠EBC==75°∵AD∥BC∴∠AFB=∠EBC=75°.24.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形;(3)请利用备用图分析,在(2)的条件下,若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,求PF+PM的最小值,并求出此时线段BP的长.【考点】四边形综合题.【分析】(1)根据平行四边形的性质得到DF=BE,AB∥CD,根据平行四边形的判定定理证明四边形DEBF是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形AGBD是矩形,根据直角三角形的性质得到ED=EB,证明结论;(3)连接EM交BD于P,根据轴对称的性质证明此时PF+PM的值最小,根据等边三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形AGBD是平行四边形,∵∠G=90°,∴平行四边形AGBD是矩形,∴∠ADB=90°,又E为边AB的中点,∴ED=EB,又四边形DEBF是平行四边形,∴四边形DEBF是菱形;(3)连接EF,连接EM交BD于P,∵四边形DEBF是菱形,∴点E和点F关于BD轴对称,此时PF+PM的值最小,∵四边形DEBF是菱形,∠DEB=120°,∴∠EBF=60°,∴△BEF是等边三角形,又BE=4,∴EM=2,即PF+PM的最小值为2,由题意得,点P为△EBF的重心,∴BP=.25.将矩形纸片OABC放在平面直角坐标系中,O为原点,点A在y轴上,点C在x轴上,点B坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图1,当点Q恰好落在OB上时,求点P的坐标;(2)如图2,当点P是AB中点时,直线OQ交BC于点M点.①求证:MB=MQ;②求点Q的坐标.【考点】相似形综合题.【分析】(1)由点B坐标和矩形性质得AO=BC=6,OC=AB=8,再利用勾股定理计算出OB=10,接着根据折叠得性质可得OQ=OA=6,PQ=AP,则BQ=OB﹣OQ=4,设AP=x,得到PQ=x,BP=8﹣x,然后在Rt△PQB中利用勾股定理得到,x2+42=(8﹣x)2,再解方程求出x即可得到点P的坐标;(2)①连结PM,如图,由折叠性质得PQ=PA,∠PQM=OAP=90°,然后根据“HL”证明Rt△PQM≌Rt△PBM即可得到BM=MQ;②过Q作QN⊥OC,垂足为N,如图,设BM=MQ=m,则OM=OQ+QM=6+m,CM=BC﹣BM=6﹣m,在Rt△OMC中利用勾股定理得到82+(6﹣m)2=(6+m)2,解得m=,则MC=,OM=,再证明Rt△OQN∽Rt△OMC,利用相似比可计算出QN=,ON=,于是可得点Q的坐标是(,).【解答】(1)解:∵四边形ABCD为矩形,点B坐标是(8,6),∴AO=BC=6,OC=AB=8,在Rt△OCB中,OB==10,∵△OAP沿OP折叠,使点A落在点Q处,∴OQ=OA=6,PQ=AP,∴BQ=OB﹣OQ=4,设AP=x,则PQ=x,BP=8﹣x,在Rt△PQB中,∵PQ2+QB2=PB2,∴x2+42=(8﹣x)2,解得x=3,∴点P的坐标为(3,6);(2)①证明:连结PM,如图,∵△OAP沿OP折叠,使点A落在点Q处,∴PQ=PA,∠PQM=OAP=90°,∵点P是AB中点,∴PA=PB,∴PB=PQ,在Rt△PQM和Rt△PBM中,∴Rt△PQM≌Rt△PBM,∴BM=MQ;②解:过Q作QN⊥OC,垂足为N,如图,设BM=MQ=m,则OM=OQ+QM=6+m,CM=BC﹣BM=6﹣m,在Rt△OMC中,∵OC2+CM2=OM2,∴82+(6﹣m)2=(6+m)2,解得m=,∴MC=6﹣=,OM=6+=,∵∠QON=∠MOC,∴Rt△OQN∽Rt△OMC,∴,即==,∴QN=,ON=,∴点Q的坐标是(,).。
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.要使式子有意义,则x 的取值范围是( )A .x >1B .x >-1C .x≥1D .x≥-12.下列根式中是最简根式的是( ) A .B .C .D .3.一直角三角形的两直角边长为12和16,则斜边长为( ) A .12 B .16 C .18D .204.如图,在▱ABCD 中,已知AD =5 cm ,AB =3 cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )A .1 cmB .2 cmC .3 cmD .4 cm5.把-a 根号外的因式移到根号内的结果是( )A .B .C .-D .-6.下列计算错误的是( ) A .×= 7B .÷=2C .+=8D .3-=37.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形8.如图所示,A(-,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2二、填空题1.已知(x -y +3)2+=0,则x +y =____________.2.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.3.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.4.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.5.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有______个.三、解答题1.已知x =2-,则代数式(7+4)x 2+(2+)x +的值是____________. 2.计算: (1)2+3--; (2)-÷2+(3-)(1+).3.先化简,再求值:÷(2x —)其中,x=+1.4.已知:a.b.c 满足,求:(1)a,b,c 的值;(2)试问以a,b,c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.5.小薇将一副三角尺如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD=2,求AC 的长.6.如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?7.如图,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点. (1)判断四边形EFGH 的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)8.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.9.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.10.如图所示,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2, , ;(3)如图(3)所示,点A,B,C是小正方形的顶点,求∠ABC的度数.天津初二初中数学期中考试答案及解析一、单选题1.要使式子有意义,则x的取值范围是()A.x>1B.x>-1C.x≥1D.x≥-1【答案】C【解析】,故选C.2.下列根式中是最简根式的是()A.B.C.D.【答案】B【解析】A. ,故不是最简二次根式;B. 不能化简,故是最简二次根式;C. ,故不是最简二次根式;D. ,故不是最简二次根式;故选B.3.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【答案】D【解析】由勾股定理可得:斜边=,故选D.4.如图,在▱ABCD中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【答案】B【解析】根据角平分线的性质可得AB=BE=3cm,则EC=BC-BE=5-3=2cm.【考点】角平分线的性质.5.把-a根号外的因式移到根号内的结果是( )A.B.C.-D.-【答案】C【解析】首先根据题意得出a的取值范围,然后再根据二次根式的化简法则进行化简.根据题意可得:a>0,则原式=-a·=-a·=-.【考点】二次根式的化简6.下列计算错误的是()A.×= 7B.÷=2C.+=8D.3-=3【答案】D【解析】D. 3-=2 ,故选D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【答案】D【解析】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B. ∵四边形ABCD 是平行四边形,∴BO=OD,∵AC ⊥BD,∴AB²=BO²+AO²,AD²=DO²+AO²,∴AB=AD ,∴四边形ABCD 是菱形,故B 选项正确;C. 有一个角是直角的平行四边形是矩形,故C 选项正确;D. 根据对角线相等的平行四边形是矩形可知当AC=BD 时,它是矩形,不是正方形,故D 选项错误; 综上所述,符合题意是D 选项; 故选:D.8.如图所示,A(-,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2【答案】C【解析】2S △ABP =S △ABC=S △ABP =,故选C.二、填空题1.已知(x -y +3)2+=0,则x +y =____________.【答案】1【解析】由题意得:2.如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.【答案】6.【解析】根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可: ∵四边形ABCD 是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD 沿CE 折叠后,点B 落在AD 边的F 点上, ∴CF=BC=10.在Rt △CDF 中,由勾股定理得:DF=. 【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.3.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.【答案】【解析】根据圆的面积计算公式及勾股定理可得.4.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.【答案】7【解析】因为ABCD 是正方形,所以AB=AD ,∠B=∠A=90°,则有∠ABF=∠DAE ,又因为DE ⊥a 、BF ⊥a ,根据AAS 易证△AFB ≌△AED ,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7. 【考点】正方形的性质5.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有______个.【答案】3n 【解析】略因为每次增加一个三角形,就增加3个平行四边形,那么n 次后,就有3n 个平行四边形了三、解答题1.已知x =2-,则代数式(7+4)x 2+(2+)x +的值是____________. 【答案】2+【解析】先把已知条件两边平方,再代入代数式求值即可. 解:x 2=(2﹣)2=7﹣4,原式=(7+4)(7﹣4)+(2+)(2﹣)+ =49﹣48+1+ =2+.2.计算: (1)2+3--; (2)-÷2+(3-)(1+).【答案】(1)(2)【解析】.(1)原式=4+2--=2. (2)原式=4-+3+--1=4-+2.3.先化简,再求值:÷(2x —)其中,x=+1.【答案】【解析】÷(2x —)=把x=+1代入【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。
某某市蓟县2015-2016学年八年级数学下学期期中试题蓟县2015~2016学年度第二学期期中形成性练习题 八年级数学参考答案一、单选题(本题包括12小题,每小题3分,共36分)二、填空题(本题包括6小题,每小题3分,共18分)13. x>-2 ;14 3;15. . -2;16. F 是BC 的中点;(注:答案不唯一)17. ①②③⑤;18. ①②三、解答题.( 本题共46分)19.(本题包括2小题,每小题3分,共6分) (1)计算:2484554+-+原式=----1/=(4(2+-+------2/=/(2)计算:原式=--------1/=-------------2/=2----------------3/20.(本题6分) 解:连接AC.在Rt △ABC 中,∠B =90°,AB =3,BC =4, 根据勾股定理,得5AC ===------2/∵22222251216913AC CD AD +=+===∴∠ACD =90° --------------------4/∴S 四边形ABCD =S △AB C + S △ACD = ---------6/ 21. (本题6分)解:原式=()()22()xy x y xy x y x y -=+-. -----------------------2/当x =y =1,xy x y x y =+=-=---------4/∴原式=1⨯=---------------------6/ 22.(本题6分)∴AB =CD ,∠B 又∵BE =DF ,∴△ABE ≌△∴AE =CF --------------------------------6/116303622AB BC AC CD ⋅+⋅=+=11 / 1223.(本题6分)解:∵四边形ABCD 是矩形,∴AB =CD , ∠B =∠D =90° -----------------1/ 由折叠可知,∠D =∠D ’,CD =CD’. ∴∠B =∠D ’, AB =CD ’.∵∠AEB =∠CE D ’, ∴△ABE ≌△C D ’E .---------3/ ∴AE =CE . ------------------4/设BE=x ,则AE =CE=4- x ,根据勾股定理,得()2223+4x x =-,解得78x =.∴BE 的长为78---------------------------6/24.(本题8分)(1)证明:∵四边形ABCD 是平行四边形,∴AB ‖DF , ∴∠BAF = ∠CFA .∵E 为BC 的中点,∴BE =CE .又∵∠AEB =∠FEC , ∴△AEB ≌△FE C .∴AB =CF . -----------------------4/(2)当BC =AF 时,四边形ABFC 是矩形.----------------5/ ∵AB =CF , AB ‖CF ,∴四边形ABFC 是平行四边形.--------------------6/ ∵BC =AF ,∴四边形ABFC 是矩形.----------------8/ 25.(本题8分)解:(1)证明:在△DFC 中, ∠DFC =90°,∠C =30°,DC =4t ,BE∴DF=2t.又∵AE=2t,∴AE=DF. -------2/(2)能..理由如下:∵AB⊥BC, D F⊥BC,∴AE‖DF.又∵AE=DF,∴四边形AEFD是平行四边形.当四边形AEFD为菱形时,AE=AD=AC-DC=60-4t = 2t,解得t = 10.∴当t = 10 s时四边形AEFD为菱形.-----------------6/(3)当∠DEF =90°时,t = 12 s;当∠EDF =90°时,t = 152s---8/12 / 12。
最新八年级下学期期中考试数学试题及答案人教版八年级下学期期中数学试卷八 年 级 数 学 试 卷1、已知 y 2x 5 5 2x 3 ,则 2xy 的值是()15 2 15 2A 、152、计算( 2 1)( 2 1)2的结果是( A 、 B 、3( 2 1)B 、-15C 、D 、)2 1C 、1 C 、D 、-13、下列根式中是最简二次根式的是()2 A 、B 、 D 、 39 12 34、下列根式中,不能与 合并的是()3 .. 3 1A 、32 3B 、C 、D 、1235、如图,在△ABC 中,∠C=90°,AC=2,点 D 在 BC 边上,∠ADC=2∠B ,AD= ,则 BC 5 A的长为()A 、 3 1B 、D 、 3 1C 、 5 15 1BCD6、下列几组线段中,能组成直角三角形的是()A 、2,3,4B 、3,4,6C 、5,12,13D 、2,4,5AA '7、如图为一个 6×6 的网格,在△ABC ,△A'B'C'和△A''B''C''中,直角三角形有( ) C个C 'A ''A 、00,则 B 、1C 、2D 、3BB '8、若 xyA 、 化简后为()x 2y C ''B''B 、C 、D 、 xyx y x yx yMDCA B9、如图在□ABCD 中,BM 是∠ABC 的平分线,交 CD 于点 M , 若 MC=2,□ABCD 的周长是 14,则 DM 的长是()A 、1 C 、3B 、2 D 、410、在直角三角形中,自锐角顶点引的两条中线为 和 ,则这个直角三角形的斜边3510 长是(A 、3 )B 、C 、D 、62 32 5评卷人 得 分二、填空题(6×3 分=18 分.)111、若式子x 有意义,则实数 x 的范围是_____________. x 1A12、化简(2 3) (2 3) =_____________.12 10 C13、如图,小正方形的边长为 1,连接小正方形的三个格点 可得△ABC ,则 AC 边上的高的长度是_____________.B1 A14、计算8 3 2 _____________.2 15、如图,在△ABC 中,AB=5,AC=13,边 BC 上的中线 AD=6, 则 BC 的长是_____________.BCD16、已知四边形 ABCD 的对角线 AC=8 2 ,BD=6 3 ,P 、Q 、R 、S 分别是 AB 、BC 、CD 、 DA 的中点,则 PR 2+QS 2 的值是_____________.三、解答题(共 72 分)17、(8 分)计算:(2 48 3 27) 6得 分评卷人 得 分118、(8 分)已知 x 2,求代数式 x 2 的值.3 x 2评卷人得分19、(8分)如图四边形ABCD中,已知AD⊥CD,AB=13,BC=12,CD=3,AD=4,求△ABC的面积.BCD A评卷人得分20、(8分)若三角形的边长分别是2,m,5,化简96m m m 14m 4922.评卷人得分21、(8分)如图,已知长方形内两相邻正方形的面积分别是2和6,求长方形内阴影部分的面积(结果保留根号).26评卷人得分22、(10分)如图,在□ABCD中,BC=2AB,M是AD的中点,CE⊥AB,垂足为E,求证:∠DME=3∠AEM.M DAECB评卷人 得 分23、(10 分)如图 1,在平面直角坐标系 x0y 中,A (a ,0),B (0, b ),C (-a ,0),且.a 2b 2 4b 4 0(1)求证:∠ABC=90°(2)∠ABO 的平分线交 x 轴于点 D ,求 D 点的坐标. (3)如图 2,在线段 AB 上有两动点 M 、N八年级下册数学期中考试题(含答案)y一、选择题(本大题共 个小题, ~ 小题,每小题 12 1 6分, ~ 小题,每小题7 12 2M分,共 分,在每小题给出的四个选项中,只有一项30是符合题目要求2 N 的,请将正确选项填入题前对应表格内)xA.等腰三角形的底边长为 ,底边上的中线长为 ,它6 4的腰长为(. D 4)1 . A 7 . B 6 . C 5图22.下列的式子一定是二次根式的是(A .B .3.下列二次根式中属于最简二次根式的是( ) C .)D .A .B .C .D .4.下列判断错误的是()A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .四条边都相等的四边形是菱形D .两条对角线垂直且平分的四边形是正方形 5.在△ABC 中,= , = , = ,则△AB C 的面积为( AB 15 BC 12 AC 9) . A 180. B 90 . C 54.D 1086.如图,AB C D的对角线AC与B D相交于点O,AB⊥AC,若AB=4,AC=6,则B D的长是()A.8B.9C.10D.117.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,,=1.若∠AF C=90°,则C FD F的长度为()B CA.12B.13C.14D.158.在平行四边形AB C D中,对角线AC、B D相交于点O,如果AC=10,B D=8,AB=x,则的取值范围是(x)A.1<x<9B.2<x<18C.8<x<10D.4<x<59.如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,那么这个三角形一定是(A.锐角三角形10.若x+y=3+2,x﹣y=3﹣2,则A.4B.1)B.直角三角形C.钝角三角形的值为(C.6D.等腰三角形)D.3﹣211.直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是()A.ab=h2B.a2+b2=2h2C.+=D.+=12.将1,,三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2018,2018)表示的两个数的积是()A.3B.C.D.二、填空题(共分,每小题分)18314.平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长cm.15.如图所示:数轴上点A所表示的数为a,则a的值是为.16.如图菱形ABC D的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为.17.某同还用竹杆扎了一个长80cm、宽60cm的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需cm.18.观察下列一组数:列举:3、4、5,猜想:3=24+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、、,猜想:13=b c b c2+;请你分析上述数据的规律,结合相关知识求得=b,=c.三、解答题(本大题共个小题,共分解答应写出文字说明、证明过程或演算步骤)872.19.(8分)化简:(2)=;(3)(4)(5)(6)(7)(8)=;=;=;=;=;=.20.(8分)如图,△AB C中,AB=AC,D是AC边上的一点,C D=1,(1)求证:△BCD是直角三角形.,=2.B D(2)求△ABC的面积.21.(8分)如图网格中的△AB C,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.22.(8分)若实数a,b,c满足|a﹣|+=(1)求,,;a b c(2)若满足上式的,为等腰三角形的两边,求这个等腰三角形的周长.a b23.(8分)工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使=,=AB C D EF G H;(2)摆放成如图②的四边形,则这时窗框的形状是(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:形,根据数学道理是:;.24.(10分)如图,在四边形ABC D中,AB=A D,BC=D C,A C、B D相交于点O,点E在上,且=.O E O CA O(1)求证:∠1=∠2;(2)连结、,判断四边形BE D E的形状,并说明理由.B C D E25.(11分)如图,已知∠M B N=60°,在B M,B N上分别截取BA=BC,P是∠M B N内的一点,连接,,,以PA PB P C为边作∠PB Q=60°,且=,连接C Q.B Q BPBP(1)观察并猜想与AP C Q之间的大小关系,并证明你的结论;(2)若::=3:4:5,连接P Q,求证:∠P Q C=90°.PA PB PC26.(11分)在矩形AB C D中,将点A翻折到对角线B D上的点M处,折痕BE交A D于点 .将点 翻折到对角线 上的点 处,折痕 交 于点 .D F B C FE C B D 为平行四边形; BF D E N ( )求证:四边形1( )若四边形 2 为菱形,且 = ,求 AB 2的长. B C BF D E学年河北省八年级(下)期中数学试卷2017-2018参考答案与试题解析一、选择题(本大题共个小题,~小题,每小题分,~小题,每小题分,共121627122分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填入题前30对应表格内)1.【分析】根据等腰三角形的性质可知上的中线同时是上的高线,根据勾股定B CB C A D理求出的长即可.AB【解答】解:∵等腰三角形中,=,是上的中线,AB C∴=AB=,5故选:.C【点评】本题考查勾股定理及等腰三角形的性质.解题关键是得出中线线,难度适中.是A DB C上的高2.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:、当=时,﹣﹣<,A x0x20无意义,故本选项错误;、当=﹣时,无意义;故本选项错误;x1B、∵2≥,∴x+22符合二次根式的定义;故本选项正确;C、当=±时,2﹣=﹣<,x1x210无意义;故本选项错误;D故选:.C【点评】本题考查了二次根式的定义.一般形如(≥)的代数式叫做二次根式.当a0≥时,表示的算术平方根;当小于时,非二次根式(在一元二次方程中,若a0a a0根号下为负数,则无实数根)..【分析】、选项的被开方数中含有未开尽方的因数或因式;选项的被开方数中含有B D C3分母;因此这三个选项都不是最简二次根式.【解答】解:因为:、B=4;D、=2;所以这三项都不是最简二次根式.故选.A【点评】在判断最简二次根式的过程中要注意:()在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;1()在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于,22也不是最简二次根式.4.【分析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;AB、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:.D【点评】本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.5.【分析】根据勾股定理的逆定理判定直角三角形,再根据直角三角形的面积公式求解即可.【解答】解:∵22=2,9+1215∴根据勾股定理的逆定理,三角形是直角三角形,两直角边为和,912所以面积=××=.91254故选:.C【点评】本题考查了勾股定理的逆定理,关键是熟悉勾股定理的逆定理和三角形的面积公式.6.【分析】利用平行四边形的性质和勾股定理易求B O的长,进而可求出的长.B D【解答】解:∵的对角线与相交于点,A CB D OAB C D∴=,=,B O D O A OC O∵⊥,=,=,AB A C AB4AC6∴=B O =,5∴==,B D2B O10故选:.C【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.【分析】如图,首先证明=,继而得到EF6=;证明D E7为△ABC的中位线,即可D E解决问题.【解答】解:如图,∵∠=°,=,∵,分别是D E,AB A C的中点,∴DE为△ABC的中位线,∴==,B C2DE14故选:.C【点评】该题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.8.【分析】根据平行四边形的性质求出、,根据三角形的三边关系定理得到OA﹣O A O B<<,代入求出即可.O B x OA+O B【解答】解:∵四边形是平行四边形,=,=,A C10B D8AB C D∴==,==,O A O C5O D OB4在△OAB中,OA﹣OB<x<OA+OB,∴﹣<<54x4+5,∴<<.1x9故选:.A【点评】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出、O A O B 后得出﹣<<是解此题的关键.O A O B x OA+O B9.【分析】先把a2+b+c+33810a+24b+26c化为完全平方公式的形式,再根据非负数的22=性质求出、、的长,再根据勾股定理的逆定理进行判断即可.a b c【解答】解:∵222=a+b+c+33810a+24b+26c∴222﹣﹣a+b+c+33810a24b26c0﹣=可化为(﹣)2(﹣)2(﹣)2=,a5+b12+c13∴﹣=,﹣=,﹣=,a50b120c130∴=,=,=.a5b12c13∵22=2,5+1213∴△ABC是直角三角形.故选:.B【点评】此题考查的知识点是因式分解的应用,先把222=a+b+c+33810a+24b+26c化为完全平方的形式是解答此题的关键.10.【分析】根据二次根式的性质解答.【解答】解:∵∴原式==x+y3+2,﹣=﹣x y32===.1故选:.B【点评】解答此题,要充分运用平方差公式,使运算简便.11.【分析】根据直角三角形的面积的计算方法,以及勾股定理就可解得.【解答】解:根据直角三角形的面积可以导出:斜边=c.再结合勾股定理:22=2.a+b c进行等量代换,得22=a+b.两边同除以22,得a b=.+故选:.D【点评】本题主要考查了勾股定理,熟练运用勾股定理、直角三角形的面积公式以及等式的性质进行变形..【分析】根据题意和图形中的数据,可以发现数字的变化规律,从而可以得到(,)1282与(,)表示的两个数,进而(,)与(2018201882,)表示的两个数的积,20182018本题得以解决.【解答】解:∵…=,÷=…,1+2+3++72828371∵…=,÷=1+2+3++2017+201820371532071533679051,∴(∵,20182018)表示的数是,×=,3∴(,)与(,)表示的两个数的积是,82201820183故选:.A【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的两个数的乘积.二、填空题(共分,每小题分)18313.【分析】根据简=得到原式=﹣|,然后根据绝对值的意义去绝对值即可.|a||2【解答】解:原式=﹣|2=﹣(﹣)=﹣.22|故答案为﹣.2【点评】本题考查了二次根式的性质与化简:=.也考查了绝对值的意义.|a|14.【分析】根据平行四边形中对边相等和已知条件即可求得较短边的长.【解答】解:如图∵平行四边形的周长为24cm∴=÷=AB+B C24212∵:=:B C AB31∴=AB3cm故答案为.3【点评】本题利用了平行四边形的对边相等的性质,设适当的参数建立方程求解.15.【分析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示﹣的点和之间的线段的长,进而可推出的坐标.1A A【解答】解:图中直角三角形的两直角边为,,12∴斜边长为=,那么﹣和之间的距离为,1A那么的值是:﹣a1+.【点评】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离..【分析】首先根据菱形的性质推出两个三角形全等,然后再根据已知条件求出点到16O另一边的距离.【解答】解:根据菱形的性质,可得到菱形一边O与AB B O构成的三角形和到OO E B菱形邻边与B C B O 构成的三角形全等,已知点到的距离为,那么点到另外一O AB2O边的距离为.2B C故答案为.2【点评】本题考查菱形的性质与全等三角形的判定.17.【分析】长方形定形后,分成两个直角三角形,根据勾股定理求此斜拉秆的长.【解答】解:由勾股定理,得:此斜拉秆的长为:故答案为:100.=().100cm【点评】本题考查了勾股定理的应用以及三角形稳定性的实际应用,要熟记勾股定理.18.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第3二、三个数的和;最后得出第组数为(2n+1),(n),(),由此规律解决问题.在2=中,=12,=13;512+13…则在、、中,=13b c =,=84c=.85b【点评】认真观察各式的特点,总结规律是解题的关键.三、解答题(本大题共个小题,共分解答应写出文字说明、证明过程或演算步骤)872.19.【分析】根据二次根式的性质和运算法则逐一化简、计算可得.【解答】解:()=2;1()2=3;()3=4x y2;()4=;()5==;()6===;()7==|x|;()8===;故答案为:()12;()23;()234x y;()4;()5;()6;()7|x|;()8.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质和运算法则..【分析】()根据勾股定理的逆定理直接得出结论;201()设腰长为,在直角三角形2x中,利用勾股定理列出的方程,求出的值,进x xA D B而利用三角形的面积公式求出答案.【解答】解:()∵=,C D1,=,B D21∴22=2,C D+BD B C∴△B D C是直角三角形;()设腰长==,2AB A C x中,在△Rt A DB∵2=2AB A D+B D2,∴2=(﹣)22,即△ABC的面积=•=××=.A CB D2【点评】本题主要考查了勾股定理的逆定理以及等腰三角形的性质,解题的关键是利用勾股定理求出腰长,此题难度不大..【分析】()运用割补法,正方形的面积减去三个小三角形的面积,即可求出△121AB C 的面积;()根据勾股定理求得△2各边的长,再利用勾股定理的逆定理进行判定,从而不难AB C得到其形状.【解答】解:()△1的面积=×﹣×÷﹣×÷﹣×÷=﹣﹣﹣AB C4412243224216164=.5故△ABC的面积为;5()∵小方格边长为,21∴∴2=22=,2=22=,2=22=,AB1+25A C2+420BC3+42522=2,AB+A C B C∴△ABC为直角三角形.【点评】本题主要考查了勾股定理和勾股定理的逆定理,解答此题要运用勾股定理的逆定理:若三角形的三边满足22=2,则三角形a+b c是直角三角形.AB CAB C.【分析】()首先由221得出=,再进一步得出、的数值即可;c0a b+()分是腰长与是底边和是腰长与是底边两种情况讨论求解.2a b b a【解答】解:()由题意得﹣≥,﹣≥,1c303c0则=,﹣c3|a,0|+则﹣=,﹣=,a0b20所以=,=.a b2()当是腰长与是底边,2a b当是腰长与是底边,b a则等腰三角形的周长为+2+2=+4.【点评】此题考查二次根式的意义与加减运算,以及等腰三角形的性质.23.【分析】已知两组线段相等了,如图组成的图形依据平行四边形的判定可知是平行四边形,在调整过程中,一个角为直角时,根据矩形的定义可进行判定.【解答】解:()平行四边形2两组对边分别相等的四边形是平行四边形()矩形3有一个角是直角的平行四边形是矩形【点评】此题主要考查了平行四边形和矩形的判定,为最基本的知识点,难易程度适中..【分析】()证明△A D C≌△AB C后利用全等三角形的对应角相等证得结论;241()首先判定四边形2是平行四边形,然后利用对角线垂直的平行四边形是菱形判B C D E定菱形即可.【解答】()证明:∵在△1和△ABC中,A D C,∴△A D C≌△(),AB C SSS∴∠=∠;12()四边形2是菱形;B C D E证明:∵∠=∠,=,12C D B C∴AC垂直平分BD,∵=,O E O C∴四边形是平行四边形,D E B C∵⊥,A CB D∴四边形是菱形.D E B C【点评】本题考查了菱形的判定及线段的垂直平分线的性质,解题的关键是了解菱形的 判定方法,难度不大..【分析】( )易证△ABP ≌△CBQ ,可得AP C Q 25 1= ; ( )根据 = , = ,即可判定△ 2 PA C Q PB B Q P Q C为直角三角形. 【解答】( )解: = ;理由如下: 1 AP C Q连接 P Q ,如图所示:∵∠ = °,且 PB Q 60= , B Q BP ∴△BP Q 为等边三角形,∵∠ ∠ ABP+ CBP 60 = °,∠ ∠ = °, C B Q+ CBP 60∴∠CB Q =∠ABP ,在△ABP 和△CB Q 中, , ∴△ABP ≌△ ( ), C B Q SAS∴ = , AP C Q( )证明:设 = , = , = , 2 PA 3a PB 4a P C 5a在△PB Q 中,∵ = = ,且∠ = °, PB B Q 4a PB Q 60∴△PB Q 为等边三角形,∴ = , P Q 4a在△P Q C 中,∵ 22= 2 2= P Q +Q C 16a +9a 25a PC2= 2,∴△P Q C 为直角三角形,即∠ P Q C 90 = °.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了 勾股定理逆定理的运用,本题中求证△ABP ≌△CB Q 是解题的关键..【分析】( )证△ABE ≌△C D F ,推出 = ,求出 26 1 AE CF = , ∥ ,根据平行 D E BF D E BF 四边形判定推出即可.( )求出∠ = °,根据直角三角形性质求出 、 ,即可求出答案. 2 ABE 30 AE BE 【解答】( )证明:∵四边形 1 是矩形, AB C D∴∠ =∠ = °, = , ∥ , A C 90 AB C D AB CD∴∠AB D =∠C D B 由折叠的性质可得:∠ABE =∠EBD = ∠AB D ,∠C D F = ∠C D B ∴∠ABE =∠C D F 在△ABE 和△C D F ,,,中,∴△ABE ≌△ ( ), C D F ASA∴ = , AE CF∵四边形 是矩形,AB C D ∴ = , ∥ , A D B C A D BC∴ = , ∥ , D E BF D E BF∴四边形 为平行四边形;BF D E 解法二:证明:∵四边形 是矩形,AB C D ∴∠ =∠ = °, = , ∥ , A C 90 AB C D AB CD∴∠AB D =∠C D B ,∴∠EB D =∠F DB ,∴∥,EB D F∵∥,E D BF∴四边形为平行四边形.BF D E()解:∵四边形2为菱形,BF D E∴=,∠EBD=∠FB D=∠ABEBE E D,∵四边形是矩形,AB C D∴=,∠=°,A DBC AB C90∴∠=°,ABE30∵∠=°,=,∴===B C A D AE+E D AE+BE ==2.+【点评】本题考查了平行四边形的判定,菱形的性质,矩形的性质,含度角的直角三30角形性质的应用,主要考查学生运用定理进行推理和计算的能力.八年级(下)期中考试数学试题【含答案】一、单项选择题(共10个小题,每小题3分,满分30分)1.下列二次根式中,是最简二次根式的是()A. B. C. D.2.下列计算正确的是()3.若△ABC 的三边分别为5、12、13,则△ABC 的面积是()A. 30B. 40C. 50D. 604.下列各数中,与的积为有理数的是()5.在Rt△ABC 中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B. 4 C. 4 或 D. 以上都不对6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A. AB∥CD,AB=CDC. OA=OC,OB=ODB. AB∥CD,AD∥BCD. AB∥CD,AD=BC7.如图,在∠MON 的两边上分别截取OA、OB,使OA=OB;分别以点A、B 为圆心,OA 长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC 的长为()cmA. 2B. 3C. 4D. 58.如图,菱形ABCD 的对角线相交于点O,若AC=8,BD=6,则菱形ABCD 的周长是()A. 32B. 24C. 20D. 40D. 互相垂直9.矩形的对角线一定具有的性质是()A. 互相垂直B. 互相垂直且相等C. 相等平分10.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A. 三角形B. 菱形C. 矩形D. 正方形二、填空题(共6个小题,每小题4分,满分24分)11.二次根式中字母x 的取值范围是________12.定理“对角线互相平分的四边形是平行四边形”的逆命题是________14.如图,四边形ABCD 中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是________.15.如图,正方形ABCD 的周长为16 cm,则矩形EFCG 的周长是________ cm16.如图,已知等边三角形ABC 边长为16,△ABC 的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A4B4C4 的周长为________.三、解答题(一)(共3个小题,每小题6分,满分18分)17.化简:18.如图,E、F 分别为□ABCD的边BC、AD 上的点,且∠1=∠2.求证:四边形AECF 是平行四边形.19.已知矩形ABCD中,AD=,AB=,求这个矩形的的对角线AC的长及其面积四、解答题(二)(共3个小题,每小题7分,满分21分)20.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否有危险而需要暂时封锁?请通过计算进行说明.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG 的长.22.如图,在△ABC 中,AC=9,AB=12,BC=15,P 为BC 边上一动点,PG⊥AC 于点G,PH⊥AB 于点H.(1)求证:四边形AGPH 是矩形;(2)在点P 的运动过程中,GH 的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.五、解答题(三)(共3个小题,每小题9分,满分27分)23.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下:小李的化简如下:======请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简:①;②.24.在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)判断:四边形ADCF 是________形,说明理由;(3)若AC=4,AB=5,求四边形ADCF 的面积.25.如图,在Rt△ABC 中,∠B=90°,AC=12,∠A=60°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向A 点匀速运动,同时点E 从点A 出发沿AB 方向以每秒1 个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E 运动的时间是t 秒(t>0).过点D 作DF⊥BC 于点F,连接DE、EF.(1)AB的长是________.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF 与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.答案解析部分一、单项选择题(共10个小题,每小题3分,满分30分)1.【答案】B【考点】最简二次根式【解析】【解答】A.原式=2,不符合题意,选项错误;C.原式=2,不符合题意,选项错误;D.原式=,不符合题意,选项错误。
2015-2016学年天津市津南区东片学区八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥33.(3分)下列计算正确的是()A.B.C.D.4.(3分)正方形面积为36,则对角线的长为()A.6 B.C.9 D.5.(3分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=56.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.59.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.2410.(3分)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD 11.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)12.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(每小题3分,共18分)13.(3分)=,=.14.(3分)顺次连接矩形各边中点所得四边形为形.15.(3分)已知菱形的两条对角线长为8和6,那么这个菱形面积是,菱形的高.16.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC 于F.且AD交EF于O,则∠AOF=度.17.(3分)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点,则PB+PE的最小值是.三、解答题:(共66分)19.(8分)计算:(1)2﹣6+3(2)(﹣).20.(8分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.21.(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.22.(10分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.23.(10分)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED 的形状,并说明理由.24.(10分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.(10分)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.2015-2016学年天津市津南区东片学区八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥3【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选:C.3.(3分)下列计算正确的是()A.B.C.D.【解答】解:A、原式=,错误;B、原式不能合并,错误;C、原式=2×=,错误;D、原式=5,正确,故选:D.4.(3分)正方形面积为36,则对角线的长为()A.6 B.C.9 D.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.5.(3分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.6.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD【解答】解:A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选:C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.8.(3分)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.5【解答】解:如下图所示:矩形ABCD,对角线AC=BD=15,∠AOD=∠BOC=60°∵四边形ABCD是矩形∴OA=OD=OC=OB=×15=7.5(矩形的对角线互相平分且相等)又∵∠AOD=∠BOC=60°,∴OA=OD=AD=7.5,∵∠COD=120°>∠AOD=60°∴AD<DC所以该矩形较短的一边长为7.5,故选:C.9.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.10.(3分)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选:D.11.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.12.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选:C.二、填空题(每小题3分,共18分)13.(3分)=,=.【解答】解:==,=|﹣|=,故答案分别为,.14.(3分)顺次连接矩形各边中点所得四边形为菱形.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故答案为:菱形.15.(3分)已知菱形的两条对角线长为8和6,那么这个菱形面积是24,菱形的高.【解答】解:如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E.∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴菱形的面积=•AC•BD=24,∵BC•AE=24,∴AE=,∴菱形的高为.故答案为24,.16.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC 于F.且AD交EF于O,则∠AOF=90度.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.17.(3分)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为20.【解答】解:∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=8,BD=10∴A1D1是△ABD的中位线∴A1D1=BD=×10=5同理可得A1B1=AC=4根据三角形的中位线定理,可以证明四边形A1B1C1D1是矩形那么四边形A1B1C1D1的面积为A1D1×A1B1=5×4=20.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点,则PB+PE的最小值是10.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.三、解答题:(共66分)19.(8分)计算:(1)2﹣6+3(2)(﹣).【解答】解:(1)2﹣6+3=4﹣2+12=14;(2)(﹣)=(5﹣2)÷=3÷=3.20.(8分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.【解答】解:∵x2=(2﹣)2=7﹣4,∴原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+[22﹣()2]+=1+(4﹣3)+=2+.21.(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.【解答】解:如图,连接BD.在Rt△ABD中,∵∠A=90°,AD=4,AB=3,∴BD===5,∵BD2+BC2=52+122=169,DC2=132=169,∴BD2+BC2=CD2,∴△BDC是直角三角形,∴S△DBC=•BD•BC=×5×12=30,S△ABD=•AD•AB=×3×4=6,∴四边形ABCD的面积=S△BDC +S△ADB=36.22.(10分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【解答】证明:∵四边形ABCD 是矩形, ∴DC ∥AB ,DC=AB , ∴CF ∥AE , ∵DF=BE , ∴CF=AE ,∴四边形AFCE 是平行四边形, ∴AF=CE .23.(10分)(1)化简:2a (a +b )﹣(a +b )2(2)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .试判断四边形OCED 的形状,并说明理由.【解答】(1)解:2a (a +b )﹣(a +b )2, =(a +b )(2a ﹣a ﹣b ), =(a +b )(a ﹣b ), =a 2﹣b 2;(2)解:四边形OCED 菱形. 理由如下:∵四边形ABCD 是矩形,∴AC=BD ,OD=BD ,OC=AC , ∴OC=OD ,∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∴四边形OCED 是菱形.24.(10分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.25.(10分)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【解答】(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OB•cos30°=8×=4,AB=OB•sin30°=8×=4,∴点B的坐标为(4,4);(2)证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(3)解:设OG的长为x,∵OC=OB=8,∴CG=8﹣x,由折叠的性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即(8﹣x)2=x2+(4)2,解得:x=1,即OG=1.。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-18)÷6的结果等于(A)-3 (B)3(C)13-(D)13(2)cos45︒的值等于(A)12(B)22(C)32(D)3(3)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是吉祥如意(A)(B)(C)(D)(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为(A)70.22710⨯(B)62.2710⨯(C)522.710⨯(D)422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A)(B)E'A'EBDC A(C ) (D ) (6)估计11的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为(A )(3,2) (B )(2,-3)(C )(-3,-2) (D )(3,-2)(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3 (C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm (B )2dm (C )6dm (D )3dm (11)如图,已知在ABCD 中, AE ⊥BC 于点E ,以点B为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,第(5)题则∠DA ′E ′的大小为(A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为(A )154 (B )92 (C )132 (D )152二、填空题(本大题共6小题,每小题3分,共18分) (13)计算25x x 的结果等于 .(14)若一次函数2y x b =+(b 为常数)的图象经过点(1,5),则b 的值为 . (15)不透明的袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别. 从袋子中随机取出1个球,则它是红球的概率为 .(16)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =3,DB =2,BC =6,则DE 的长为 .(17)如图,在正六边形ABCDEF 中, 连接对角线AC ,BD ,CE ,DF ,EA ,FB ,可以得到一个第(11)题第(16)题ECD AB第(17)题L KJI HM FEDCBA六角星. 记这些对角线的交点分别为H ,I ,J ,K ,L ,M ,则图中等边三角形共有 个.(18)如图,在每个小正方形的边长为1的网格中,点A , B , C , D 均在格点上,点E , F 分别为线段BC ,DB 上的动点,且BE =DF . (Ⅰ)如图①,当BE =52时,计算AE AF +的值等于 ; (Ⅱ)当AE AF +取得最小值时,请在如图②所示的网格中,用无刻度...的直尺,画出线段AE ,AF ,并简要说明点E 和点F 的位置是如何找到的(不要求证明) .FABC DEABCD三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题8分)解不等式组3219.x x +⎧⎨-⎩≥6, ①≤②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________________; (Ⅱ)解不等式②,得__________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来:345621图①图②第(18)题第(20)题(Ⅳ)原不等式组的解集为__________________.(20)(本小题8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②. 请根据相关信息,解答下列问题:(Ⅰ)该商场服装部营业员人数为_________,图①中m 的值为_________; (Ⅱ)求统计的这组销售额数据的平均数、众数和中位数.(21)(本小题10分)已知A , B ,C 是⊙O 上的三个点,四边形OABC 是平行四边形,过点C 作⊙O 的切线,交AB 的延长线于点D .(Ⅰ)如图①,求∠ADC 的大小;(Ⅱ)如图②,经过点O 作CD 的平行线,与AB 交于点E ,与AB 交于点F ,连接AF ,求 ∠FAB 的大小.图①图②2578 3人数销售额/万元12 15 18 21 24 2 4 6 8 21万元 32%18万元 m %24万元 12%12万元 8%15万元 20%D CBOAF ED CB OA第(21)题第(22)题(22)(本小题10分)如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一直线上. 小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°. 已知点D 到地面的距离DE 为1.56m ,EC =21m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位).参考数据:tan 47°≈1.07,tan 42°≈0.90.(23)(本小题10分)1号探测气球从海拔5 m 处出发,以1m/min 的速度上升. 与此同时,2号探测气球从海拔15m 处出发,以0.5m/min 的速度上升. 两个气球都匀速上升了50min.设气球上升时间为x min (0≤x ≤50).(Ⅰ)根据题意,填写下表上升时间/min10 30 … x 1号探测气球所在位置的海拔/m 15 … 2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;图①图②42°47°EAD CB第(24)题(Ⅲ)当30≤x ≤50时,两个气球所在位置的海拔最多相差多少米?(24)(本小题10分)将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点A (3,0),点B (0,1),点O (0,0). 过边OA 上的动点M (点M 不与点O ,A 重合)作MN ⊥AB 于点N ,沿着MN 折叠该纸片,得顶点A 的对应点A ′. 设OM =m ,折叠后的△A ′MN 与四边形OMNB 重叠部分的面积为S .(Ⅰ)如图①,当点A ′与顶点B 重合时,求点M 的坐标;(Ⅱ)如图②,当点A ′落在第二象限时,A ′M 与OB 相交于点C ,试用含m 的式子表示S ;(Ⅲ)当S =324时,求点M 的坐标(直接写出结果即可).(25)(本小题10分)已知二次函数2y x bx c =++( b ,c 为常数). (Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(Ⅲ)当c =b 2时,若在自变量x 的值满足b ≤x ≤b +3的情况下,与其对应的函数值y 的最小值图①图②yx(A')NAO BMy xCA'NAO BM为21,求此时二次函数的解析式.证明:连接AD,AB.在答案图中易知BH =5,HP︰PB =HK︰BC =1︰4,则BP =4=AD,且∠CBH =∠ADB,BE =DF,所以△EBP≌△FDA,故EP =AF,则E应为AP与BC交点时,AE+AF和最小.另一方面,DM =5,DG︰GM =DC︰MN =3︰2,则DG =3=AB,且∠GDF =∠ABE=90°,DF = BE,所以△FDG≌△EBA,故GF = AE,则F应为AG与BD交点时,AE+AF和最小.因此,上图中的E,F两点即为所示求.y x A'NA OB M 附解析:由第(Ⅰ)、(Ⅱ)问可得,33303853336324333m S m S S m m .<<<≤===<<当时,,当时,,因此,时,的取值范围应为 此时情况如右图所示,重叠部分即为△A ′MN ,A ′M =AM =3m -,∠NA ′M =∠NAM =30°,由MN ⊥AB ,得∠A ′NM =90°,∴32m MN -=,3(3)cos302m A N A M ⋅-''=⋅=, 则1133(3)2222A MN m m S S MN A N '∆--'==⋅=⋅⋅. 若324S =,则133(3)322224m m --⋅⋅=, 整理,得21(3)3m -=, 解得,1233m =,2233m =-(舍去). 因此,当324S =时,点M 的坐标为(233,0).。
2015-2016学年天津市和平区八年级(下)期中数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.把化成最简二次根式为()A.B.C.D.2.估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.计算:+=()A.8B.C.8a D.154.若在实数范围内有意义,则x的取值范围是()A.x>B.x≥C.x<D.x>05.一个直角三角形的两条直角边边长分别为3和4,则斜边上的高为()A.2 B.2.2 C.2.4 D.2.56.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+=0,则△ABC()A.不是直角三角形B.是以a为斜边的直角三角形C.是以b为斜边的直角三角形D.是以c为斜边的直角三角形7.已知x=+1,y=﹣1,则x2+2xy+y2的值为()A.4 B.6 C.8 D.128.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A.20B.5cm C.cm D.5cm9.下列命题中,是真命题的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的四边形是菱形; D.两条对角线互相垂直且相等的四边形是正方形10.顺次连接矩形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.等腰梯形11.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F 处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD的长BC与宽AB的关系是()A.BC=2AB B.BC=AB C.BC=1.5AB D.BC=AB12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②△DPH是等腰三角形;③PF=AB;④=.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)13.=.14.如图,在Rt△ABC中,BD是斜边AC上的中线,若AC=8,则BD的长=.15.命题“同位角相等,两直线平行”的逆命题是:.16.在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=80°,则∠OAB的大小为(度).17.如图①,△ABE,△ACD都是等边三角形,若CE=6,则BD的长=;(2)如图②,△ABC中,∠ABC=30°,AB=3,BC=4,D是△ABC外一点,且△ACD是等边三角形,则BD的长=.18.如图,在正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.请在给出的5×5的正方形网格中,以格点为顶点,画出两个三角形,一个三角形的长分别是、2、,另一个三角形的三边长分别是、2、5.(画出的两个三角形除顶点和边可以重合外,其余部分不能重合)三、解答题(本大题共7小题,共46分。
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是().2.下列四个等式从左到右的变形,是多项式因式分解的是().A.B.C.D.3.下列运算正确的是().A.﹣a(a﹣b)=﹣abB.="4ab"C.2ab∙3a=D.(a﹣1)(1﹣a)=﹣14.分解因式结果正确的是().A.B.C.D.y(x+y)(x﹣y)5.长方形的面积为﹣6ab+2a,若它的一边长为2a,则它的周长为().A.4a﹣3b B.8a﹣6b C.4a﹣3b+1D.8a﹣6b+26.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在().A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处7.若=11,=7,则xy和()的值分别为().A.4,18B.1,18C.1,9D.4,98.2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为().A.1B.﹣1C.4032D.40319.根据下列已知条件,能唯一画出△ABC的是().A.AB=3,BC=4,AC="8"B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB="4"D.∠C=90°,AB=610.如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为().A.B.4C.D.511.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对12.如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为().A.20° B.30° C.40° D.45°二、填空题1.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是 .2.如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD的周长为.3.如图,AE∥DF,AB=DC,不再添加辅助线和字母,要使△EAC≌△FDB,需添加的一个条件是(只写一个条件即可).4.点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC= .5.若﹣(m﹣1)x+36是一个完全平方式,则m的值为.三、解答题1.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣,(1﹣x)(1+x+)=1﹣,(1﹣x)(1+x++)=1﹣….(1)观察上式,并猜想:(1﹣x)(1+x++…+)= ;(2)根据你的猜想,计算:1+3++…+= .(其中n是正整数)2.在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称;(2)写出△ABC关于x轴对称的各顶点坐标:;;.3.化简求值:,x=.4.因式分解:(1)18axy﹣3a﹣27a;(2);(3)c(a﹣b)﹣2c+.5.如图,B是AC中点,∠F=∠E,∠1=∠2.证明:AE=CF.6.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.7.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.天津初二初中数学期中考试答案及解析一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是().【答案】A.【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【考点】轴对称图形.2.下列四个等式从左到右的变形,是多项式因式分解的是().A.B.C.D.【答案】D.【解析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.A、是整式的乘法,故A错误;B、没把一个多项式化为几个整式的积的形式,故B错误;C、没把一个多项式化为几个整式的积的形式,故C错误;D、把一个多项式化为几个整式的积的形式,故D正确.故选:D.【考点】因式分解.3.下列运算正确的是().A.﹣a(a﹣b)=﹣abB.="4ab"C.2ab∙3a=D.(a﹣1)(1﹣a)=﹣1【答案】C.【解析】原式各项计算得到结果,即可作出判断.A、原式=+ab,错误;B、原式=,错误;C、原式=,正确;D、原式=+2a﹣1,错误.故选:C.【考点】整式的乘法运算.4.分解因式结果正确的是().A.B.C.D.y(x+y)(x﹣y)【答案】D.【解析】首先提取公因式y,进而利用平方差公式进行分解即可.==y(x+y)(x﹣y).故选:D.【考点】因式分解.5.长方形的面积为﹣6ab+2a,若它的一边长为2a,则它的周长为().A.4a﹣3b B.8a﹣6b C.4a﹣3b+1D.8a﹣6b+2【答案】D.【解析】首先利用面积除以一边长即可求得另一边长,则周长即可求解.另一边长是:(﹣6ab+2a)÷2a=2a ﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选:D.【考点】整式的运算.6.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在().A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处【答案】C.【解析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选:C.【考点】线段的垂直平分线的性质.7.若=11,=7,则xy和()的值分别为().A.4,18B.1,18C.1,9D.4,9【答案】C.【解析】已知等式利用完全平方公式化简,整理即可求出所求式子的值.已知等式整理得:= =11①,==7②,①﹣②得:4xy=4,即xy=1;①+②得:=18,即=9.故选:C.【考点】完全平方公式的应用.8.2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为().A.1B.﹣1C.4032D.4031【答案】D.【解析】应用乘法分配律,求出算式的值为多少即可.2016×2016﹣2016×2015﹣2015×2014+2015×2015=2016×1+2015×1=2016+2015=4031.故选:D.【考点】乘法分配律.9.根据下列已知条件,能唯一画出△ABC的是().A.AB=3,BC=4,AC="8"B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB="4"D.∠C=90°,AB=6【答案】C.【解析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选:C.【考点】全等三角形的判定.10.如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为().A.B.4C.D.5【答案】B.【解析】易证△ADC≌△BDH后就可以得出BH=AC,进而可求出线段BH的长度.∵AD⊥BC,∴∠ADC=∠BDH=90°,∴∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC和△BDH 中,∠ADC=∠BDH,∠C=∠BHD,AD=BD,∴△ADC≌△BDH(AAS),∴BH=AC=4.故选:B.【考点】全等三角形的判定和性质.11.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对【答案】D.【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OD,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.【考点】全等三角形的判定.12.如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为().A.20° B.30° C.40° D.45°【答案】B.【解析】根据∠BCA:∠ABC:∠BAC=28:5:3,三角形的内角和定理分别求得∠BCA=140°,∠ABC=25°,∠BAC=15°,然后根据折叠的性质求出∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,根据三角形的内角和定理求出∠AOD=110°,继而可求得∠EOF=∠AOD=110°,∴∠EFC=∠BEA﹣∠EOF=140°﹣110°=30°.故选:B.【考点】三角形内角和定理;轴对称的性质.二、填空题1.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是 .【答案】1.【解析】结合关于x轴、y轴对称的点的坐标的特点求解即可.∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,∴a=﹣2,b=3,∴a+b=﹣2+3=1.故答案为:1.【考点】点的坐标.2.如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD的周长为.【答案】13cm.【解析】根据垂直平分线的性质计算.△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC.∵AC的垂直平分线DE交BC于D,E为垂足,∴AD=DC,AC=2AE=6cm,∵△ABC的周长为19cm,∴AB+BC=13cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm.故答案为:13cm.【考点】垂直平分线的性质.3.如图,AE∥DF,AB=DC,不再添加辅助线和字母,要使△EAC≌△FDB,需添加的一个条件是(只写一个条件即可).【答案】∠E=∠F或AE=DF.【解析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用ASA定理证明△EAC≌△FDB即可,或AE=DF利用SAS定理证明△EAC≌△FDB.添加∠E=∠F,理由如下:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∠E=∠F ,AF=FD,∠A=∠D ,∴△EAC≌△FDB (ASA).当添加AE=DF时,利用SAS即可证得.故答案是:∠E=∠F或AE=DF.【考点】全等三角形的判定.4.点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC= .【答案】115°.【解析】根据三角形内角和定理求出∠ABC+∠ACB=130°,再根据角平分线上的点到角的两边的距离相等判断出点O是△ABC角平分线的交点,再根据角平分线的定义求出∠OBC+∠OCB=65°,然后在△OBC中,利用三角形内角和定理列式进行计算∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故答案为:115°.【考点】三角形内角和定理;角平分线的性质.5.若﹣(m﹣1)x+36是一个完全平方式,则m的值为.【答案】﹣11或13.【解析】利用完全平方公式的结构特征判断即可得到m的值.∵﹣(m﹣1)x+36是一个完全平方式,∴m﹣1=±12,故m的值为﹣11或13.故答案为:﹣11或13.【考点】完全平方式.三、解答题1.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣,(1﹣x)(1+x+)=1﹣,(1﹣x)(1+x++)=1﹣….(1)观察上式,并猜想:(1﹣x)(1+x++…+)= ;(2)根据你的猜想,计算:1+3++…+= .(其中n是正整数)【答案】(1)1﹣;(2).【解析】(1)归纳总结得到一般性规律,写出即可;(2)原式变形后,利用得出的规律计算即可得到结果.(1)(1﹣x)(1+x++…+)=1﹣;(2)1+3++…+=(1﹣3)(1+3++…+)=.故答案为:(1)﹣;(2).【考点】数字的变化规律.2.在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称;(2)写出△ABC关于x轴对称的各顶点坐标:;;.【答案】(1)作图详见解析;(2)(1,﹣2);(3,﹣1);(﹣2,1).【解析】(1)利用关于y轴对称点的性质得出各对应点位置得出答案;(2)利用关于x轴对称点的性质得出各对应点位置得出答案.试题解析:(1)如图所示:,即为所求;(2)如图所示:,即为所求;(1,﹣2);(3,﹣1);(﹣2,1).故答案为:(1,﹣2),(3,﹣1),(﹣2,1).【考点】作轴对称图形;关于坐标轴对称的点的坐标特征.3.化简求值:,x=.【答案】化简得-9x+2,代入数值得3.【解析】对先去括号,再合并同类项,化简后将x=代入化简后的式子,即可求得值.其中利用完全平方公式去括号,(3x+1)(3x﹣1)利用平方差公式去括号.试题解析:原式===﹣9x+2,当x=时,原式=﹣9×+2=3.【考点】代数式的化简求值.4.因式分解:(1)18axy﹣3a﹣27a;(2);(3)c(a﹣b)﹣2c+.【答案】(1);(2);(3).【解析】(1)首先提取公因式﹣3a,进而利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(3)首先提取公因式c(a﹣b),进而利用平方差公式分解因式得出答案.试题解析:(1)18axy﹣3a﹣27a=﹣3a(﹣6xy++9)=;(2)=(+4+4a)(+4﹣4a)=;(3)c(a﹣b)﹣2c+=c(a﹣b)[1﹣2(a﹣b)+]=.【考点】因式分解.5.如图,B是AC中点,∠F=∠E,∠1=∠2.证明:AE=CF.【答案】证明详见解析.【解析】根据全等三角形的判定和性质即可得到结论.试题解析:∵B是AC中点,∴AB=BC,∵∠1=∠2,∴∠1+∠FBE=∠2+∠EBF,即∠ABE=∠CBF,在△ABE与△CBF中,,,AB=CF,△EBA≌△FBC(AAS),∴AE=CF.【考点】全等三角形的判定和性质.6.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.【答案】①证明详见解析;②16.【解析】①连接CD,根据垂直平分线性质可得BD=CD,可证Rt△BDE≌Rt△CDF,可得BE=CF;②根据Rt△ADE≌Rt△ADF得出AE=AF解答即可.试题解析:①证明:连结CD,∵D在BC的中垂线上,∴BD=CD,∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴DE=DF,∠BED=∠DCF=90°,在RT△BDE和RT△CDF中,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF;②解:由(HL)可得,Rt△ADE≌Rt△ADF,∴AE=AF=5,∴△ABC的周长=AB+BC+AC=(AE+BE)+BC+(AF﹣CF)=5+6+5=16.【考点】角平分线的性质;全等三角形的判定和性质.7.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【答案】(1)2<AD<8;(2)证明详见解析;(3)BE+DF=EF;理由详见解析.【解析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC =∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.【考点】全等三角形的判定和性质;三角形的三边关系定理.。
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、单选题1.下列长度的三根小木棒能构成三角形的是( )A.2 cm,3 cm,5 cm B.7cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm2.下列图形具有稳定性的是A.正五边形B.三角形C.梯形D.正方形3.六边形的内角和为()A.360°B.540°C.720°D.180°4.平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A.(-2,-3)B.(2,-3)C.(-3,2)D.(3,-2)5.下列命题中正确个数为()①全等三角形对应边相等;②三个角对应相等的两个三角形全等③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等.A.4个B.3个C.2个D.1个6.如下图,点O是∠ABC和∠ACB的平分线的交点,∠A=80°,则∠BOC等于()A.120°B.130°C.135°D.无法确定二、选择题1.两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等2.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆D.线段3.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y 轴对称;③A、B之间的距离为4,其中正确的有()A.1个 B.2个 C.3个 D.0个4.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.287.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则下列结论中错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.OC=PC8.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A. 1cm B. 2cm C. 3cm D. 4cm9.如图所示,是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO="OC" 其中正确的结论有().A.1个B.2个C.3个D.4个三、填空题1.一个多边形的内角和等于外角和的2倍,则这个多边形的边数是___________。
天津初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3、4、5B.6、8、10C.、2、D.5、12、133.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.3二、解答题1.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.2.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.3.计算:(1);(2)4.已知x=,y=,求的值.5.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.三、单选题1.下列计算错误的是()A.B.C.D.2.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.4.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>55.若与|x-y-3|互为相反数,则x+y的值为( )A.3B.9C.12D.276.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是()A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°8.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.20B.25C.20D.25四、填空题1.代数式有意义的条件是_______.2.已知n是正整数,是整数,则n的最小值是__.3.的整数部分是x,小数部分是y,则y(x+)的值为________ .4.如果直角三角形的三边长为10、6、x,则最短边上的高为_________.5.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1________S 2(填“>”或“<”或“=”).6.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3到正方形O 3KJP 的中心O 4,一共走了31m ,则长方形花坛ABCD 的周长是_______.天津初二初中数学期中考试答案及解析一、选择题1.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )A .AC=BD ,AB ∥CD ,AB=CDB .AD ∥BC ,∠A=∠CC .AO=BO=CO=DO ,AC ⊥BDD .AO=CO ,BO=DO ,AB=BC【答案】C .【解析】A .不能,只能判定为矩形;B .不能,只能判定为平行四边形;C .能;D .不能,只能判定为菱形.故选C .【考点】正方形的判定.2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A .3、4、5B .6、8、10C .、2、D .5、12、13【答案】C【解析】将选项逐一验证,,因此不能构成直角三角形的是C .3.等边三角形的边长为2,则该三角形的面积为( ) A . B . C . D .3【答案】C .【解析】 如图,作CD ⊥AB ,则CD 是等边△ABC 底边AB 上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC 中,利用勾股定理,可求出CD=,代入面积计算公式,∴S=×2×=;故选C.△ABC【考点】等边三角形的性质.二、解答题1.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长.【答案】(1)12;(2)25.【解析】(1)由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长;(2)由(1)的数据和勾股定理求出AD的长,进而求出AB的长.试题解析:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;.(2)在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD="16" .∴AB=AD+BD=16+9=25.【考点】勾股定理.2.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【答案】(1)证明见解析;(2)当∠BAC=90°时,矩形AEBD是正方形.理由见解析.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.3.计算:(1);(2)【答案】(1)原式=;(2)原式=﹣.【解析】本题考查的是二次根式的混合运算.试题解析:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.4.已知x=,y=,求的值.【答案】4【解析】本题先把x化简,在把代数式因式分解,然后整体代入即可.试题解析:∵x==2﹣,y=,∴x2y+xy2=xy(x+y)=(2﹣)(2+)×4="4" .5.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【答案】证明见解析【解析】本题利用平行四边形的性质得出AD=BC,AD∥BC,再结合已知条件,判断出四边形AECF是平行四边形,得出结论即可.试题解析:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.点睛:本题的关键是充分利用平行四边形的性质和平行四边形的判定定理,也可以利用三角形全等得出结论.三、单选题1.下列计算错误的是()A.B.C.D.【答案】B【解析】选项A,根据二次根式的乘法法则可得,选项正确;选项B,不是同类二次根式,不能够合并,选项错误;选项C,根据二次根式的除法法则可得,选项正确;选项D,,选项正确,故选B.2.如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.【答案】D【解析】根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【答案】C【解析】分析:本题考查的是最简二次根式的判断问题.解析:A. =2, B. = , C. 不能化简, D. =2.故选C.4.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【答案】C【解析】分析:本题考查的是的运用.解析:∵=x﹣5,∴故选C.5.若与|x-y-3|互为相反数,则x+y的值为( )A.3B.9C.12D.27【答案】D【解析】由题意可得,∴x-2y+9=0,x-y-3=0,∴x=15,y=12.∴x+y=27,故选D.6.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是()A:底与边不相等的等腰三角形 B:等边三角形C:钝角三角形 D:直角三角形【答案】D【解析】分析:本题考查的是非负数的意义,得出a、b、c的值,利用勾股定理的逆定理得出三角形的形状.解析:∵(a-5)2+|b-12|+c2-26c+169=0,∴a=5,b=12,c=13,∵∴三角形是直角三角形.故选D.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【答案】B【解析】试题解析:如图:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【考点】1.平行四边形的性质;2.平行线的性质.8.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A.20B.25C.20D.25【答案】D【解析】分析:本题考查的是利用勾股定理求线段的长度.解析:根据题意,得出如下图形,最短路径为AB的长,AC=20,BC=15,∴AB=25故选D.点睛:本题的关键是变曲为直,画出矩形,利用勾股定理得出对角线的长度.四、填空题1.代数式有意义的条件是_______.【答案】x>-2【解析】分析:本题考查的是代数式有意义的条件,分母不为零,被开方数大于等于零.解析:根据题意得,故答案为x>-2.2.已知n是正整数,是整数,则n的最小值是__.【答案】3【解析】分析:本题考查的是二次根式的化简.解析:∵,∵n是正整数,是整数,∴n的最小值是3.故答案为3.3.的整数部分是x,小数部分是y,则y(x+)的值为________ .【答案】1【解析】分析:本题考查的是无理数的整数部分和小数部分的相关计算,小数部分要用原数减去整数部分.解析:∵的整数部分是3,∴小数部分是:-3,∴x=3,y=-3,∴y(x+)= . 故答案为1.4.如果直角三角形的三边长为10、6、x ,则最短边上的高为_________.【答案】8或10【解析】分析:本题考查的是利用勾股定理求出第三边,根据等积法求出最短边上的高.解析:当10为斜边时,另一条直角边为8,所以最短边上的高为8;当10为直角边时,最短的直角边为6,则最短边上的高是10.故答案为8或10.5.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1________S 2(填“>”或“<”或“=”).【答案】=【解析】分析:本题考查的是矩形的性质.解析:因为ABCD 是矩形,所以△ABD 与△BCD 的面积相等,同理△PKD 与△NKD 的面积相等, △BMK 与△BQK 的面积相等,∴S 1=S 2.故答案为=.6.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3到正方形O 3KJP 的中心O 4,一共走了31m ,则长方形花坛ABCD 的周长是_______.【答案】64m【解析】分析:本题考查的是正方形的性质,得出各边之间的关系,列出方程解之即可.解析:设O 3 O 4=x ,, ,∴ABCD 的周长是64m. 故答案为64m.点睛:本题的关键是利用正方形的性质,正方形的对角线相等并且互相平分.得出各个线段之间的关系.。
2015年天津市中考数学试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算(−18)÷6的结果等于( )A. −3B. 3C. −13D. 132. cos45°的值等于( )A. 12B. √22C. √32D. √33. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.4. 据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为( )A. 0.227×lO7B. 2.27×106C. 22.7×l05D. 227×1045. 如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.6. 估计√11的值在( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间7. 在平面直角坐标系中,把点P(−3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为( )A. (3,2)B. (2,−3)C. (−3,−2)D. (3,−2)8. 分式方程2x−3=3x的解为( )A. x=0B. x=3C. x=5D. x=99. 已知反比例函数y=6x,当1<x<3时,y的取值范围是( )A. 0<y<1B. 1<y<2C. 2<y<6D. y>610. 己知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A. 1dmB. √2dmC. √6dmD. 3dm11. 如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A. 130°B. 150°C. 160°D. 170°12. 已知抛物线y=−16x2+32x+6与x轴交于点A,B,与y轴交于点C,若点D是AB的中点,则CD的长是( )A. 154B. 92C. 132D. 152二、填空题(本大题共6小题,共18.0分)13. 计算:x2⋅x5的结果等于______.14. 若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为______.15. 不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______.16. 如图,在△ABC中,DE//BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为______.17. 如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有______个.18. 在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=52时,计算AE+AF的值等于______(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66.0分。
2015-2016学年天津市红桥区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列二次根式中最简二次根式的是( )A .B .C .D . 2.下列各式中一定成立的是( )A .=﹣3B .+=C .=|x |D .()2=x3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A .13B .8C .25D .644.下列四组线段中,能组成直角三角形的是( ) A .a=2,b=2,c=3 B .a=2,b=3,c=4 C .a=4,b=5,c=6 D .a=5,b=12,c=135.如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AD 于点F ,则∠1=( )A .40°B .50°C .60°D .80°6.已知一组数据:1,4,x ,2,5,7,若这组数据的众数为2,则这组数据的平均数、中位数分别是( )A .3.5,2B .3.5,3C .4,3D .3.5,47.某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选拔赛中,每人射击10次,计算他们成绩的平均数(环)分别是8.2,8.0,8.2,8.0,方差分别为2.0,1.8,1.5,1.6,则最合适的人选是( )A .甲B .乙C .丙D .丁8.如图,▱ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为( )A .BE=DFB .BF=DEC .AE=CFD .∠1=∠29.将矩形纸片ABCD 按如图方式折叠,得到菱形AECF ,若AD=,则AB 的长为( )A.2 B.2C.3 D.310.如图,在边长为4的正方形ABCD中,M为边AB上的点,且AM=BM,延长MB至点E,使ME=MC,连接EC,则点M到直线CE的距离是()A.2 B.C.5 D.2二、填空题:本大题共6个小题,每小题3分,共18分11.若式子在实数范围内有意义,则a的取值范围是______.12.计算(﹣)÷的值是______.(环)14.如图,在长方形ABCD中,AB=3,AD=3,AB在数轴上,以点A为圆心,对角线AC的长为半径作弧,交数轴的正半轴于点E,则E在数轴上对应的数为______.15.在▱ABCD中,对角线AC=10,BD=8,设边AD的长度为a,则a的取值范围是______.16.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,EF=2,则AB的长为______.三、解答题:本大题共6个小题,共52分,解答应写出文字说明、证明过程或演算步骤17.化简下列各式:(Ⅰ)÷(Ⅱ)•(Ⅲ);(Ⅳ).18.计算下列各式.(Ⅰ)(﹣)(4+)﹣;(Ⅱ)(a+)÷.19.在▱ABCD中,点E,F分别在AB,CD上,∠ADE=∠CBF.(Ⅰ)求证:AE=CF;(Ⅱ)若DF=BF,求证:EF⊥BD.20.如图,在正方形ABCD中,E为BC的中点,F是CD上一点,且∠AEF=90°,求证:CF=AB.21.一批零件共有3000件,为了检查这批零件的质量,从中随机抽取一部分测量了它们的长度(单位:mm),并根据得到的数据,绘制出如下的统计图①和图②.(Ⅰ)本次随机抽取的零件的件数为______,图①中m的值为______;(Ⅱ)求本次随机抽取的零件长度的平均数、中位数和众数;(Ⅲ)根据样本数据,估计该批零件中长度为52mm的零件件数.22.在▱ABCD中,AB=5,BC=10,BC边上的高AM=4,过BC边上的动点E(不与点B,C重合)作直线AB的垂线,EF与DC的延长线相交于点G.(Ⅰ)如图①,当点E与点M重合时,求EF的长;(Ⅱ)如图②,当点E为BC的中点时,连结DE,DF,求△DEF的面积;(Ⅲ)当点E在BC上运动时,△BEF与△CEG的周长之间有何关系?请说明理由.2015-2016学年天津市红桥区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列二次根式中最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故A正确;B、被开方数含开的尽的因数或因式,故B错误;C、被开方数含开的尽的因数或因式,故C错误;D、被开方数含分母,故D正确;故选:A.2.下列各式中一定成立的是()A.=﹣3 B. += C.=|x|D.()2=x【考点】二次根式的混合运算.【分析】根据二次根式的性质对A、C、D进行判断;根据二次根式的加减运算对B进行判断.【解答】解:A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=|x|,所以C选项正确;D、原式=﹣x,所以D选项错误.故选C.3.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.64【考点】勾股定理;等腰三角形的性质.【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.【解答】解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.4.下列四组线段中,能组成直角三角形的是()A.a=2,b=2,c=3 B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12,c=13【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵22+22=8≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵42+52=41≠62,∴不能构成直角三角形,故本选项错误.D、∵52+122=169=132,∴能构成直角三角形,故本选项正确;故选D.5.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°【考点】平行四边形的性质.【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.【解答】解:∵AD∥BC,∠B=80°,∴∠BAD=180°﹣∠B=100°.∵AE平分∠BAD∴∠DAE=∠BAD=50°.∴∠AEB=∠DAE=50°∵CF∥AE∴∠1=∠AEB=50°.故选B.6.已知一组数据:1,4,x,2,5,7,若这组数据的众数为2,则这组数据的平均数、中位数分别是()A.3.5,2 B.3.5,3 C.4,3 D.3.5,4【考点】众数;算术平均数;中位数.【分析】根据题目中数据和题意,可以得到x的值,从而可以得到这组数据的平均数和中位数.【解答】解:一组数据:1,4,x,2,5,7的众数为2,∴x=2,∴这组数据的平均数是:,这组数据按照从小到大排列是:1,2,2,4,5,7∴这组数据的中位数是:,故选B.7.某射击队从甲、乙、丙、丁四位选手中选拔一人参加市级比赛,在选拔赛中,每人射击10次,计算他们成绩的平均数(环)分别是8.2,8.0,8.2,8.0,方差分别为2.0,1.8,1.5,1.6,则最合适的人选是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=2.0,S乙2=1.8,S丙2=1.5,S丁2=1.6,∴S甲2>S乙2>S丁2>S丙2,∵甲和丙的平均数大,∴最合适的人选是丙.故选C.8.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.9.将矩形纸片ABCD按如图方式折叠,得到菱形AECF,若AD=,则AB的长为()A.2 B.2C.3 D.3【考点】翻折变换(折叠问题);菱形的性质;矩形的性质.【分析】根据题意可知,AC=2BC,∠B=90°,所以根据勾股定理可知AC2=AB2+BC2,即(2AD)2=AB2+AD2,从而可求得AB的长.【解答】解:∵AC=2BC,∠B=90°,∴AC2=AB2+BC2,∴(2AD)2=AB2+AD2,∴AB=3.故选:C.10.如图,在边长为4的正方形ABCD中,M为边AB上的点,且AM=BM,延长MB至点E,使ME=MC,连接EC,则点M到直线CE的距离是()A.2 B.C.5 D.2【考点】正方形的性质;点到直线的距离.【分析】如图,作MN⊥EC于N.首先利用勾股定理求出CM、CE,再根据ME•CB=CE•MN,即可解决问题.【解答】解:如图,作MN⊥EC于N.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ABC=90°,∴AM=BM,∴AM=1,BM=3,在Rt△BCM中,CM=ME===5,∴BE=5﹣3=2,∴CE===2∵ME•CB=CE•MN,∴MN===2,故选D.二、填空题:本大题共6个小题,每小题3分,共18分11.若式子在实数范围内有意义,则a的取值范围是a<3.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件可得3﹣a>0,再解不等式即可.【解答】解:由题意得:3﹣a>0,解得:a<3,故答案为:a<3.12.计算(﹣)÷的值是1.【考点】二次根式的混合运算.【分析】先化简二次根式,再合并同类二次根式,根据二次根式的除法进行计算即可.【解答】解:原式=(4﹣3)÷=÷=1,故答案为1.则他们本轮比赛的平均成绩是8.4(环)【考点】加权平均数.【分析】根据表格中的中的数据,可以求出这组数据的加权平均数,从而可以解答本题.【解答】解:由表格可得,他们本轮比赛的平均成绩是:=8.4(环),故答案为:8.4.14.如图,在长方形ABCD中,AB=3,AD=3,AB在数轴上,以点A为圆心,对角线AC的长为半径作弧,交数轴的正半轴于点E,则E在数轴上对应的数为3﹣1.【考点】实数与数轴.【分析】利用勾股定理求出AE的长,设点E在数轴上对应的数为x,则x﹣(﹣1)=AE,求出x即可.【解答】解:如图:∵四边形ABCD是长方形,∴在Rt△ABC中,AC===3,∴AE=AC=3.故:点E在数轴上对应的数为3﹣115.在▱ABCD中,对角线AC=10,BD=8,设边AD的长度为a,则a的取值范围是1<a<9.【考点】平行四边形的性质;三角形三边关系.【分析】由在▱ABCD中,对角线AC=10,BD=8,可求得OA与OD的长,然后利用三角的三边关系,求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=AC=×10=5,OD=BD=×8=4,∴5﹣4<AD<5+4,即a的取值范围是:1<a<9.故答案为:1<a<9.16.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,EF=2,则AB的长为4.【考点】平行四边形的性质.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC 中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,再由三角形ADF与三角形ECF全等,得出AF=EF,求出AG,由勾股定理求出AD,即可得出AB的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又∵F为DC的中点,∴DF=CF,∴AD=DF=DC=AB,∵DG⊥AE,∴AG=FG,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF=2,∴AG=,∴AD==2,∴AB=2AD=4;故答案为:4.三、解答题:本大题共6个小题,共52分,解答应写出文字说明、证明过程或演算步骤17.化简下列各式:(Ⅰ)÷(Ⅱ)•(Ⅲ);(Ⅳ).【考点】二次根式的乘除法.【分析】(Ⅰ)直接利用二次根式的除法运算法则化简求出答案;(Ⅱ)直接利用二次根式的乘法运算法则化简求出答案;(Ⅲ)直接利用二次根式的除法运算法则化简求出答案;(Ⅳ)直接利用二次根式的除法运算法则化简求出答案.【解答】解:(Ⅰ)原式===2;(Ⅱ)原式==9x;(Ⅲ)原式==3;(Ⅳ)原式===.18.计算下列各式.(Ⅰ)(﹣)(4+)﹣;(Ⅱ)(a+)÷.【考点】二次根式的混合运算.【分析】(1)先化简二次根式,再根据乘法分配律去括号,最后合并可得;(2)先化简二次根式,再合并括号内同类二次根式,最后计算除法即可得.【解答】解:(Ⅰ)原式=(﹣)(2+)﹣=2×+()2﹣2×﹣×﹣=2+3﹣4﹣﹣=﹣1;(Ⅱ)原式=(2a•+4a•)÷=6a•÷(•)=6a.19.在▱ABCD中,点E,F分别在AB,CD上,∠ADE=∠CBF.(Ⅰ)求证:AE=CF;(Ⅱ)若DF=BF,求证:EF⊥BD.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(Ⅰ)根据全等三角形的判定定理证明△ADE≌△CBF,即可证得结论;(2)证明四边形DEBF是菱形,即可得出结论.【解答】(Ⅰ)证明:∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF;(Ⅱ)证明:∵AE=CF,DF=BF,∴DF=BE,∵DF∥BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形,∴EF⊥BD.20.如图,在正方形ABCD中,E为BC的中点,F是CD上一点,且∠AEF=90°,求证:CF=AB.【考点】正方形的性质;勾股定理.【分析】设正方形ABCD的边长为2a,由E为BC中点,得到BE=CE=a,根据勾股定理得到AE2=AB2+BE2=5a2,设CF=x,则DF=2a﹣x,由∠C=∠D=90°,根据勾股定理列方程得到4a2+(2a﹣x)2=5a2+a2+x2,解得x=a,于是得到结论.【解答】证明:设正方形ABCD的边长为2a,∵E为BC中点,∴BE=CE=a,∵∠B=90°,∴AE2=AB2+BE2=5a2,设CF=x,则DF=2a﹣x,由∠C=∠D=90°,得AF2=AD2+DF2=4a2+(2a﹣x)2,EF2=CE2+CF2=a2+x2,∵∠AEF=90°,∴AF2=AE2+EF2,即4a2+(2a﹣x)2=5a2+a2+x2,解得x=a,∴CF=AB,21.一批零件共有3000件,为了检查这批零件的质量,从中随机抽取一部分测量了它们的长度(单位:mm),并根据得到的数据,绘制出如下的统计图①和图②.(Ⅰ)本次随机抽取的零件的件数为25,图①中m的值为32;(Ⅱ)求本次随机抽取的零件长度的平均数、中位数和众数;(Ⅲ)根据样本数据,估计该批零件中长度为52mm的零件件数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据频数除以频率,求得随机抽取的零件的件数,根据100﹣28﹣20﹣8﹣12,求得m的值即可;(2)根据平均数、中位数和众数的算法进行计算即可;(3)根据样本中长度为52mm的零件所占的百分比,计算3000件零件中长度为52mm的零件数即可.【解答】解:(Ⅰ)5÷20%=25,m=100﹣28﹣20﹣8﹣12=32.故答案为:25,32;(Ⅱ)观察条形统计图,可得=(51×2+52×5+53×7+54×8+55×3)÷25=53.2,∴这组数据的平均数是53.2.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是53,∴这组数据的中位数是53.∵在这组数据中,54出现了8次,出现的次数最多,∴这组数据的众数是54;(Ⅲ)∵在25件零件中,长度为52mm的件数比例为20%,∴由样本数据,估计该批零件中长度为52mm的件数比例约为20%,∴在3000件零件中,长度为52mm的零件有3000×20%=600.22.在▱ABCD中,AB=5,BC=10,BC边上的高AM=4,过BC边上的动点E(不与点B,C重合)作直线AB的垂线,EF与DC的延长线相交于点G.(Ⅰ)如图①,当点E与点M重合时,求EF的长;(Ⅱ)如图②,当点E为BC的中点时,连结DE,DF,求△DEF的面积;(Ⅲ)当点E在BC上运动时,△BEF与△CEG的周长之间有何关系?请说明理由.【考点】四边形综合题.【分析】(I)先由勾股定理求BM的长,再利用面积法求EF;(II)要想求△DEF的面积,需要求底边EF和高DG的长,先证明△ABM≌△EBF,得EF=AM=4,再证明FG⊥DG,证明△BEF≌△CEG,得CG=3,求出DG=8,代入面积公式可以求△DEF的面积;(III)过点C作CH⊥AB,垂足为H,利用勾股定理求BH的长,写出△BEF与△CEG的周长之和,发现:EF+EG=FG=8,BF+CG=BH=6,从而求出面积和为24,是定值.【解答】解:(Ⅰ)如图①,∵AB=5,AM=4,AM⊥BC,∴BM===3,=AM•BM=AB•EF,∵S△ABM∴EF===.(Ⅱ)如图②,∵E为BC中点,BC=10,∴BE=CE=5,∴AB=BE=5,∵EF⊥AB,AM⊥BC,∴∠AMB=∠EFB=90°,∵∠B=∠B,∴△ABM≌△EBF,∴EF=AM=4,BF=BM=3,∵四边形ABCD为平行四边形,∴AB∥DG,∴FG⊥DG,∠B=∠ECG,∵∠BFE=∠G=90°,∴△BEF≌△CEG,∴CG=BF=3,EF=EG=4,∴DG=CD+CG=5+3=8,=EF•DG=×4×8=16;∴S△DEF(Ⅲ)图③,过点C作CH⊥AB,垂足为H,∴HC⊥DG,∴四边形HFGC为矩形,∴HC=FG=8,CG=FH,∴BH===6,∵△BFE和△CEG的周长之和为:BE+EF+BF+EC+CG+EG,=BC+FG+BH,=10+8+6,=24,∴△BEE与△CEG的周长之和为定值24.2016年9月29日。
人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为 (A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是 (A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是(A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是 (A)24 (B)73(C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是 (A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21(B)33 (C)3 (D)27.以下各组线段为边,能组成直角三角形的是 (A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形 (C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为(A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分) 13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________;14. 计算:224c ba =________;a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式:311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以 2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时, t 的值为__________。