万有引力与航天 第三节 高中物理总复习
- 格式:ppt
- 大小:732.50 KB
- 文档页数:17
第五讲万有引力与航天(三)【考点分解】〖考点一〗双星问题模型:两颗相距较近的天体仅在对方的万有引力作用下绕连线上的某点均做匀速圆周运动。
特点:1.所需向心力大小相等;2.运动周期(角速度)相等;3.轨道半径之和等于两星距离。
推论:1.二者轨道半径、线速度、向心加速度、动能都与质量成反比;2.系统周期只与二者距离和总质量有关(推导表达式)拓展:特殊的三星系统、四星系统等。
1.[2012重庆] 冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的1/7B.角速度大小约为卡戎的1/7C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍2.[2010全国]如图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常数为G.(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022 kg.求T2与T1两者平方之比.(结果保留3位小数)〖考点二〗天体运动中的时间问题1.周期问题:一般利用开普勒第三定律和环绕天体周期公式求解2.非整周的时间问题:一般利用圆心角和角速度求解3.角度方面的追及问题(两颗卫星相距最近或最远的问题):一般利用角度差和角速度差求解注意:注意结合几何、地理知识等。
3.[2004广东]某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星.试问,春分那天(太阳光直射赤道)在日落后12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射.4.[2010浙江]宇宙飞船以周期为T 绕地球做圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示.已知地球的半径为R ,地球质量为M ,引力常量为G ,地球自转周期为T 0,太阳光可看做平行光.宇航员在A 点测出地球的张角为α,则( ) A .飞船绕地球运动的线速度为2πRT αB .一天内,飞船经历“日全食”的次数为T /T 0C .飞船每次“日全食”过程的时间为αT 0/(2π)D .飞船的周期为T =2πR α RGM α5.假设某次天文现象中,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动,如图所示.地球的轨道半径为R ,运转周期为T .地球和太阳中心的连线与地球和行星的连线所夹的角叫地球对该行星的观察视角(简称视角).已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上的天文爱好者观察该行星的最佳时期.若某时刻该行星正处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间?〖考点三〗其他创新问题没有攻略,无招胜有招6.[2009安徽]大爆炸理论认为,我们的宇宙起源于137亿年前的一次大爆炸。
备战2021新高考物理-重点专题-万有引力与航天(三)一、单选题1.三颗人造地球卫星绕地球做匀速圆周运动,运行方向如图所示.已知,则关于三颗卫星,下列说法错误的是()A.卫星运行线速度关系为B.卫星轨道半径与运行周期关系为C.已知万有引力常量G,现测得卫星A的运行周期T A和轨道半径R A,可求地球的平均密度D.为使A 与B同向对接,可对A适当加速2.如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是()A.B,C的角速度相等,且小于A的角速度B.B,C的线速度大小相等,且大于A的线速度C.B,C的向心加速度相等,且大于A的向心加速度D.B,C的周期相等,且小于A的周期3.2020年4月24日,国家航天局宣布,我国行星探测任务命名为“天问”,首次火星探测任务命名为“天问一号”。
已知万有引力常量,为计算火星的质量,需要测量的数据是()A.火星表面的重力加速度和火星绕太阳做匀速圆周运动的轨道半径B.火星绕太阳做匀速圆周运动的轨道半径和火星的公转周期C.某卫星绕火星做匀速圆周运动的周期和火星的半径D.某卫星绕火星做匀速圆周运动的轨道半径和公转周期4.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下面说法中正确的是()A.g′=0B.g′=C.F N=0D.F N=5.2019年11月23日8时55分,我国在西昌卫星发射中心用“长征三号“乙运载火箭,以“一箭双星”方式成功发射第50、51颗北斗导航卫星。
两颗卫星均属于中圆轨道(MEO)卫星,是我国的“北斗三号”系统的组网卫星。
这两颗卫星的中圆轨道(MEO)是一种周期为12小时,轨道面与赤道平面夹角为60°的圆轨道。
是经过GPS和GLONASS运行证明性能优良的全球导航卫星轨道。
高中物理知识点万有引力与航天归纳高中物理知识点万有引力与航天归纳物理学(physics)是研究物质最一般的运动规律和物质基本结构的学科。
作为自然科学的'带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。
下面是店铺收集整理的高中物理知识点万有引力与航天归纳,仅供参考,大家一起来看看吧。
一、知识点(一)行星的运动1地心说、日心说:内容区别、正误判断2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1万有引力定律:内容、表达式、适用范围2万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二重点考察内容、要求及方式1地心说、日心说:了解内容及其区别,能够判断其科学性(选择) 2开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择) 3万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算) 5宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7经典力学的局限性:了解其局限性所在,适用范围(选择)有关于高中物理知识点复习:万有引力与航天就为您介绍完了,物理网编辑将第一时间为您整理全国考试资讯信息,供大家参考!【高中物理知识点万有引力与航天归纳】。
高中物理:万有引力与航天基础知识点【知识网络构建】【知识清单】一、两种对立学说(了解)1. 地心说:(1)代表人物:托勒密;(2)主要观点:地球是静止不动的,地球是宇宙的中心。
2. 日心说:(1)代表人物:哥白尼;(2)主要观点:太阳静止不动,地球和其他行星都绕太阳运动。
二、开普勒定律开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。
三、万有引力定律1. 月—地检验:①检验人:牛顿;②结果:地面物体所受地球的引力,与月球所受地球的引力都是同一种力。
2. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的平方成反比。
3.表达式:式中r表示两质点间的距离,M、m表示两质点的质量,G为引力常量:G=6.67×10-11 N·m2/kg2。
4.适用条件:两质点间的引力;质量分布均匀的球体。
5. 四大性质:①普遍性:任何客观存在的有质量的物体之间都存在万有引力。
②相互性:两个物体间的万有引力是一对作用力与反作用力,满足牛顿第三定律。
③宏观性:一般万有引力很小,只有在质量巨大的星球间或天体与天体附近的物体间,其存在才有意义。
④特殊性:两物体间的万有引力只取决于它们本身的质量及两者间的距离,而与它们所处环境以及周围是否有其他物体无关。
四、引力常量五、万有引力与重力(一)静止在地面上的物体由于地球的自转,物体随地球绕地轴在纬度圆平面内做圆周运动,万有引力F引的一个分力提供向心力F向,另一个分力即物体的重力mg与地面的支持力FN相平衡,即地面上物体所受万有引力可分解为重力和使物体随地球转动的向心力,重力只是万有引力的一个分力。
当物体位于赤道上时,r=R,各力处于同一直线上,向心力达到最大,重力最小:;当物体位于两极上时,r=0,重力等于万有引力而达到最大:从赤道到两极,物体所需向心力减小、重力增大,只在两极点处重力才等于万有引力,其他位置都不能说重力就是万有引力。
第3节万有引力定律1 月——地检验(1)牛顿的思路:地球绕太阳运动是因为受到太阳的引力,人跳起后又能落回地球是因为人受到地球的引力,这些力是否是同一种力?是否遵循相同的规律?实践是检验真理的唯一标准,但在当时的条件下很难通过实验来验证,这就自然想到了月球.(2)月一地检验:基本思想是如果重力和星体间的引力是同一性质的力,都与距离的二次方成反比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是地面重力加速度的1/3600,因为月心到地心的距离约为地球半径的60倍.(3)检验过程:牛顿根据月球的周期和轨道半径,计算出月球围绕地球做圆周运动的向心加速度23224 2.710m/s ra Tπ-==⨯.—个物体在地面的重力加速度为g =9.8m/s 2,若把这个物体移到月球轨道的高度,根据开普勒第三定律可以导出21a r ∝(21a r ∝,而32r k T =,则21a r∝).因为月心到地心的距离是地球半径的60倍,32212.7210m/s 60a g -==⨯.即其加速度近似等于月球的向心加速度的值.(4)检验结果:月球围绕地球做近似圆周运动的向心加速度十分接近地面重力加速度的1/3600,这个重要的发现为牛顿发现万有引力定律提供了有力的证据,即地球对地面物体的引力与天体间的引力,本质上是同一性质的力,遵循同一规律. 2 万有引力定律(1)内容:自然界中任何两个物体都互相吸引,引力的方向良它们的连线上,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间距离r 的二次方成反比.(2)公式:122m m F Gr=,其中11226.6710N m /kg G -=⨯⋅,称为万有引力常量,而12m m 、分别为两个质点的质量.r 为两质点间的距离.(3)适用条件:①严格地说,万有引力定律只适用于质点间的相互作用.②两个质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 是两个球体球心间的距离,③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离. ④两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r 为两物体质心间的距离.(4)注意:公式中F 是两物体间的引力,F 与两物体质量乘积成正比,与两物体间距离的平方成反比,不要理解成F 与两物体质量成正比,与距离成反比.(5)对万有引力定律的理解.①万有引力的普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物质之间的基本相互作用之一,任何客观存在的两部分有质量的物质之间都存在着这种相互作用.②万有引力的相互性:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向相反,分别作用在两个物体上,③万有引力的客观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量臣大的天体间,它的作用才有宏观物理意义.④万有引力的特殊性:两个物体间的万有引力,只与它们本身的质量有关,与它们之间的距离有关,和所在空间的性质无关,和周围有无其他物体的存在无关.(6)发现万有引力定律的重大意义.它把地面上的运动和天体运动的规律统一起来,第一次揭示了自然界中一种基本的相互作用力,使人们树立了认识并支配宇宙自然规律的信心,解放了思想. 3 引力常量的测定通过查阅资料得到地球、月球的质量和半径,月地距离,月球绕地球一周的时间,以此估算G 的大小,发现G 值是很小的,那么如何测定G 的大小?牛顿之后的100多年,英国物理学家卡文迪许在实验室里通过扭秤装置,比较准确地得出了G 值,当时测量11226.74510N m /kg G -=⨯⋅.目前标准值为11226.6725910N m /kg G -=⨯⋅,通常取11226.6710N m /kg G -=⨯⋅.引力常量G 的三点说明:(1)引力常量测定的理论公式为212Fr G m m =,单位为22N m /kg ⋅.(2)物理意义:引力常量在数值上等于两个质量都是1kg 的质点相距1m 时的相互吸引力.(3)由于引力常量G 很小,我们日常接触的物体的质星又不是很大,所以我们很难觉察到它们之间的引力,例如两个质量各为50kg 的人相距1m 时,他们相互间的引力相当于几粒尘埃的重力.但是,太阳对地球的引力可以将直径为几千米的钢柱拉断. 4 引力常量测量的意义(1)卡文迪许通过改变质量和距离,证实了万有引力的存在及万有引力定律的正确性. (2)第一次测出了引力常量,使万有引力定律能进行定量计算,显示出真正的实用价值.(3)标志着力学实验精密程度的提高,开创了测量弱力的新时代.(4)卡文迪许实验是物理学上非常著名和重要的实验,学习时要注意了解和体会前人是如何巧妙地将物体间的非常微小的力显现和测量出来的;引力常量G 的测定有重要的意义,如果没有G 的测定,则万有引力定律只有其理论意义,而无更多的实际意义.正是由于卡文迪许测定了引力常量G ,才使得万有引力定律在天文学的发展上起了重要的作用.此实验不仅用实验证明了万有引力的存在,更使得万有引力定律有了真正的实用价值.例如,可以用测定地球表面物体重力加速度的方法,测定地球的质量,电正是由于这一应用,使卡文迪许被人们称为是“能称出地球质量的人”. 5 重力加速度的基本计算方法(1)在地球表面附近(h R 处的重力加速度g .(不考虑自转) 方法一:根据万有引力定律,有2Mmmg GR=,229.8m/s M g G R ==. 式中245.8910kg M =⨯,66.3710m R =⨯.方法二:利用与地球平均密度的关系,得3224/343M R g G G G R R R πρπρ===. (2)在地球上空距离地心r R h =+处的重力加速度为g .根据万有引力定律,得221M g G r r'=∝,22g R R g r R h '⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭,则()22R g g R h '=+.(3)在质量为M ',半径为R '的任意天体表面上的重力加速度为g ',根据万有引力定律,有22M M g G R R '''=∝'',2g M R g M R ''⎛⎫= ⎪'⎝⎭,则2M R g g M R '⎛⎫'= ⎪'⎝⎭.上述中M 均为地球的质量,g 均为地球表面的重力加速度. 6 物体在赤道上失重的四个重要规律地球在不停地自转,除两极之外,地球上的物体由于绕地轴做匀速圆周运动,都处于失重扶态,且赤道上的物体失重最多,设地球为匀质球体,半径为R ,表面的引力加速度为0g g ≈,并不随地球自转变化.(1)物体在赤道上的视重等于地球的引力与物体随同地球自转所需的向心力之差. 如图6-3-1所示,根据牛顿第二定律,有2N mg F m R ω-=.所以物体在赤道上的视重为2N F mg m R mg ω=-<.(2)物体在赤道上的失重等于物体绕地轴转动所需的向心力. 物体在赤道上的失重,即视重的减少量为2N F mg F m R ω=-=. (3)物体在赤道上完全失重的条件.设想地球自转角速度加快,使赤道上的物体刚好处于完全失重状态,即0N F =,有20N F mg mR ω=-,则22200002v mg ma mR m m R R T πω⎛⎫==== ⎪⎝⎭.所以完全失重的临界条件为209.8m/s a g ==,01rad/s 800ω=,07.9km/s v =,025024s 84min T ===. 上述结果恰好是近地面人造地球卫星的向心加速度、角速度、线速度和周期. (4)地球不因自转而瓦解的最小密度.地球以T =24h 的周期自转,不发生瓦解的条件是赤道上的物体受到的万有引力大于或等于该物体做圆周运动所需的向心力,即22mg m R T π⎛⎫≥ ⎪⎝⎭,根据万有引力定律,有243M g GG R R πρ==, 所以,地球的密度应为32318.9kg/m GTπρ≥=. 即最小密度为3min 18.9kg/m ρ=.地球平均密度的公认值为30min 5523kg/m ρρ= .足以保证地球处于稳定状态. 7 万有引力定律的两个重要推论推论一:在匀质球层的空腔内任意位置处.质点受到地壳万有引力的合力为零,即0F =∑.推论二:在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力,即2M mF G r ''=.例题1 (1)天文观测数据可知,月球绕地球运行周期为27.32天,月球与地球间相距3.87×108m ,由此可计算出加速度a =0.0027m/s 2;(2)地球表面的重力加速度为9.8m/s 2,月球的向心加速度与地球表面重力加速度之比为1:3630,而地球半径(6.4×106m )和月球与地球间距离的比值为1:60.这个比值的平方1:3600与上面的加速度比值非常接近.以上结果说明(). A 地面物体所受地球的引力与月球所受地球的引力是同一种性质力 B 地面物体所受地球的引力与月球所受地球的引力不是同一种类型的力 C 地面物体所受地球的引力只与物体质量有关,即G=mg D 月球所受地球的引力除与月球质量有关外,还与地球质量有关例题2 对于万有引力定律的表达式122Gm m F r,下列说法中正确的是(). A 只要1m 和2m 是球体,就可用上式求解万有引力 B 当r 趋于零时,万有引力趋于无限大C 两物体间的引力总是大小相等的,而与12m m 、是否相等无关D 两物体间的引力总是大小相等、方向相反,是一对平衡力例题3 两艘轮船,质量都是1.0×104t ,相距10krn ,它们之间的引力是多大?这个力与轮船所受重力的比值是多少?例题4 如图6-3-4所示,一个质量为M 的匀质实心球,半径为R ,如果从球上挖去一个直径为R 的球,放在相距为d 的地方.求下列两种情况下,两球之间的引力分别是多大?(1)从球的正中心挖去;(2)从与球面相切处挖去;并指出在什么条件下,两种计算结果相同?例题5 关于引力常量,下列说法正确的是().A 引力常量是两个质量为1 kg 的质点相距1m 时的相互吸引力B 牛顿发现了万有引力定律,给出了引力常量的值C 引力常量的测定,证明了万有引力的存在D 引力常量的测定,使人们可以测出天体的质量例题6如图6-3-5所示,火箭内平台上放有测试仪器,火箭从地面启动后,以加速度2g竖直向上做匀加速运动,升到某一高度时,测试仪对平台的压力为启动前压力的1718.已知地球半径为R .求火箭此时离地面的高度.(g 为地面附近重力加速度)例题7某星球“一天”的时间是T =6h ,用弹簧测力计在星球的“赤道”上比在“两极”处测同一物体的重力时读数小10%,设想该星球自转的角速度加快,使赤道上的物体会自动飘起来,这时星球的“一天”是多少小时?例题8 地球赤道上的物体,由于地球自转产生的向心加速度223.3710m/s a -=⨯,赤道上的重力加速度29.77m/s g =,试问:(1)质量为m 的物体在地球赤道上所受地球的万有引力为多大?(2)要使在赤道上的物体由于地球的自转完全失去重力(完全失重),地球自转的角速度应加快到实际角速度的多少倍?例题9 宇航员站在一星球表面上某高处,沿水平方向抛出一个小球,经过时间t 小球落到星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大为原来的2倍,则,已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,求该星球的质量M .例题10 中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为1s 30T =,问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?(计算时星体可视为均当匀球体,引力常量11226.6710N m /kg G -=⨯⋅)基础演练1如图6-3-7所示两球间的距离为r ,两球的质量分布均匀,大小分别为12m m 、,则两球的万有引力大小为().A 122m m Gr B 1221m m G r C ()12212m m G r r +D ()12212m m G r r r ++2万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律,以下说法正确的是().A 物体的重力不是地球对物体的万有引力引起的B 人造地球卫星离地球越远,受到地球的万有引力越大C 人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D 宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用3引力常量为G ,地球质量为M ,地球可看成球体,半径为R .忽略地球的自转,则地球表面重力加速度的大小为(). A GM g R = B g GR = C 2GMg R= D 缺少条件,无法算出 知能提升1假如地球自转角速度增大,关于物体的万有引力以及物体重力,下列说法正确的是().A 放在赤道地面上物体的万有引力不变B 放在两极地面上物体的重力不变C 放在赤道地面上物体的重力减小D 放在两极地面上物体的重力增大2设地球表面重力加速度为0g ,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则0/g g 为(). A1 B1/9 C1/4 D1/163地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%,经估算,地核的平均密度为___________kg/m 3.(地球的半径66.410m R =⨯,万有引力常量11226.710N m /k g G -=⨯⋅,结果取两位有效数字)4月球半径是地球半径的14,在地球和月球表面分别用长度相同的细线拴住一个小球,使之在竖直平面内做圆周运动,已知小球通过圆周最高点的临界速度,在地球上是1v ,在月球上是2v ,求地球与月球的平均密度之比.5宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ';(2)已知该星球的半径与地球半径之比为:R R 星地=1:4,求该星球的质量与地球质量之比:M M 星地.6某宇航员在飞船发射前测得自身连同宇航服等随身装备共重840N ,在火箭发射阶段,发现当飞船随火箭以/2a g =的加速度匀加速竖直上升到某位置时(其中g 为地球表面处的重力加速度),其身下体重测试仪的示数为1220N .设地球半径R =6400km ,地球表面重力加速度g 取10m/s 2 1.03 1.02=).问: (1)该位置处的重力加速度g '是地面处重力加速度g 的多少倍? (2)该位置距地球表面的高度h 为多大?最新5年高考名题诠释考题1 天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为 1.4小时,引力常量11226.6710N m /kg G -=⨯⋅,由此估算该行星的平均密度约为(). A 331.810kg/m ⨯B 335.610kg/m ⨯C 431.110kg/m ⨯D 432.910kg/m ⨯考题 2 已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天,利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为().A0.2 B2 C20 D200考题3火星的质量和半径分别约为地球的110和12,地球表面的重力加速度为g ,则火星表面的重力加速度约为().A0.2gB0.4g C2.5g D5g考题 4 探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比().A 轨道半径变小B 向心加速度变小C 线速度变小D 角速度变小例题5为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T .火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出().A 火星的密度和火星表面的重力加速度B 火星的质量和火星对“萤火一号”的引力C 火星的半径和“萤火一号”的质量D 火星表面的重力加速度和火星对“萤火一号”的引力考题6 一物体静置在平均密度为ρ的球形天体表面的赤道上,已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为(). A 1243G πρ⎛⎫ ⎪⎝⎭B 1234G πρ⎛⎫ ⎪⎝⎭C 12G πρ⎛⎫ ⎪⎝⎭D 123G πρ⎛⎫ ⎪⎝⎭考题7 质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的().A 线速度v =角速度ω=C 运行周期2T =向心加速度2Gm a R= 考题8 一行星绕恒星做圆周运动,由天文观测可得,其运行周期为T ,速度为v ,引力常为G ,则().A 恒星的质量为32v T G πB 行星的质量为2324v GT π C 行星运动的轨道半径为2vT πD 行星运动的速度为2v Tπ。
高一物理万有引力与航天第一类问题:涉及重力加速度“g ”的问题Mm 解题思路:天体表面重力(或“轨道重力”)等于万有引力,即mg GR 2【题型一】两星球表面重力加速度的比较 1、一个行星的质量是地球质量的8 倍,半径是地球半径的4 倍,这颗行星表面的重力加速度是地球表面重力加速度的多少倍?解:忽略天体自转的影响,则物体在天体表面附近的重力等于万有引力,即有MmmgGR 2 ,因此:对地球: mg 地M 地 m ⋯⋯①G2R 地对行星: mg 行M 行 mG2⋯⋯②R 行则由② / ①可得, g 行M 行R 地 28 121 ,即 g 行1?242g 地g 地 M 地R 行 1 22【题型二】轨道重力加速度的计算2、地球半径为 R ,地球表面重力加速度为 g 0 ,则离地高度为 h 处的重力加速度是 ()h 2 g 0 R 2 g 0Rg 0 hg 0A .B .C . 2D .2(R h) 2( R h)2( R h)(R h)【题型三】求天体的质量或密度3、已知下面的数据,可以求出地球质量 M 的是(引力常数 G 是已知的)( )A .月球绕地球运行的周期 T 1 及月球到地球中心的距离 R 1B .地球“同步卫星”离地面的高度C .地球绕太阳运行的周期T 2 及地球到太阳中心的距离 R 2D .人造地球卫星在地面附近的运行速度v 和运行周期 T34、若有一艘宇宙飞船在某一行星表面做匀速圆周运动, 已知其周期为 T ,引力常量为 G ,那么该行星的平均密度为( )GT 2 4 GT 2 3A.B.C.D.3GT 24GT2第二类问题:圆周运动类的问题解题思路:万有引力提供向心力,即Mmma n4 2 v 2 2r Gr2 m 2 r m mT r【题型四】求天体的质量或密度5、继神秘的火星之后,今年土星也成了全世界关注的焦点!经过近7 年 35.2 亿公里在太空中风尘仆仆的穿行后,美航空航天局和欧航空航天局合作研究的“卡西尼”号土星探测器于美国东部时间 6 月 30 日(北京时间7 月 1 日)抵达预定轨道,开始“拜访”土星及其卫星家族。
第七章万有引力与宇宙航行7.1行星的运动 ....................................................................................................................... - 1 -7.2万有引力定律 ................................................................................................................... - 6 -7.3万有引力理论的成就...................................................................................................... - 14 -7.4宇宙航行 ......................................................................................................................... - 21 -7.5相对论时空观与牛顿力学的局限性.............................................................................. - 30 -7.1行星的运动一、地心说和日心说开普勒定律1.地心说地球是宇宙的中心,是静止不动的,太阳、月亮以及其他星体都绕地球运动。
2.日心说太阳是静止不动的,地球和其他行星都绕太阳运动。
[注意]古代两种学说都是不完善的,因为不管是地球还是太阳,它们都在不停地运动,并且行星的轨道是椭圆,其运动也不是匀速率的。
鉴于当时人们对自然科学的认识能力,日心学比地心说更进一步。
高中物理必修二第六章万有引力与航天知识点概括与要点题型总结一、行星的运动1、开普勒行星运动三大定律①第必定律(轨道定律):全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对随意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近期点速度比较快,远日点速度比较慢。
③第三定律(周期定律):全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
a3即:T 2k此中k是只与中心天体的质量相关,与做圆周运动的天体的质量没关。
推行:对环绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例 . 有两个人造地球卫星,它们绕地球运行的轨道半径之比是1: 2,则它们绕地球运行的周期之比为。
二、万有引力定律1、万有引力定律的成立F G Mm①太阳与行星间引力公式r 2②月—地查验③卡文迪许的扭秤实验——测定引力常量 GG 6.67 10 11N2/ kg22、万有引力定律m①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和 m2的乘积成正比,与它们之间的距离 r 的二次方成反比。
即:F G m1m2r 2②合用条件(Ⅰ)可当作质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量散布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般状况下,可以为重力和万有引力相等。
忽视地球自转可得:mg G MmR2例 . 设地球的质量为 M ,赤道半径 R ,自转周期 T ,则地球赤道上质量为 m 的物体所受重力的大小为(式中 G 为万有引力恒量)(2)计算重力加快度G Mm地球表面邻近( h 《R ) 方法:万有引力≈重力mgMmR 2地球上空距离地心 r=R+h 处 mg ' G2 方法:( R h)在质量为 M ’,半径为 R ’的随意天体表面的重力加快度g ' ' 方法:mg''G M ' ' mR '' 2(3)计算天体的质量和密度Mm利用自己表面的重力加快度:GR 2mgMm v 2 24 2利用环绕天体的公转:G r 2m m rm 2 r 等等rT(注:联合 M4 R 3 获得中心天体的密度)3例 . 宇航员站在一星球表面上的某高处,以初速度 V 0 沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为 V. 已知该星球的半径为 R ,引力常量为G ,求该星球的质量 M 。
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。