高考数学一轮复习 第二章 第8课时 幂函数及基本初等函数的应用 理
- 格式:ppt
- 大小:998.00 KB
- 文档页数:5
2024年高考数学总复习第二章《函数与基本初等函数》§2.7函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件?提示f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,求f (x ),g (x )的关系.提示g (x )=2b -f (2a -x )题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.(×)(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.(×)(3)函数y =f (x )与y =-f (x )的图象关于原点对称.(×)(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.(×)题组二教材改编2.[P35例5(3)]函数f (x )=x +1x的图象关于()A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案C 解析函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P32T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是.答案(-1,1]解析在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.下列图象是函数y 2,x <0,-1,x ≥0的图象的是()答案C6.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案y =解析根据伸缩变换方法可得,所求函数解析式为y =7.(2018·太原调研)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案(0,+∞)解析在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一作函数的图象分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解(1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的辨识例1(1)函数y =x 2ln|x ||x |的图象大致是()答案D 解析从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x 0,1e 上单调递减,在区间1e,+∞ D.(2)设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)答案C 解析题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.跟踪训练1(1)函数f (x )=1+log 2x 与g (x )=12x 在同一直角坐标系下的图象大致是()答案B 解析因为函数g (x )=12为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B.(2)函数y =1ln|e x -e -x |的部分图象大致为()答案D 解析令f (x )=1ln|e x -e -x |,则f (-x )=1ln|e -x -e x |=1ln|e x -e -x |=f (x ),∴f (x )是偶函数,图象关于y 轴对称,排除B ,C.当x >1时,y =1ln|e x -e -x |=1ln (e x -e -x ),显然y >0且函数单调递减,故D 正确.题型三函数图象的应用命题点1研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是()A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0)答案C 解析将函数f (x )=x |x |-2x去掉绝对值,得f (x )x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________.答案(4,+∞)解析画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.命题点2解不等式例3函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为.答案-π2,-1∪1,π2解析当x ∈0,π2y =cos x >0.当x ∈π2,4y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数,所以在[-4,0]上,f (x )cos x<0-π2,-1,所以f (x )cos x<0-π2,-1∪1,π2命题点3求参数的取值范围例4(1)已知函数f (x )12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是.答案(0,1]解析作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是.答案解析先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)(2018·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案C 解析画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是.答案[-1,+∞)解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()答案B 解析当x ∈0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈π4,3π4时,1+5,22.∵22<1+5,∴D ,故选B.(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |x B .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x答案A 解析由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.(3)(2018·全国Ⅱ)函数f (x )=e x -e -x x 2的图象大致为()答案B 解析∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.二、函数图象的变换问题例2已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()答案D 解析方法一先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y=-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.方法三当x =0时,y =-f (2-0)=-f (2)=-4.故选D.三、函数图象的应用例3(1)已知函数f (x )|,x ≤m ,2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是.答案(3,+∞)解析在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.(2)不等式3sin π2x-12log x<0的整数解的个数为.答案2解析不等式3sin π2x12log x<0,即3sinπ2x<12log x.设f(x)=3sinπ2x,g(x)=12log x,在同一坐标系中分别作出函数f(x)与g(x)的图象,由图象可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin π2x12log x<0的整数解的个数为2.(3)已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.答案(2,2021)解析函数f(x)sinπx,0≤x≤1,log2020x,x>1的图象如图所示,不妨令a<b<c,由正弦曲线的对称性可知a+b=1,而1<c<2020,所以2<a+b+c<2021.1.(2018·浙江)函数y=2|x|sin2x的图象可能是()答案D解析由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()答案C解析当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()答案A解析先作出函数f(x)=log a x(0<a<1)的图象,当x>0时,y=f(|x|+1)=f(x+1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图象关于y轴对称翻折到y轴左边,得到x<0时的图象,故选A.4.若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于()A.-12B.-54C.-1D.-2答案C解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)2x+5,x<-1,ln(x+2),x≥-1,故f(-3)=2×(-3)+5=-1,故选C.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.(2018·承德模拟)已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为() A.(-∞,1)B.(-∞,1]C .(0,1)D .(-∞,+∞)答案A解析当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为.答案{x |x ≤0或1<x ≤2}解析画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0>1,x )≤0<1,x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =.答案-2解析由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是.答案-13,解析由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b },a ≤b ,,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为.答案(4,5)解析作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y=m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )2(1-x )+1,-1≤x <0,3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是.答案[1,3]解析先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x )2+2x -1,x ≥0,2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是()A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案D解析函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是.答案解析f (x )+1x -1,x >1,1+11-x,x <1,g (x )+x ,x ≥0,,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x=x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x -∞,5-12∪1+52,+∞15.已知函数f (x )-x 2+x ,x ≤1,13logx ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________.答案-∞,74∪94,+∞解析对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是-∞,74∪94,+∞16.已知函数f (x )(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,求实数k 的取值范围.解由题意知,直线y =kx 与函数y =f (x )(x ∈[0,6])的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k ,1 6.。
幂函数及函数的综合应用幂函数是数学中的一种常见函数形式,其定义为f(x) = ax^n,其中a和n是常数,x是自变量。
幂函数在数学和实际问题中具有广泛的应用,而函数的综合应用则是将不同的数学概念和方法综合运用到实际问题中求解。
首先,让我们来看一些幂函数的特性。
当n为正整数时,幂函数是单调递增或单调递减函数,其增长或减小速度取决于n的正负性质。
当n为负整数时,幂函数在x轴的右侧是单调递减函数,而在x轴的左侧是单调递增函数。
对于幂函数而言,关键在于确定a和n的取值范围以及特定区间的函数图像和性质。
接下来,我们来研究一些幂函数的实际应用。
幂函数可以描述物体的增长或衰减情况,比如人口增长、物质衰变等。
在这些问题中,幂函数的自变量通常代表时间,因变量表示物体的数量或质量。
通过确定a和n的值,我们可以预测未来的人口增长情况或物质的衰减速度。
另一个常见的应用是幂函数可以描述信号传递、电路和电子设备中的功率与电流之间的关系。
幂函数可以用来计算电路中的功率损耗,而a和n的值则取决于电子元件的特性和电路中的电流分布情况。
利用幂函数来描述电路可以帮助我们设计更加高效的电子设备或优化电路布局。
此外,幂函数也可以用来描述财务和经济问题中的增长和衰退。
比如,企业的销售额和利润增长可以用幂函数来描述,而a和n的值则代表销售额和利润的增长率。
通过分析幂函数的图像和性质,我们可以了解企业的增长趋势以及预测未来的发展。
函数的综合应用涉及到将多个数学概念和方法综合运用到实际问题中求解。
以幂函数为例,我们可以通过分析函数的图像、性质和极限来求解函数的最大值和最小值,以及确定函数的增长和减小区间。
在实际问题中,我们需要将函数的综合应用与其他数学概念和方法结合起来,比如导数、积分、方程等,以求得更加准确和全面的答案。
总结起来,幂函数是数学中一种常见的函数形式,具有广泛的应用领域,包括物体增长和衰减、电路和电子设备、财务和经济问题等。
函数的综合应用则是将多个数学概念和方法综合运用到实际问题中求解。
第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。
高三第一轮复习资料(注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
幂函数的性质与图像 幂函数及其性质 1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x是自变量,α是常数.如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 2、函数的图像(1)y x = (2)12y x= (3)2y x= (4)1y x-= (5)3yx=用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出幂函数的性质。
3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.(4)在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数 . y 轴和直线1x =之间,图象由上至下,指数α .:4. 规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 在[0,+∞]上,y x =、2y x=、3y x=、12y x=是增函数, 在(0,+∞)上,1y x -=是减函数。
例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =-变式训练: 已知函数()()2223m m f x m m x--=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。
高考数学1第二章基本初等函数考点汇总一、指数函数(一)指数与指数幂的运算1.根式的概念:一样地,假如,那么叫做的次方根(n th root),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.现在,的次方根用符号表示.式子叫做根式(radical),那个地点叫做根指数(radical exponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.现在,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根能够合并成±( >0).由此可得:负数没有偶次方根;0的任何次方根差不多上0,记作。
注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样能够推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一样地,函数叫做指数函数(exponential functio n),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范畴,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0图象特点函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数二、对数函数(一)对数1.对数的概念:一样地,假如,那么数叫做以为底的对数,记作:( —底数,—真数,—对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数.对数式与指数式的互化(二)对数的运算性质假如,且,,,那么:○1 ? + ;○2 - ;○3 .注意:换底公式( ,且; ,且; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,差不多上形式定义,注意辨别。
2019高考数学一轮复习第2章函数与基本初等函数第8课时幂函数及基本初等函数的应用练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第2章函数与基本初等函数第8课时幂函数及基本初等函数的应用练习理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第2章函数与基本初等函数第8课时幂函数及基本初等函数的应用练习理的全部内容。
第8课时幂函数及基本初等函数的应用1.(2017·福州模拟)若f(x)是幂函数,且满足错误!=3,则f(错误!)=()A.3 B.-3C。
错误!D.-错误!答案C2.当x∈(1,+∞)时,下列函数中图像全在直线y=x下方的增函数是( )A.y=x错误!B.y=x2C.y=x3D.y=x-1答案A解析y=x2,y=x3在x∈(1,+∞)时,图像不在直线y=x下方,排除B,C,而y=x-1是(-∞,0),(0,+∞)上的减函数.3.设a∈{-1,1,错误!,3},则使函数y=x a的定义域为R,且为奇函数的所有a的值为() A.-1,1,3 B.错误!,1C.-1,3 D.1,3答案D解析当a=-1时,函数的定义域为{x|x≠0},不满足定义域为R;当a=1时,函数的定义域为R且为奇函数,满足要求;当a=错误!时,函数的定义域为{x|x≥0},不满足定义域为R;当a=3时,函数的定义域为R且为奇函数,满足要求.故所有a的值为1,3.4.已知幂函数y=xm2-2m-3(m∈Z)的图像与x轴、y轴没有交点,且关于y轴对称,则m 的所有可能取值为( )A.1 B.0,2C.-1,1,3 D.0,1,2答案C解析∵幂函数y=xm2-2m-3(m∈Z)的图像与x轴、y轴没有交点,且关于y轴对称,∴m2-2m-3≤0且m2-2m-3(m∈Z)为偶数,由m2-2m-3≤0得-1≤m≤3,又m∈Z,∴m=-1,0,1,2,3,当m=-1时,m2-2m-3=1+2-3=0为偶数,符合题意;当m=0时,m2-2m-3=-3为奇数,不符合题意;当m=1时,m2-2m-3=1-2-3=-4为偶数,符合题意;当m =2时,m2-2m-3=4-4-3=-3为奇数,不符合题意;当m=3时,m2-2m-3=9-6-3=0为偶数,符合题意.综上所述,m=-1,1,3,故选C。
高三数学一轮复习计划和进度安排高三数学一轮复习计划和进度安排「篇一」高考命题是以《考试说明》为依据的,高三数学复习要以《说明》为指导,在内容取舍上,应以考试内容为准,不随意扩充、拓宽和加深;注意各知识点的难度控制。
这就要求对照题型示例,结合历年高考试题分类汇编仔细揣摩,弄清《说明》中各项要求的具体落脚点,把握试题改革的新趋势。
因此,为了使本届高三数学的复习工作更加有效,根据学科的特点,结合本校情况制定以下复习计划。
一、复习步骤和目标第一轮:注重基础。
(8月—1月)。
基础知识复习,以课本为依托,按照《说明》做好考点知识的梳理,夯实基础,以章节为单位,将零碎与散乱的知识点串起来,并将它们系统化,加强知识的纵向与横向联系,重点在于将各知识点的网络化及融会贯通,课本是学生获得系统的数学知识的主要来源,学生最熟悉,最亲切。
为了对中学数学教学发挥积极的导向作用,高考试题“源于课本,高于课本”,有些是课本题目经过加工改造,组合嫁接而成,有些甚至是原题。
课本是考试内容的具体化,是中、低档题目的直接来源,是解题能力的生长点。
因此,数学复习要立足于课本,而把其它资料作为辅助材料。
第二轮:专题复习(3月—4月)冲刺训练及处理信息,主要是做综合练习,题目的难度较第一轮略有上升。
先是分章节的综合训练,教师主要是评讲卷,针对卷子中学生暴露的问题一一点评;然后是针对学生应试能力的训练,主要侧重于选择题和填空题的训练。
第二轮专题安排:(1)函数、方程、不等式、导数;(2)数列;(3)三角;(4)解析几何;(5)立体几何;(6)概率与复数。
主要是提高学生分析问题、解决问题的能力,提高综合能力。
第三轮:模拟训练(5月—5月中旬)根据各地的高考信息编拟好冲刺训练的模拟试卷,通过规范训练,发现平时复习的薄弱点和思维的易错点,提高实践能力,走近高考。
主要是做各地的模拟题,这时候是高强度的训练。
训练考试技巧和学生的应试心理的调整阶段,也就是加强非智力因素的训练了。
高中数学目录重难点分析高中必修一、二目录重难点题型分布课时分值第一章集合与函数概念1.1 集合易选择3-4 51.2 函数及其表示1.3 函数的基本性质第二章基本初等函数2.1 指数函数选择、填难7-8 5-10 空、解答 2.2 对数函数2.3 幂函数第三章函数的应用选择、填 3.1 函数与方程中2 5-8 空、解答3.2 函数模型及其应用必修二重难点题型分布课时分值目录第一章空间几何体1.1 空间几何体的结构选择、填空、中4-5 5-12 解答 1.2 空间几何体的三视图和直视图1.3 空间几何体的表面积和体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、面之间的位置关系选择、填空、难6-7 5-12 2.2 直线、平面平行的判定及其性解答质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率选择、填空、中4-5 5-10 解答 3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程选择、填空、中4-5 5-10 解答 4.2 直线、圆的位置关系4.3 空间的直角坐标高中必修三目录重难点题型分布分值课时第一章算法初步1.1 算法与程序框图中选择5 3-41.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样中填空、解答5-10 3-42.2 用样本估计2.3 变量间的相关关系第三章概率3.1 随机事件的概率选择、填空、中5-12 4-5 解答 3.2 古典概型3.3 几何概型高中必修四重难点题型分布课时分值第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式选择、填中8-9 5-12 空、解答 1.4 三角函数的图象与性质1.5 函数y=Asin(wx+α)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景与基本概念选择、填 2.2 平面向量的线性运算中6-7 5-10 空、解答2.3 平面向量的基本定理与坐标表示2.4 平面向量的数据积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差正弦、余弦难选择、解答5-6 5-12 和正切公式3.2 简单的三角恒等变换高中必修五目录重难点题型分布分值课时第一章解三角形1.1 正弦定理与余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式高中选修1-1目录重难点题型分布课时数分值第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件选择、填空4 5 易1.3简单的逻辑连接词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆选择、填空、难7-8 10-20 解答 2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数选择、填空、 3.2导数的计算难7-8 10-20 解答3.3导数在研究函数中的应用3.4生活中的优化问题举例高中选修2-1目录重难点题型分布课时分值第一章常用逻辑用语1.1 命题及其关系易选择、填空3-4 5 1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程选择、填难8-9 10-20 2.2 椭圆空、解答2.3 双曲线2.4 抛物线第三章空间向量与立体几何选择、填中4-5 10-20 3.1 空间向量及其运算空、解答3.2 立体几何中的向量方法高中选修三目录重难点题型分布课时分值选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事高中选修四目录重难点题型分布课时分值选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系一平面直角坐标系二极坐标系三简单曲线极坐标系四柱坐标系与球坐标系第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线参数方程四渐开线与摆线选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用。
高考数学一轮总复习学案:第8讲 对数函数1.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数2.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 常用结论对数函数图象的特点1.当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限.3.在直线x =1的右侧:当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =log 2x 及y =log 133x 都是对数函数.( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =ln 1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),函数图象只经过第一、四象限.( )答案:(1)× (2)× (3)√ (4)√ 二、易错纠偏常见误区| (1)忽略真数大于零致误; (2)忽视对底数的讨论致误.1.函数f (x )=log 2x 2的单调递增区间为____________.解析:设t =x 2,因为y =log 2t 在定义域上是增函数,所以求原函数的单调递增区间,即求函数t =x 2的单调递增区间,所以所求区间为(0,+∞).答案:(0,+∞)2.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________. 解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12,所以a =2或12.答案:2或12对数函数的图象及应用(典例迁移)(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为____________.【解析】 (1)由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a |x |在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象应大致为选项B .(2)构造函数f (x )=4x和g (x )=log a x , 当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象, 可知,只需两图象在⎝ ⎛⎦⎥⎤0,12上有交点即可, 则f ⎝ ⎛⎭⎪⎫12≥g ⎝ ⎛⎭⎪⎫12,即2≥log a 12,则a ≤22, 所以a 的取值范围为⎝ ⎛⎦⎥⎤0,22. 【答案】 (1)B (2)⎝⎛⎦⎥⎤0,22 【迁移探究】 (变条件)若本例(2)的条件变为:当0<x ≤12时,4x<log a x ,则a 的取值范围为________.解析:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.答案:⎝⎛⎭⎪⎫22,1对于较复杂的不等式恒成立问题,可借助函数图象解决,具体做法如下: (1)对不等式变形,使不等号两边分别对应两函数f (x ),g (x ); (2)在同一平面直角坐标系下作出两个函数f (x )与g (x )的图象; (3)比较当x 在某一范围内取值时图象的上下位置来确定参数的取值.1.函数y =2log 4(1-x )的图象大致是( )解析:选C .函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;函数y =2log 4(1-x )在定义域上单调递减,排除D .选C .2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点. 答案:(1,+∞)对数函数的性质及应用(多维探究) 角度一 解对数方程、不等式(1)方程log 2(x -1)=2-log 2(x +1)的解为________.(2)设f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,则方程f (a )=f (-a )的解集为________.【解析】 (1)原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x = 5.(2)当a >0时,由f (a )=log 2a =log 12⎝ ⎛⎭⎪⎫1a =f (-a )=log 12a ,得a =1;当a <0时,由f (a )=log 12(-a )=log 2⎝ ⎛⎭⎪⎫-1a =f (-a )=log 2(-a ),得a =-1. 所以方程f (a )=f (-a )的解集为{1,-1}. 【答案】 (1)x = 5 (2){-1,1}【迁移探究】 (变问法)本例(2)中,f (a )>f (-a )的解集为________.解析:由题意,得⎩⎪⎨⎪⎧a >0,log 2a >log 12a 或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)解对数方程、不等式的方法(1)形如log a x ≥log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x ≥b 的不等式,需先将b 化为以a 为底的对数式的形式. 角度二 对数型函数的综合问题已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间; (2)若f (x )的最小值为0,求a 的值.【解】 (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,即a =-1, 所以f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1)上单调递增,在[1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是[1,3). (2)若f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故实数a 的值为12.解与对数函数有关的函数的单调性问题的步骤1.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D .当x ≤1时,21-x≤2,解得x ≥0,所以0≤x ≤1;当x >1时,1-log 2x ≤2,解得x ≥12,所以x >1.综上可知x ≥0.2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( ) A .[1,2) B .[1,2] C .[1,+∞)D .[2,+∞)解析:选A .令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1, 解得1≤a <2,即a ∈[1,2).比较指数式、对数式的大小(师生共研)(1)(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b(2)已知奇函数f (x )在R 上是增函数.若a =-f ⎝ ⎛⎭⎪⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小有关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b【解析】 (1)因为23<32,所以2<323,所以log 32<log 3323=23,所以a <c .因为33>52,所以3>523,所以log 53>log 5523=23,所以b >c ,所以a <c <b ,故选A .(2)因为f (x )为奇函数,所以f (-x )=-f (x ),所以a =-f (-log 25)=f (log 25), 而log 25>log 24.1>2>20.8,且y =f (x )在R 上为增函数, 所以f (log 25)>f (log 24.1)>f (20.8), 即a >b >c ,故选C . 【答案】 (1)A (2)C(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.1.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a解析:选B .因为y =log 2x 和y =2x是其定义域上的增函数,而y =0.2x是减函数,所以a =log 20.2<log 21=0,b =20.2>20=1,c =0.20.3∈(0,0.20),即c ∈(0,1).所以a <c <b .故选B .2.(2021·江西五校联考)若0<a <b <1,则a b,b a,log 1ab ,log b a 的大小关系为( )A .a b>b a>log b a >log 1abB .b a >a b>log 1ab >log b aC .log b a >a b>b a>log 1abD .log b a >b a>a b>log 1ab解析:选D .因为0<a <b <1,所以0<a b<b b<b a<1,log b a >log b b =1,log 1ab <0,所以log b a >b a>a b>log 1ab ,故选D .思想方法系列5 分类讨论思想研究指数、对数函数的性质已知函数f (x )=log a (2x -a )(a >0且a ≠1)在区间[12,23]上恒有f (x )>0,则实数a 的取值范围是( )A .(13,1)B .[13,1)C .(23,1)D .[23,1)【解析】 当0<a <1时,函数f (x )在区间[12,23]上是减函数,所以log a (43-a )>0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间[12,23]上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是(13,1).【答案】 A本题利用了分类讨论思想,在研究指数、对数函数的性质时,常对底数a 的值进行分类讨论,实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.已知函数y =a 2x+2a x-1(a >0,且a ≠1),当x ≥0时,求函数的值域.解:y =a 2x+2a x -1,令t =a x, 则y =g (t )=t 2+2t -1=(t +1)2-2.当a >1时,因为x ≥0,所以t ≥1,所以当a >1时,y ≥2. 当0<a <1时,因为x ≥0,所以0<t ≤1.因为g (0)=-1,g (1)=2,所以当0<a <1时,-1<y ≤2. 综上所述,当a >1时,函数的值域是[2,+∞); 当0<a <1时,函数的值域是(-1,2].。
第4讲二次函数与幂函数1.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x错误!,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α〈0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a〉f(x)=ax2+bx+0)c(a<0)图象定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在错误!上单调递减;在错误!上单调递增在错误!上单调递增;在错误!上单调递减对称性函数的图象关于x=-错误!对称1.辨明两个易误点(1)对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.会用两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.1.错误!幂函数y=f(x)经过点(2,错误!),则f(9)为( )A.81 B.错误!C。
错误!D.3D 设f(x)=xα,由题意得错误!=2α,所以α=错误!。