第二章 压力容器应力分析2.4讲解
- 格式:ppt
- 大小:1.92 MB
- 文档页数:39
第二章压力容器应力分析Str ess Analy si s o f Pr essur e V essel s容器设计的核心问题是研究容器在各种机械载荷与热载荷作用下,有效地限制变形和抵抗破坏的能力。
因此,容器设计的理论基础就是对容器进行充分的应力和变形分析。
2.1载荷分析L oadin g An aly si s2.1.1 载荷 L oadin g(1)压力是压力容器承受的基本载荷(2)非压力载荷分整体载荷与局部载荷:整体载荷是作用于整台容器上的载荷,重力,风,地震,局部载荷是作用与容器局部区域上的载荷,管系载荷,支座反力,吊装力等.[1]重力载荷 Gravi ty[2]风载荷 Wi ndi ng[3]地震载荷 Earth qu ake[4]运输载荷 Tran sport[5]波动载荷 Un dul ate[6]管系载荷 pi pi ng(3)交变载荷2.1.2载荷工况 L oa d State(1) 正常操作工况(2) 特殊载荷工况压力试验 ,开停车及检修(3) 意外载荷工况突然停车,化学爆炸,2.2回转薄壳应力分析 Stress Analysis of Revolution Shells壳体:一种以两个曲面为界,且曲面之间距离远比其它方向尺寸小得多的构件。
壳体的中面:与壳体两曲面等距离的点所组成的曲面。
回转壳:其中面由一条平面曲线或直线绕同平面内的轴线回转而成的壳体。
壳体的厚度:二曲面之间的距离。
薄壳:厚度t/中面曲半径R 的比值101≤为薄壳,反之为厚壳。
在薄壳应力分析中,采用弹性力学薄壳理论。
几个假设:材料连续、均匀、各向同性,小变形,各层间不挤压。
受载后的变形是小变形: 壳壁各层纤维在变形后互不挤压:2.2.1薄壁圆筒的应力 Stress in Thin -walled Cylinders薄壁圆筒在内压P 作用下,产生三个方向的应力 轴向应力Φσ, 周向应力θσ, 径向应力r σ 故任一点的应力状态为二向的..求解θσσ,Φ: 采用材料力学中,“截面法”保留右边,如下图(a )根据力的平衡:内P 作用在封头上产生向右的轴向外力 24DiP π⋅在筒壁上向左的轴向内力为 Φ⋅⋅σπDt 对薄壳:D Di ≈ 故Φ=⋅σππDt DP 24得:tPD 4=Φσ取1单位长圆环,过y 轴,作上χ轴的平面,将圆环截成两半,取右半如上图(b )。
2.4 壳体的稳定性分析2.4.1 概述2.4.1 概述(1)失稳现象(Buckling or Instability) 在工程应用中,某些结构是在承受压力的情况下工 作的。
例如,用于石油炼制的常减压塔、带夹套的反 应器、潜水艇等。
通常,结构承受压力时,其破坏形 式将有别于拉力时的强度破坏。
以圆筒形容器为例, 进行分析。
2.4 壳体的稳定性分析2.4.1 概述圆筒在外压作用下,可能会有二种可能的失效形式: ① 因强度不足,导致压缩屈服失效;② 因刚度不 足,导致失稳破坏。
圆筒失稳破坏:承受外压的圆筒,当外压载荷增大到 某一值时,圆筒会突然失去原有的形状,被压瘪或出 现波纹,圆筒失去承载能力。
这种现象成为外压圆筒 的屈曲(Buckling)或失稳(Instability)。
实际上,当结构出现失稳后,最终导致结构破坏 的原因,是由于结构失稳变形后产生的附加弯矩。
下 面以杆件的失稳破坏过程进行说明。
2.4 壳体的稳定性分析2.4.1 概述2.4 壳体的稳定性分析(2)外压圆筒受载形式2.4.1 概述圆筒承受外载的形式,有以下三种:理论分析表明,在相同外载时,轴向外压对圆筒 壳体失稳的影响,要小于横向外压的影响。
本节主要 讨论横向受载失稳。
2.4 壳体的稳定性分析(3)外压圆筒失稳类型2.4.1 概述外压圆筒失稳类型有以下二种 ① 弹性失稳:圆筒为薄壁时,发生失稳时筒壁中的压 应力小于材料的屈服极限,即此时筒体的受力变形为 弹性阶段。
② 非弹性失稳:对于壁较厚的筒体,有可能在筒壁中 的应力应变进入塑性阶段后出现失稳,即此时筒体中 的压应力超过了材料的屈服点。
在本节的分析中,主要讨论弹性失稳计算。
而对 于非弹性失稳,则借助弹性失稳的结果,采用简化计 算方法。
2.4 壳体的稳定性分析(4)外压圆筒失稳形貌2.4.1 概述圆筒承受横向外载后的失稳形貌2.4 壳体的稳定性分析2.4.1 概述水下圆筒管节承受横向外载后的失稳形状2.4 壳体的稳定性分析2.4.1 概述水下圆锥形过渡管节承受横向外载后的失稳形状2.4 壳体的稳定性分析2.4.1 概述2.4 壳体的稳定性分析2.4.1 概述轴向外压圆筒的失稳形状(试验照片和计算结果)周向外压圆筒失稳后,其横截面形状如下表所示。