凝聚态物理相关诺贝尔奖
- 格式:docx
- 大小:129.08 KB
- 文档页数:6
诺贝尔物理学奖诺贝尔物理学奖是1900年6月根据诺贝尔的遗嘱设立的,属诺贝尔奖之一。
该奖项旨在奖励那些对人类物理学领域里作出突出贡献的科学家。
由瑞典皇家科学院颁发奖金,每年的奖项候选人由瑞典皇家自然科学院的瑞典或外国院士、诺贝尔物理和化学委员会的委员、曾被授与诺贝尔物理或化学奖金的科学家、在乌普萨拉、隆德、奥斯陆、哥本哈根、赫尔辛基大学、卡罗琳医学院和皇家技术学院永久或临时任职的物理和化学教授等科学家推荐。
奖项由来诺贝尔生于瑞典的斯德哥尔摩,诺贝尔一生致力于炸药的研究,在硝化甘油的研究方面取得了重大成就。
他不仅从事理论研究,而且进行工业实践。
他一生共获得技术发明专利355项,并在欧美等五大洲20个国家开设了约100家公司和工厂,积累了巨额财富。
1896年12月10日,诺贝尔在意大利逝世。
逝世的前一年,他留下了遗嘱,设立诺贝尔奖。
据此,1900年6月瑞典政府批准设置了诺贝尔基金会,并于次年诺贝尔逝世5周年纪念日,即1901年12月10日首次颁发诺贝尔奖。
自此以后,除因战时中断外,每年的这一天分别在瑞典首都斯德哥尔摩和挪威首都奥斯陆举行隆重授奖仪式。
1968年瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济奖(全称为瑞典中央银行纪念阿尔弗雷德·伯恩德·诺贝尔经济科学奖金,亦称纪念诺贝尔经济学奖,并于1969年开始与其他5项奖同时颁发。
诺贝尔经济学奖的评选原则是授予在经济科学研究领域作出有重大价值贡献的人,并优先奖励那些早期作出重大贡献者。
颁奖时间每次诺贝尔奖的发奖仪式都是下午举行,这是因为诺贝尔是1896年12月10日下午4:30去世的。
为了纪念这位对人类进步和文明作出过重大贡献的科学家,在1901年第一次颁奖时,人们便选择在诺贝尔逝世的时刻举行仪式。
这一有特殊意义的做法一直沿袭到如今。
评选过程每年9月至次年1月31日,接受各项诺贝尔奖推荐的候选人。
通常每年推荐的候选人有1000— 2000人。
历届诺贝尔物理学奖1901年威尔姆·康拉德·伦琴(德国人)发现X 射线1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析1916年未颁奖1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性1921年阿尔伯特·爱因斯坦(美籍犹太人)发现了光电效应定律等1922年尼尔斯·亨利克·大卫·玻尔(丹麦人)从事原子结构和原子辐射的研究1923年R.A.米利肯从事基本电荷和光电效应的研究1924年K.M.G.西格巴恩(瑞典人)发现了X 射线中的光谱线1925年詹姆斯·弗兰克、G.赫兹(德国人)发现原子和电子的碰撞规律1926年J.B.佩兰(法国人)研究物质不连续结构和发现沉积平衡1927年阿瑟·霍利·康普顿(美国人)发现康普顿效应(也称康普顿散射) C.T.R.威尔逊(英国人)发明了云雾室,能显示出电子穿过水蒸气的径迹1928年O.W 理查森(英国人)从事热离子现象的研究,特别是发现理查森定律1929年路易斯·维克多·德布罗意(法国人)发现物质波1930年 C.V.拉曼(印度人)从事光散方面的研究,发现拉曼效应1931年未颁奖1932年维尔纳·K.海森伯(德国人)创建了量子力学1933年埃尔温·薛定谔(奥地利人)、P.A.M.狄拉克(英国人)发现原子理论新的有效形式1934年未颁奖1935年J.查德威克(英国人)发现中子1936年V.F.赫斯(奥地利人)发现宇宙射线; C.D.安德森(美国人)发现正电子1937年 C.J.戴维森(美国人)、G.P.汤姆森(英国人)发现晶体对电子的衍射现象1938年 E.费米(意大利人)发现中子轰击产生的新放射性元素并发现用慢中子实现核反应1939年 E.O.劳伦斯(美国人)发明和发展了回旋加速器并以此取得了有关人工放射性等成果1940年~1942年未颁奖1943年O.斯特恩(美国人)开发了分子束方法以及质子磁矩的测量1944年I.I.拉比(美国人)发明了著名气核磁共振法1945年沃尔夫冈·E.泡利(奥地利人)发现不相容原理1946年P.W.布里奇曼(美国人)发明了超高压装置,并在高压物理学方面取得成就1947年 E.V.阿普尔顿(英国人)从事大气层物理学的研究,特别是发现高空无线电短波电离层(阿普尔顿层)1948年P.M.S.布莱克特(英国人)改进了威尔逊云雾室方法,并由此导致了在核物理领域和宇宙射线方面的一系列发现1949年汤川秀树(日本人)提出核子的介子理论,并预言介子的存在1950年 C.F.鲍威尔(英国人)开发了用以研究核破坏过程的照相乳胶记录法并发现各种介子1951年J.D.科克罗夫特(英国人)、E.T.S.沃尔顿(爱尔兰人)通过人工加速的粒子轰击原子,促使其产生核反应(嬗变)1952年 F.布洛赫、E.M.珀塞尔(美国人)从事物质核磁共振现象的研究并创立原子核磁力测量法1953年 F.泽尔尼克(荷兰人)发明了相衬显微镜1954年马克斯·玻恩在量子力学和波函数的统计解释及研究方面作出贡献W. 博特(德国人)发明了符合计数法,用以研究原子核反应和γ射线1955年W.E.拉姆(美国人)发明了微波技术,进而研究氢原子的精细结构P.库什(美国人)用射频束技术精确地测定出电子磁矩,创新了核理论1956年W.H.布拉顿、J.巴丁、W.B.肖克利(美国人)从事半导体研究并发现了晶体管效应1957年李政道、杨振宁(美籍华人)对宇称定律作了深入研究1958年P.A.切伦科夫、I.E.塔姆、I.M.弗兰克(俄国人)发现并解释了切伦科夫效应1959年 E .G. 塞格雷、O. 张伯伦(美国人)发现反质子1960年 D.A.格拉塞(美国人)发明气泡室,取代了威尔逊的云雾室1961年R.霍夫斯塔特(美国人)利用直线加速器从事高能电子散射研究并发现核子R.L.穆斯保尔(德国人)从事γ射线的共振吸收现象研究并发现了穆斯保尔效应1962年列夫·达维多维奇·朗道(俄国人)开创了凝集态物质特别是液氦理论1963年 E. P.威格纳(美国人)发现基本粒子的对称性以及原子核中支配质子与中子相互作用的原理M.G.迈耶(美国人)、J.H.D.延森(德国人)从事原子核壳层模型理论的研究1964年 C.H.汤斯(美国人)、N.G.巴索夫、A.M.普罗霍罗夫(俄国人)发明微波射器和激光器,并从事量子电子学方面的基础研究1965年朝永振一郎(日本人)、J. S . 施温格、R.P.费曼(美国人)在量子电动力学方面进行对基本粒子物理学具有深刻影响的基础研究1966年 A.卡斯特勒(法国人)发现和开发了把光的共振和磁的共振合起来,使光束与射频电磁发生双共振的双共振法1967年H.A.贝蒂(美国人)以核反应理论作出贡献,特别是发现了星球中的能源1968年L.W.阿尔瓦雷斯(美国人)通过发展液态氢气泡和数据分析技术,从而发现许多共振态1969年M.盖尔曼(美国人)发现基本粒子的分类和相互作用1970年L.内尔(法国人)从事铁磁和反铁磁方面的研究H.阿尔文(瑞典人)从事磁流体力学方面的基础研究1971年 D.加博尔(英国人)发明并发展了全息摄影法1972年J. 巴丁、L. N. 库柏、J.R.施里弗(美国人)从理论上解释了超导现象1973年江崎玲于奈(日本人)、I.贾埃弗(美国人)通过实验发现半导体中的“隧道效应”和超导物质 B.D.约瑟夫森(英国人)发现超导电流通过隧道阻挡层的约瑟夫森效应1974年M.赖尔、A.赫威斯(英国人)从事射电天文学方面的开拓性研究1975年 A.N. 玻尔、B.R.莫特尔森(丹麦人)、J.雷恩沃特(美国人)从事原子核内部结构方面的研究1976年 B. 里克特(美国人)、丁肇中(美籍华人)发现很重的中性介子–J /φ粒子1977年P.W. 安德林、J.H. 范弗莱克(美国人)、N.F.莫特(英国人)从事磁性和无序系统电子结构的基础研究1978年P.卡尔察(俄国人)从事低温学方面的研究 A.A.彭齐亚斯、R.W.威尔逊(美国人)发现宇宙微波背景辐射1979年谢尔登·李·格拉肖、史蒂文·温伯格(美国人)、A. 萨拉姆(巴基斯坦)预言存在弱中性流,并对基本粒子之间的弱作用和电磁作用的统一理论作出贡献1980年J.W.克罗宁、V.L.菲奇(美国人)发现中性K介子衰变中的宇称(CP)不守恒1981年K.M.西格巴恩(瑞典人)开发出高分辨率测量仪器N.布洛姆伯根、A.肖洛(美国人)对发展激光光谱学和高分辨率电子光谱做出贡献1982年K.G.威尔逊(美国人)提出与相变有关的临界现象理论1983年S.昌德拉塞卡、W.A.福勒(美国人)从事星体进化的物理过程的研究1984年 C.鲁比亚(意大利人)、S. 范德梅尔(荷兰人)对导致发现弱相互作用的传递者场粒子W±和Z 0的大型工程作出了决定性贡献1985年K. 冯·克里津(德国人)发现量了霍耳效应并开发了测定物理常数的技术1986年 E.鲁斯卡(德国人)在电光学领域做了大量基础研究,开发了第一架电子显微镜G.比尼格(德国人)、H.罗雷尔(瑞士人)设计并研制了新型电子显微镜——扫描隧道显微镜1987年J.G.贝德诺尔斯(德国人)、K.A.米勒(瑞士人)发现氧化物高温超导体1988年L.莱德曼、M.施瓦茨、J.斯坦伯格(美国人)发现μ子型中微子,从而揭示了轻子的内部结构1989年W.保罗(德国人)、H.G.德默尔特、N.F.拉姆齐(美国人)创造了世界上最准确的时间计测方法——原子钟,为物理学测量作出杰出贡献1990年J.I.弗里德曼、H.W.肯德尔(美国人)、理查德·E.泰勒(加拿大人)通过实验首次证明了夸克的存在1991年皮埃尔—吉勒·德·热纳(法国人)从事对液晶、聚合物的理论研究1992年G.夏帕克(法国人)开发了多丝正比计数管1993年R.A.赫尔斯、J.H.泰勒(美国人)发现一对脉冲双星,为有关引力的研究提供了新的机会1994年BN.布罗克豪斯(加拿大人)、C.G.沙尔(美国人)在凝聚态物质的研究中发展了中子散射技术1995年M.L.佩尔、F.莱因斯(美国人)发现了自然界中的亚原子粒子:Υ轻子、中微子1996年 D. M . 李(美国人)、D.D.奥谢罗夫(美国人)、理查德·C.理查森(美国人)发现在低温状态下可以无摩擦流动的氦- 31997年朱棣文(美籍华人)、W.D.菲利普斯(美国人)、C.科昂–塔努吉(法国人)发明了用激光冷却和俘获原子的方法1998年劳克林(美国)、斯特默(美国)、崔琦(美籍华人)发现了分数量子霍尔效应1999年H.霍夫特(荷兰)、M.韦尔特曼(荷兰)阐明了物理中电镀弱交互作用的定量结构.2000年阿尔费罗夫(俄罗斯人)、基尔比(美国人)、克雷默(美国人)因其研究具有开拓性,奠定资讯技术的基础,分享今年诺贝尔物理奖。
凝聚态诺贝尔总结凝聚态物理是研究物质在固体和液体状态下的性质和行为的科学领域。
凝聚态物理学家通过实验和理论研究,揭示了物质在宏观和微观尺度上的各种现象和规律,为人们认识和应用物质世界提供了深刻的理论基础。
因其对人类社会的贡献,凝聚态物理学领域也获得了多项诺贝尔奖。
固体是凝聚态物质中最常见的形态之一。
诺贝尔物理学奖在凝聚态物理学领域的奖项中多数是与固体物理学相关的。
例如,在2010年,诺贝尔物理学奖授予了安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们对二维材料石墨烯的发现和研究。
石墨烯是由单层碳原子构成的二维晶体,具有独特的电子性质和机械强度,被认为是未来纳米电子学和纳米材料科学的重要基础。
除了固体,液体也是凝聚态物质中的一种重要形态。
液体的研究主要包括了液体的结构和性质,以及相变等方面。
在1962年,诺贝尔物理学奖授予了利奥·埃斯纳和阿尔伯特·弗拉纳因,以表彰他们对液体氦的研究。
液体氦在极低温下表现出超流动性,即在无粘性的情况下流动,这一现象被认为是凝聚态物理学中的重大突破。
凝聚态物理学的研究还涉及了超导性和磁性等方面。
超导性是指某些物质在低温下电阻突然消失的现象,这一现象的发现和解释为人们认识了超导物质的性质和应用提供了理论基础。
在1987年,诺贝尔物理学奖授予了卡尔·穆勒和约翰·贝德诺兹,以表彰他们对高温超导材料的发现。
高温超导材料具有较高的临界温度,使得超导技术在实际应用中更加可行。
磁性是凝聚态物质中另一个重要的性质。
磁性材料具有各种各样的性质和应用,如磁存储器件和磁共振成像技术等。
在2007年,诺贝尔物理学奖授予了彼得·格鲁恩伯格和阿尔伯特·菲尔斯,以表彰他们对磁性材料的发现和研究。
他们的研究帮助人们更好地理解了磁性材料的微观机制和性质。
除了以上几个方面,凝聚态物理学的研究还包括了半导体物理学、光子学等领域。
2023诺贝尔物理奖凝聚态物理
2023年诺贝尔物理学奖被授予了在凝聚态物理领域做出突出贡献的科学家或科学家们。
由于诺贝尔奖的评选是保密的,因此具体的获奖者要直到2023年才会公布。
凝聚态物理涉及研究固体和液体等物质的性质和相互作用。
这一领域的重要研究主题包括超导性、磁性以及电子、声子和自旋等粒子在固体中的行为。
可能的获奖者之一可能是对新型凝聚态材料的研究作出了突出贡献的科学家。
例如,在2023年获奖的科学家可能是在石墨烯或二维材料方面开展了重要研究的科学家。
这些材料因其特殊的电子、光学和热学性质而成为凝聚态物理研究的焦点。
另一个可能的领域是拓扑绝缘体和量子霍尔效应的研究。
这些研究在凝聚态物理和拓扑学领域产生了重要影响,并在量子计算、量子通信和未来能源等领域具有潜在应用。
尽管如此,要确定2023年诺贝尔物理学奖的具体领域和获奖者,还需要等到2023年10月发布的官方公告。
诺贝尔物理原理学奖诺贝尔物理学奖,是诺贝尔奖的五个部分之一,用于表彰在物理学领域做出卓越贡献的人。
它的创建源于诺贝尔的遗嘱,他要求该奖旨在表彰“对人类对物理学的最大贡献”。
自1901年起,该奖项已经被授予了超过200名优秀的物理学家,他们的工作涉及从原子粒子到宇宙奥秘的各种主题,为物理学进步做出了重要贡献。
其中最重要的贡献无疑是诸如相对论、量子力学、统计物理学、原子核物理学、宇宙学和凝聚态物理学等领域的重要理论探索。
这些成果不仅启发了人们对自然界的深刻理解,也为现代科技的发展打下了坚实的基础。
1901年,首个诺贝尔物理学奖被授予了德国物理学家威廉·康拉德·伦琴。
他因发现了Röntgen射线而获得了这个奖项。
这项发现为诸如医学成像、材料检测和天文学等领域提供了有力工具。
在1921年,阿尔伯特·爱因斯坦因为提出了相对论而获得了这个奖项。
相对论是物理学中最重要的理论之一,它揭示了时间、空间、质量和能量之间的本质联系。
它也是现代科技中许多颠覆性技术的基础,如GPS、核能和半导体技术等。
另一个开创性的理论是量子力学,它探讨了基本粒子的行为和相互作用。
1929年,保罗·狄拉克提出了狄拉克方程,这证明了电子具有自旋,这是一种新的物理属性。
这项成果引发了量子场论的研究,并为理解基本粒子的各种性质提供了奠基性的基础。
1988年,李政道和杨振宁因为针对研究基本粒子的新现象而获得了诺贝尔物理学奖。
他们的理论解决了Emmy Noether定理中的对称性问题,这促进了我们对基本粒子如何相互作用的理解。
此外,诺贝尔物理学奖还为凝聚态物理学的发展做出了巨大贡献。
1962年,半导体理论的奠基人尼古拉斯·布隆缪尔和约翰·巴丁获得了该奖项。
他们发现了半导体物理学中的重要现象,这将半导体技术从实验研究推向了现实应用。
2004年,哈里·克劳斯·诺夫和约翰·霍尔德雷得因发现了单个分子电器中的电子传输现象而获得该奖项。
中国诺贝尔物理学奖获得者名单自1901年创立以来,诺贝尔物理学奖一直被认为是世界上最高荣誉的科学奖项之一。
中国作为一个科技大国,在物理学领域也有不少杰出的科学家获得了这一殊荣。
下面是中国诺贝尔物理学奖获得者的名单:1. 杨振宁(1957年获奖)杨振宁是中国第一个获得诺贝尔物理学奖的科学家,也是首位因物理学研究而获得该奖项的华人科学家。
他与李政道共同提出了“杨-李理论”,对于基本粒子的对称性和弱相互作用的研究做出了重要贡献。
2. 李政道(1957年获奖)李政道与杨振宁共同获得了1957年的诺贝尔物理学奖,他们的研究成果对于理解基本粒子和物理学的基本规律起到了重要作用。
李政道还在物理学领域的其他方面做出了杰出贡献,被誉为中国现代物理学的奠基人之一。
3. 高斯古(1957年获奖)高斯古是中国第三位获得诺贝尔物理学奖的科学家,也是首位获得这一奖项的独立研究者。
他的研究成果在理解基本粒子的强相互作用和量子色动力学方面具有重要意义。
4. 杨振宁(1963年获奖)杨振宁是中国第一位两次获得诺贝尔物理学奖的科学家,他的第二次获奖是因为对于非守恒性理论的研究。
他的研究成果对于理解宇宙学和相对论物理学具有重要意义。
5. 杨振宁(2004年获奖)杨振宁是中国第一位三次获得诺贝尔物理学奖的科学家,他的第三次获奖是因为对于超导性和超流动性的研究。
他的研究成果在理解凝聚态物理学和低温物理学方面起到了重要作用。
6. 高锟(2012年获奖)高锟是中国第六位获得诺贝尔物理学奖的科学家,他因为发现了量子霍尔效应而获得了这一殊荣。
他的研究成果对于理解量子力学和凝聚态物理学具有重要意义。
7. 丁肇中(2016年获奖)丁肇中是中国第七位获得诺贝尔物理学奖的科学家,他因为对中微子振荡的发现而获得了这一奖项。
他的研究成果在粒子物理学和中微子物理学领域引起了广泛的关注和重要影响。
8. 陈建功(2018年获奖)陈建功是中国第八位获得诺贝尔物理学奖的科学家,他因为对于激光的产生和应用的发现而获得了这一殊荣。
凝聚态物理相关诺贝尔化学奖1970-1985 年赫伯特·豪普特曼(美)杰罗姆·卡尔勒(美)在测定晶体结构的直接方法上的贡献2000 年艾伦·黑格(美)艾伦·麦克迪尔米德(美/新西兰)白川英树(日)对导电聚合物的研究2011 年丹·谢赫特曼(以)准晶的发现[5]凝聚态物理相关诺贝尔物理学奖1970-1972年约翰·巴丁美国“他们联合创立了超导微观理论,即常说的BCS 理论”"for their jointly developed theory ofsuperconductivity, usually called theBCS-theory"[73]利昂·库珀美国约翰·罗伯特·施里弗国美1973年江崎玲于奈日本“发现半导体和超导体的隧道效应”"for their experimental discoveriesregarding tunneling phenomena insemiconductors and superconductors,respectively"[74]伊瓦尔·贾埃弗挪威国英 “他理论上预测出通过隧道势垒的超电流的性质,特别是那些通常被称为约瑟夫森效应 布赖 的现象” 恩·戴"for his theoretical predictions of the 维·约瑟 properties of a supercurrent through a 夫森 tunnel barrier, in particular those phenomena which are generally known as the Josephson effect"[74]1977 年菲利普·沃伦·安德森国美“对磁性和无序体系电子结构的基础性理论研究”"for their fundamental theoretical investigations of the electronicstructure of magnetic and disorderedsystems"[78]内维尔·莫特 国英约翰·凡扶累克 国美年彼得·列昂尼多维奇·卡皮查苏联“低温物理领域的基本发明和发现” "for his basic inventions and discoveries in the area of low- temperature physics"[79]1982 年肯尼斯·威尔逊美国“对与相转变有关的临界现象理论的贡献”"for his theory for critical phenomena in connection with phase transitions"[83]1985 年克劳斯·冯·克利青德国“发现量子霍尔效应”"for the discovery of thequantized Hall effect"[86]特·鲁斯卡德国“电子光学的基础工作和设计了第一台显微镜"for his fundamental work in electron optics,electron microscope"格尔德·宾宁德国“研制"for their design of the scanningtunneling microscope"海因里希·罗雷尔瑞士约翰内斯·贝德诺尔茨德国“在发现"for their important break-through the discovery of superconductivity ceramic materials"卡尔·米勒瑞士皮埃尔吉勒纳法国“发现研究简单系统中有序现象的方法可以被推广到比较复杂的物质形式,特别是推广到"forfor studying order phenomena in simple systems can be generalized to morecomplexliquid crystals and polymers"1996年戴维·李美国“发现了在氦-3 里的超流动性”"for their discovery ofsuperfluidity inhelium-3"[97]道格拉斯·奥谢罗夫美国罗伯特·理查森美国2000年若雷斯·阿尔费罗夫俄罗斯“发展了用于高速电子学和光电子学的半导体异质结构”"for developing semiconductorheterostructures used in high-speed-and optoelectronics"[101]赫伯特·克勒默德国杰克·基尔比美国“在发明集成电路中所做的贡献”"for his part in the invention of theintegrated circuit"[101]2001年埃里克·康奈尔国美“在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究”"for the achievement of Bose-Einsteincondensation in dilute gases of alkaliatoms, and for early fundamental studiesof the properties of the condensates"[102]卡尔·威曼国美沃尔夫冈·克特勒国德2003年阿列克谢·阿布里科索夫美国俄罗斯“对超导体和超流体理论做出的先驱性贡献”"for pioneering contributions tothe theory of superconductors andsuperfluids"[104]维塔利·金俄罗斯兹堡安东尼·莱格特英国美国2007 年艾尔伯·费尔法国“发现巨磁阻效应”"for the discovery of giant magnetoresistance"[108]彼得·格林贝格德国2009 年高锟英国 美国 [110] “在光学通信领域光在纤维中传输方面的突破性成就” "for groundbreaking achievementsconcerning the transmission of light infibers for optical communication"[111]威拉 德·博伊尔 美国“发明半导体成像器件电荷耦合器件” "for the invention of an imaging semiconductor circuit – the CCD sensor"[111]乔治·史密斯美国2010 年安德烈·海姆荷兰俄罗斯“在二维石墨烯材料的开创性实验”"for groundbreaking experimentsregarding the two-dimensionalmaterial graphene"[112]康斯坦丁·诺沃肖洛夫英国俄罗斯。
1952年诺贝尔物理学奖——核磁共振1952年诺贝尔物理学奖授予美国加利福尼亚州斯坦福大学的布洛赫(Felix Bloch,1905—1983)和美国马萨诸塞州坎伯利基哈佛大学的珀塞尔(Edward Purcell,1912—1997),以表彰他们发展了核磁精密测量的新方法及由此所作的发现。
1945年12月,珀塞尔和他的小组在石蜡样品中观察到质子的核磁共振吸收信号,1946年1月,布洛赫和他的小组在水样品中也观察到质子的核感应信号。
他们两人用的方法稍有不同,几乎同时在凝聚态物质中发现了核磁共振。
他们发展了斯特恩开创的分子束方法和拉比的分子束磁共振方法,精确地测定了核磁矩。
以后许多物理学家进入了这个领域,形成了一门新兴实验技术,几年内便取得了丰硕的成果。
所谓核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。
核磁共振的发现,跟核磁矩的研究紧密相关。
追根溯源,还要从原子核的发现说起。
1911年,卢瑟福根据α粒子散射实验提出核原子模型后,由于原子核是一个带电的力学体系,人们就推测原子核具有电磁矩。
但当时引入这个概念还缺乏可靠的实验数据,直到原子光谱的超精细结构发现以后,泡利于1924年才正式提出,原子光谱的超精细结构是核自旋与外电子轨道运动相互作用的结果;原子核应具有自旋角动量和磁矩。
斯特恩对核磁矩作过重要研究。
他创造了分子束方法,后来在1933年和弗利胥(O.Frisch)、爱斯特曼(I.Estermann)等人用分子束实验装置测量氢分子中质子和氘核的磁矩。
所得结果表明质子磁矩比狄拉克电子理论预言的大2.5倍而氘核磁矩则在0.5到1个核磁子之间。
氘核是由质子和中子组成的,由此即可推测中子也有磁矩。
这说明尽管中子整体不带电,其内部却有电荷分布和电流效应。
这些实验事实,激励了其他人对核的电磁特性的探索。
拉比后来对分子束磁共振方法的研究和布洛赫对核磁共振的研究都是受到了斯特恩的启发。
斯特恩开创了新的方法,结果是令人惊奇的,但是精确度并不很高,难以作出决定性的判断,这就促使他们致力于改进分子束方法的精确性,以求找到更精确的方法,取得更可靠的结果。
历年诺贝尔物理学奖得主(1901-2018)以下是历年诺贝尔物理学奖得主列表(1901-2016):1901年,___(德国)因发现不寻常的射线,即X射线(又称伦琴射线),并将其命名为伦琴射线,同时将其作为辐射量的单位。
1902年,___和___(荷兰)因发现了塞曼效应,即磁场对辐射现象的影响。
1903年,___(法国)因发现了天然放射性。
1904年,___(英国)因对___教授所发现的放射性现象进行了研究。
1905年,___和___(德国)因对阴极射线进行了研究。
1906年,___(英国)因对气体导电的理论和实验进行了研究。
1907年,___耳孙(美国)因发明了用于控制灯塔和浮标中气体蓄积器的自动调节阀。
1908年,___(法国)因发明了精密光学仪器,并借助它们进行了光谱学和计量学研究。
1909年,___和___(意大利和德国)因对气体和液体的状态方程进行了研究。
1910年,___(荷兰)因对氢气、氧气、氮气等气体密度的测量进行了研究,并因测量氮气而发现了氩。
1911年,___(德国)因对热辐射的定律进行了研究。
1912年,___(瑞典)因发现晶体中的X射线衍射现象,并用X射线对晶体结构进行了研究。
1913年,___(荷兰)因发现了元素的特征伦琴辐射。
1914年,___(德国)因推动了量子物理学的发展。
1915年,___和___(英国)因发现了极隧射线的多普勒效应以及电场作用下谱线的分裂现象。
1917年,___(英国)因对镍钢合金的反常现象进行了研究,推动了物理学的精密测量。
1918年,___(德国)因对热辐射的定律进行了研究。
1919年,___(德国)因发现了那些影响热辐射的定律。
1920年,___(瑞士)因发明了利用干涉现象来重现色彩于照片上的方法。
1921年,___(德国)因对量子的发现进行了研究,推动了物理学的发展。
以上是历年诺贝尔物理学奖得主的列表,他们的成就和贡献对物理学的发展产生了重大影响。
凝聚态物理相关诺贝尔化学奖1970-
凝聚态物理相关诺贝尔物理学奖1970-
约翰·巴丁
美
国
“他们联合创立了
的
"for
superconductivity, usually called the
BCS-theory"
美
国
约翰·罗伯特·施里弗
美
国
日
本“发现
"for their experimental discoveries
regarding tunneling phenomena in
semiconductors and superconductors,
respectively"
伊瓦尔·贾埃弗
挪威
布赖
恩·戴维·约瑟夫森
英
国
“他理论上预测出通过隧道势垒的超电流的
性质,特别是那些通常被称为
的现象”
"for his theoretical predictions of the
properties of a supercurrent through a
tunnel barrier, in particular those
phenomena which are generally known as
the Josephson effect"
菲利
普·沃伦·安德森
美
国
“对磁性和无序体系电子结构的基础性理
论研究”
"for their fundamental theoretical
investigations of the electronic
structure of magnetic and disordered
systems"
英
国
美
国
年彼得·列昂尼
多维奇·卡皮
查
苏
联
“低温物理领域的基本发明和发现”
"for his basic inventions and
discoveries in the area of
low-temperature physics"
美
国
“对与相转变有关的临界现象理论的贡献”
"for his theory for critical phenomena in
connection with phase transitions"
克劳斯·冯·克
利青
德
国
“发现
"for the discovery of the
quantized Hall effect"
德国“电子光学的基础工作和设计了第一台
子显微镜
"for his fundamental work in electron optics,
electron microscope"
格尔德·宾宁
德
国
“研制
"for their design of the scanning
tunneling microscope"
海因里希·罗雷尔
瑞士
约翰内斯·贝德诺尔茨
德
国“在发现
"for their important break-through in
the discovery of superconductivity in
ceramic materials"
卡尔·米勒
瑞士
皮埃尔吉勒·德热纳
法
国
“发现研究简单系统中有序现象的方法可以
被推广到比较复杂的物质形式,特别是推广
到
"for discovering that methods developed
for studying order phenomena in simple
systems can be generalized to more
complex
liquid crystals and polymers"
美国 “发现了在"for their discovery of superfluidity in helium-3"道格拉斯·奥谢罗夫 美国 罗伯特·理查森 美
国
若雷斯·阿尔费罗夫 俄罗斯 “发展了用于高速电子学和导体异质结构"for developing semiconductor heterostructures used in high-speed- and optoelectronics" 德国 美国 “在发明"for his part in the invention of the integrated circuit"埃里
克·康
奈尔 美国
“在碱性原子稀薄气体的聚态质的早期基础性研究”"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, of the properties of the condensates"卡尔·威曼
美国 沃尔夫
冈·克
特勒 德国
阿列克谢·阿布里科索夫
美国
俄罗
斯
“对
性贡献”
"for pioneering contributions to
the theory of superconductors and
superfluids"
俄罗
斯
英国
美国
艾尔伯·费尔
法
国
“发现
"for the discovery of giant
magnetoresistance"
彼得·格林贝格
德国
高锟
英
国
美
国[110]
“在光学通信领域光在
突破性成就”
"for groundbreaking achievements
concerning the transmission
fibers for optical communication"
威拉德·博伊尔
美
国
“发明
"for the invention of an imaging
semiconductor circuit
sensor"
乔治·史密斯
美国
安德烈·海姆
荷
兰
俄
罗斯“在二维
"for groundbreaking experiments
regarding the two-dimensional
material graphene"
康斯坦丁·诺沃肖洛夫
英国
俄罗斯。