电子科大通信原理第6章模拟信号数字化与PCM复习介绍
- 格式:ppt
- 大小:830.50 KB
- 文档页数:33
第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。
掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。
2、理解时分复用和多路数字电话系统原理。
3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。
§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。
这是本章欲解决的中心问题。
二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。
致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。
三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。
2.量化:将量值连续分布的样值,归并到有限个取值范围内。
3.编码:用二进制数字代码,表达这有限个值域(量化区)。
2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。
这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。
抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。
二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。
由于0≤K<1,所以f s在2B~4B 之间。
当f H >> B 即N >>1 时f S =2B。
当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。
第一部 各章重要习题及详细解答过程第1章 绪论1—1 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解:英文字母E 的信息量为105.01log 2=E I =3.25bit 英文字母x 的信息量为002.01log 2=x I =8.97bit 1—2 某信息源的符号集由A 、B 、C 、D 和E 组成,设每一符号独立出现,其出现概率分别为1/4、l/8、l/8/、3/16和5/16。
试求该信息源符号的平均信息量。
解:平均信息量,即信息源的熵为∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-163log 1632-165log 1652- =2.23bit/符号1—3 设有四个消息A 、BC 、D 分别以概率1/4、1/8、1/8和l/2传送,每一消息的出现是相互独立的,试计算其平均信息量。
解:平均信息量∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-21log 212-=1.75bit/符号1—4 一个由字母A 、B 、C 、D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00代替A ,01代替B ,10代替C ,11代替D ,每个脉冲宽度为5ms 。
(1)不同的字母是等可能出现时,试计算传输的平均信息速率。
(2)若每个字母出现的可能性分别为P A =l/5,P B =1/4,P C =1/4,P D =3/10 试计算传输的平均信息速率。
解:(1)不同的字母是等可能出现,即出现概率均为1/4。
每个字母的平均信息量为∑=-=ni i i x P x P H 12)(log )(=41log 4142⨯-=2 bit/符号因为每个脉冲宽度为5ms ,所以每个字母所占用的时间为 2×5×10-3=10-2s每秒传送符号数为100符号/秒 (2)平均信息量为∑=-=ni i i x P x P H 12)(log )(=51log 512-41log 412-41log 412-103log 1032-=1.985 bit/符号平均信息速率为 198.5 比特/秒1—5 国际莫尔斯电码用点和划的序列发送英文字母,划用持续3单位的电流脉冲表示,点用持续1个单位的电流脉冲表示;且划出现的概率是点出现概率的l/3;(1)计算点和划的信息量;(2)计算点和划的平均信息量。
数字通信原理复习总结资料第⼀章1. 模拟信号是指代表消息的信号及其参数(幅度、频率和相位)随着消息连续变化的信号;特点:在幅度上连续,但是在时间上可以连续也可以不连续。
数字信号指的是时间和幅值都是离散的信号形式2. 信源所发出的信息经变换器变换和处理后,送往信道上传输的是模拟信号的通信系统称为模拟通信系统。
信源所发出的信息经变换和处理后,送往信道上传输的是数字信号的通信系统称为数字通信系统。
3. 多路信号互不⼲扰地沿同⼀条信道传输称为多路复⽤。
时分多路复⽤利⽤了信号的时间离散性,也就是使各路信号在不同的时间占⽤信道进⾏传输,在接收端由不同的时间取出对应的信号。
4. 数字通信的特点: 1. 抗⼲扰能⼒强,⽆噪声积累2. 便于加密处理3. 利于采⽤时分复⽤实现多路通信4. 设备便于集成化、⼩型化5. 占⽤频带宽5. (1). 有效性指标:a信息传输速率b符号传输速率(码元速率,指单位时间内所传输码元的数⽬,其单位为“波特”(Bd)Rb=NB·log2M)c 频带利⽤率(2)可靠性指标:a 误码率(在传输过程中发⽣误码的码元个数与传输的总码元数之⽐,通常以Pe来表⽰)b信号抖动第⼆章1. PCM:脉冲编码调制2. PCM信号处理(编码)过程:(1)抽样低通型信号抽样带通型信号抽样例1,试求载波60路超群信号312~552kHz的抽样频率,包括可⽤抽样频率等间隔抽样频率.B=fm-fL=552-312=240kHz,n=[f L/B]I=[312/240] I=1f smin= 2×552/(1+1)=552kHz f smax= 2×312/1=626kHz等间隔:f s =2(312+552)/3=576kHz例2,带宽为48kHz的FM模拟信号,频分多路系统上限频率fm为1052kHz,下限频率为1004kHz,求最⼩抽样频率。
n=[f L/B]I=[1004/48]I =[20.9]I=20 f smin= 2×1052/(20+1)=100.2kHz(2)量化均匀量化:在量化区内,⼤、⼩信号的量化间隔相同,最⼤量化误差也就相同,所以⼩信号的量化信噪⽐⼩,⼤信号的量化信噪⽐⼤。
PCM原理及应用PCM(Pulse Code Modulation)脉冲编码调制是一种模拟信号数字化的技术,其原理是将连续的模拟信号离散化为脉冲序列,再将脉冲序列编码为二进制码。
PCM广泛应用于通信、音频编码和储存等领域。
PCM的原理是通过两个步骤来实现信号的离散化和编码。
首先,对模拟信号进行采样,将连续的模拟信号按照一定的时间间隔进行抽样,抽样频率越高,采样精度越高,得到的离散信号越接近原始模拟信号。
然后,将每个采样量化为离散的数值,量化的级别决定了PCM的分辨率。
量化过程通常采用均匀量化,即将连续的信号值映射到一定数量的离散级别中,通过数字编码表示。
PCM的应用非常广泛,以下介绍几个主要领域的应用:1.通信:PCM是现代通信系统中常用的调制和解调技术,可以将模拟信号转化为数字信号进行传输。
PCM通过将语音信号转换为数字信号,可以实现高质量的语音通信,而且可以方便地进行数字信号处理和编码,提高通信效率和质量。
2.音频编码:PCM是音频编码的基础技术。
在音频编码中,采样率和位深度决定了音频的质量和所占用的存储空间。
PCM可以将音频信号以高质量的方式进行编码和解码,保留原始音频信号的细节,广泛应用于CD、DVD、MP3等音频格式的编码和解码中。
3.储存:PCM是数字媒体存储中最常用的编码格式之一、将模拟信号转化为数字信号后,可以方便地存储到计算机、移动存储设备或云存储中,并可以随时进行读取和处理。
PCM在图像、视频、音频等媒体文件的存储过程中广泛应用,为数字媒体的存储、传输和处理提供了基础。
4.语音识别:PCM是语音识别中信号预处理的重要步骤。
在语音识别中,需要将语音信号转化为数字信号,并通过数字信号处理和分析来识别和理解语音内容。
PCM可以将连续的语音信号转换为数字信号,方便进行语音特征提取和语音模式识别,提高语音识别的准确率。
5.视频通信:PCM在视频通信中起到了重要的作用。
将模拟视频信号转化为数字信号后,可以方便地进行压缩和传输,并可以在接收端进行解码和显示。