纳米材料的表征与测试2
- 格式:ppt
- 大小:3.51 MB
- 文档页数:36
无机纳米材料的表征及其应用一、引言随着纳米技术的不断发展,无机纳米材料的研究和应用已经得到了广泛的关注和研究。
无机纳米材料因其特殊的性质和表面活性,具有广泛的应用前景,如生物医学、能源、催化、电子器件等领域。
无机纳米材料的表征是研究其性质和应用的重要基础。
本文将全面介绍无机纳米材料的表征及其应用。
二、无机纳米材料的表征1.传统表征方法无机纳米材料的传统表征方法包括透射电镜(TEM)、扫描电镜(SEM)、X射线粉末衍射(XRD)、拉曼光谱和红外光谱等。
TEM和SEM可以观察到无机纳米材料的形貌、尺寸和形状等结构特征。
XRD可以分析无机纳米材料的晶体结构和晶格参数,拉曼光谱和红外光谱可以标识无机纳米材料的化学组成和表面结构等。
2.高级表征方法高级表征方法包括扫描透射电镜(STEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)、透射电子能谱(TEM)和霍尔效应测量等。
STEM可以比TEM更准确地确定无机纳米材料的形貌、尺寸和形状。
AFM可以测定无机纳米材料的表面形貌和荷电性等。
XPS可以观察无机纳米材料的化学组成和氧化状态。
TEM可以测定无机纳米材料的电子结构和拓扑结构等。
霍尔效应测量可以测定无机纳米材料的导电性和磁性等。
三、无机纳米材料的应用1.生物医学无机纳米材料在生物医学领域的应用主要包括药物输送、光热治疗和生物成像等。
无机纳米粒子具有潜在的药物传递载体,可用于药物递送系统、高效零毒或靶向性药物在癌细胞中的投放,同时具有药物控释的功能。
纳米粒子还可作为激活器,经过特殊处理的无机纳米材料可通过将其植入到病变组织中,利用近红外激光激发得到的光热效应增强治愈效果,如提高癌症治疗的效率。
此外,无机纳米材料还可用于生物成像、诊断等领域。
2.能源无机纳米材料在能源领域的应用主要包括储能和转换、太阳能电池、燃料电池和电解水等。
以铁氧体纳米杂化材料为例,其具有优异的储能性能和高电导率,可用于电池等储能器件中。
纳米材料的表征方法随着科技的快速发展,纳米材料逐渐成为各个领域的研究热点。
纳米材料的特殊性质和应用潜力使得其表征方法变得至关重要。
纳米材料的表征涉及到其形貌、尺寸、结构、成分以及物理和化学特性等方面的分析。
本文将介绍几种常用的纳米材料表征方法。
1. 扫描电子显微镜(SEM)SEM是一种基于电子束与材料相互作用的表征技术。
通过SEM可以获得纳米材料的形貌和表面特征。
它可以提供高分辨率的图像,从而使我们能够观察到纳米级别的细节。
同时,SEM还可以通过能谱分析技术(EDX)获得纳米材料的元素成分信息。
2. 透射电子显微镜(TEM)TEM是一种利用电子束通过纳米材料薄片进行投射和散射的方法来观察样品的结构和形貌的技术。
相比于SEM,TEM能够提供更高的分辨率,能够观察到更细微的细节。
利用TEM还可以确定纳米材料的晶体结构、晶格参数和晶面取向等信息。
3. X射线衍射(XRD)XRD是一种利用X射线与晶体相互作用的分析技术,对于纳米材料的晶体结构和成分分析十分重要。
通过测量样品散射的X射线的特征衍射图案,可以推断出纳米材料的晶体结构、晶格常数和相对晶体的定向度。
4. 傅里叶变换红外光谱(FTIR)FTIR是一种用来分析纳米材料的化学组成和结构的技术。
它基于红外辐射与材料吸收光谱的原理,通过测量纳米材料吸收不同波长的红外光线的强度变化,从而得到样品的化学信息。
利用FTIR还可以检测纳米材料中的官能团和键的类型。
5. 激光粒度仪激光粒度仪是一种常用的用于测量纳米材料粒径分布的仪器。
它通过测量光散射的强度来确定样品中颗粒的尺寸分布。
激光粒度仪不仅可以提供纳米材料的平均粒径,还可以分析其尺寸分布的均匀性,从而对纳米材料的制备工艺进行优化。
除了以上介绍的几种常用的纳米材料表征方法,还有许多其他的技术可供选择,如原子力显微镜(AFM)、拉曼光谱、热重分析(TGA)等。
选择适合的表征方法需要根据具体的研究目的和所要分析的属性来确定。
纳米科技材料的性能测试方法与标准规范解读随着科技的高速发展,纳米科技已经成为各个领域的热门研究方向,纳米材料的性能测试方法和标准规范对于实现材料的精准设计、可靠应用以及产品的质量控制至关重要。
本文将重点介绍纳米科技材料性能测试方法和标准规范的严格解读。
1. 纳米材料的性能测试方法纳米材料与传统材料相比,具有独特的特性和性能,因此需要采用特殊的测试方法进行性能评估。
以下为常用的纳米材料性能测试方法:1.1 纳米材料的粒径测量纳米材料的粒径对于其性能具有重要影响,因此粒径测量是纳米材料性能测试的首要任务。
常用的方法有透射电子显微镜(TEM)、扫描电子显微镜(SEM)和动态光散射(DLS)等。
1.2 纳米材料的结构表征纳米材料的结构对其性能起着至关重要的作用,因此需要采用一系列的结构表征方法进行测试。
例如,X射线衍射(XRD)用于分析晶体结构;拉曼光谱(Raman)用于研究材料的分子振动和晶格动力学等。
1.3 纳米材料的机械性能测试材料的机械性能是其可靠运用的关键指标之一,对纳米材料的机械性能测试方法进行了大量研究。
常用的方法包括纳米压痕测试(Nanoindentation)、扫描探针显微镜(SPM)和纳米拉伸实验等。
1.4 纳米材料的热学性能测试纳米材料的热学性能对于其在能源、催化等领域的应用至关重要。
因此,研究者们开发了一系列测试方法,如差示扫描量热法(DSC)、热导率测试仪和纳米量热仪等。
2. 纳米材料性能测试的标准规范解读为了保证纳米科技材料性能测试的准确性和可比性,各个国家和国际组织制定了相应的标准规范,以规定测试方法和要求。
下面将重点介绍几个重要的标准规范:2.1 ISO/TS 80004-1:2015该标准主要针对纳米材料的术语和定义进行了规范,为纳米科技材料的研究和应用提供了统一的术语和定义。
它为纳米材料的性质表征和测试提供了一个共同的基础。
2.2 ISO/TS 12901-2:2014该标准规范了纳米材料亲水性和疏水性的测试方法和评价准则,以及纳米颗粒在液体中的分散性评价指标,对于纳米材料的应用和环境影响研究具有重要意义。
一、实验目的1. 掌握纳米材料的制备方法;2. 学习纳米材料的表征技术;3. 分析纳米材料的物理化学性质。
二、实验原理纳米材料是指至少有一维在1-100纳米范围内的材料。
纳米材料具有独特的物理化学性质,如高比表面积、优异的催化性能、良好的生物相容性等。
本实验采用化学沉淀法制备纳米材料,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对纳米材料进行表征。
三、实验材料与仪器1. 实验材料:金属离子、氨水、氯化钠、硝酸、无水乙醇等;2. 实验仪器:电热恒温水浴锅、磁力搅拌器、超声波清洗机、X射线衍射仪、扫描电子显微镜、透射电子显微镜等。
四、实验步骤1. 纳米材料的制备(1)将金属离子溶液与氨水混合,调节pH值至8-9;(2)在室温下搅拌反应2小时;(3)加入氯化钠,搅拌30分钟;(4)加入硝酸,搅拌30分钟;(5)过滤、洗涤、干燥,得到纳米材料。
2. 纳米材料的表征(1)X射线衍射(XRD):用于分析纳米材料的晶体结构和物相组成;(2)扫描电子显微镜(SEM):用于观察纳米材料的形貌和尺寸;(3)透射电子显微镜(TEM):用于观察纳米材料的微观结构和形貌。
五、实验结果与分析1. XRD分析实验结果显示,纳米材料的衍射峰尖锐,说明纳米材料的晶体结构良好。
根据衍射峰的位置和强度,可以确定纳米材料的物相组成。
2. SEM分析实验结果显示,纳米材料呈现出球形、立方形等规则形貌,尺寸约为50-100纳米。
3. TEM分析实验结果显示,纳米材料具有明显的晶粒结构,晶粒尺寸约为20-30纳米。
六、实验结论1. 通过化学沉淀法制备的纳米材料具有良好的晶体结构和形貌;2. 纳米材料具有优异的物理化学性质,如高比表面积、优异的催化性能、良好的生物相容性等;3. 纳米材料在电子、催化、生物医学等领域具有广泛的应用前景。
七、实验注意事项1. 在制备纳米材料过程中,应严格控制反应条件,如pH值、反应时间等;2. 在表征过程中,应保证样品的干燥和清洁,以避免对实验结果产生影响;3. 操作过程中应注意安全,防止化学试剂对人体造成伤害。
材料科学与工程专业实验报告总结纳米材料的合成与表征随着科学技术的不断进步,纳米材料作为一种重要的研究领域备受关注。
纳米材料具有特殊的物理、化学和电子性能,在材料科学与工程中具有广泛的应用前景。
本次实验旨在通过合成与表征纳米材料的过程,加深对纳米材料性质和特点的理解。
此次实验共分为合成和表征两个部分,下面将分别进行总结。
一、合成纳米材料1. 实验设计和方法在合成纳米材料的过程中,我们采用了热分解法。
首先,将适量的前驱体溶液滴加入反应器中,在特定的条件下进行加热反应。
通过控制反应时间、温度和反应物浓度等参数,实现纳米材料的合成。
2. 合成结果经过实验合成,我们获得了具有一定尺寸和形状的纳米材料。
通过电子显微镜观察,我们发现纳米材料表面光滑,颗粒均匀分散。
此外,通过透射电子显微镜观察到纳米材料的晶格结构明确,粒子大小均匀一致。
二、表征纳米材料1. X射线衍射技术采用X射线衍射技术对合成的纳米材料进行表征。
通过对样品进行X射线照射,并测量探测到的衍射角度,可以得到纳米材料的晶体结构信息。
从X射线衍射图谱中可以看出纳米材料的晶格常数、晶体结构以及材料的纯度。
2. 透射电镜观察透射电镜是观察纳米材料形貌和结构的重要手段。
通过透射电镜技术,我们可以观察到纳米材料的颗粒形貌、尺寸分布以及晶格结构。
同时,透射电镜还可以观察到纳米材料的可见光谱,从而判断其光学性能。
3. 红外光谱分析通过红外光谱分析技术,我们可以了解纳米材料的化学成分和结构特点。
对纳米材料进行红外光谱测量,可以得到各种化学键的振动情况,从而判断纳米材料的分子结构。
三、实验结论通过本次实验,我们成功合成了具有一定尺寸和形状的纳米材料。
通过表征技术,我们进一步了解了纳米材料的晶体结构、形貌和化学成分。
纳米材料具有较大的比表面积和特殊的物理特性,对于提高材料的性能和开发新型功能材料具有重要意义。
总之,通过对纳米材料的合成和表征,我们深入了解了纳米材料的特性和性能,对材料科学与工程领域的研究和应用具有重要意义。
纳米材料的表征与测试技术纳米科技是21世纪最具发展前景的领域之一,而纳米材料作为纳米科技的重要组成部分,其性质和性能的表征与测试显得尤为重要。
本文将介绍纳米材料的表征方法和测试技术,以期为相关领域的研究提供有益的参考。
原子力显微镜是一种用于研究纳米材料表面形貌和微观结构的强大工具。
它利用微悬臂感受样品原子间的相互作用力,从而获得样品的表面形貌和粗糙度等信息。
AFM不仅可以观察纳米粒子的形貌,还可以用于研究表面修饰和吸附等现象。
透射电子显微镜是通过电子束穿过样品获取信息的一种仪器。
在纳米材料的表征中,TEM可以用来观察纳米粒子的形貌、尺寸和分布等信息。
TEM还可以用于研究纳米材料的内部结构、界面等现象。
X射线衍射是一种用于研究材料晶体结构和相变的重要手段。
通过测量X射线的衍射角度,可以获得样品的晶体结构、晶格常数和相组成等信息。
在纳米材料的表征中,XRD可以用于研究纳米粒子的物相、结晶度以及分子结构等信息。
扫描隧道显微镜主要用于测量样品的表面形貌和电子云分布。
在纳米材料的测试中,STM可以用于研究纳米结构的电子性质、表面修饰和分子吸附等现象。
STM还可以用于测量纳米材料的隧道电流和电阻等电学性质。
紫外-可见光谱是一种用于研究材料光学性质的重要手段。
在纳米材料的测试中,UV-Vis可以用于测量纳米材料的光学性质,如吸收光谱、反射光谱和透射光谱等。
通过分析这些光谱数据,可以获得纳米材料的光学带隙、粒径分布和成分等信息。
热重分析是一种用于研究材料热稳定性和质量变化的重要技术。
在纳米材料的测试中,TGA可以用于研究纳米材料在不同温度下的热稳定性、分解行为和热反应动力学等。
TGA还可以用于测量纳米材料的比表面积和孔径分布等物理性质。
本文介绍了纳米材料的表征方法和测试技术。
这些技术和方法在纳米材料的研究和开发中发挥着重要的作用,帮助科学家们深入了解纳米材料的性质和性能。
随着纳米科技的不断发展,相信未来会有更多更先进的表征和测试技术涌现,为纳米材料的研究和应用提供更全面的信息。
纳米材料的表征方法与技巧纳米材料是一种具有特殊尺寸和结构的材料,其尺寸在纳米级别(10^-9米)范围内。
由于纳米材料具有独特的物理、化学和力学特性,因此对其进行准确的表征是非常重要的。
本文将介绍几种常用的纳米材料表征方法与技巧,以帮助读者更好地了解和研究纳米材料。
1. 扫描电镜(SEM)扫描电镜(Scanning Electron Microscopy,SEM)是一种常用的表征纳米材料形貌和表面形态的方法。
SEM利用电子束照射样品,然后测量样品放出的次级电子、反射电子或散射电子,通过扫描样品的表面,获得高分辨率的表面形貌信息。
SEM能够对纳米材料进行直接观察和分析,可以得到材料的形貌、尺寸、结构以及表面粗糙度等信息。
2. 透射电子显微镜(TEM)透射电子显微镜(Transmission Electron Microscopy,TEM)是一种用于观察纳米材料内部结构的高分辨率技术。
TEM利用电子束通过样品的方式,然后测量透射电子的强度,从而获得材料的原子级别结构和晶格信息。
TEM对于研究纳米材料的晶体结构、晶粒尺寸和界面特性等方面具有很高的分辨率和灵敏度。
3. X射线衍射(XRD)X射线衍射(X-ray Diffraction,XRD)是一种用于分析纳米材料结晶性质的重要手段。
通过照射样品表面的X射线,通过分析和测量样品对X射线的衍射图样,可以确定样品的晶体结构、晶体相对应的晶格参数以及晶粒尺寸等信息。
XRD对于研究纳米材料的晶体结构和晶体相变等方面具有很高的准确性和可靠性。
4. 傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是一种用于表征纳米材料的化学组成和官能团的方法。
通过测量样品在红外区域的吸收和散射光谱,可以确定样品中存在的化学键和官能团类型,并帮助研究者了解纳米材料的结构和表面性质。
FTIR对于研究纳米材料的化学组成、官能团修饰以及材料与其他物质之间的相互作用具有重要意义。
现代分析方法纳米材料的表征与测试技术分析科学现代方法正是人类知识宝库中最重要、最活跃的领域之一,它不仅是研究的对象,而且又是观察和探索世界,特别是微观世界的重要手段,各行各业都离不开它。
随着纳米材料科学技术的发展,要求改进和发展新分析方法、新分析技术和新概念,提高其灵敏度、准确度和可靠性,从中提取更多信息,提高测试质量、效率和经济性。
纳米科学和技术是在纳米尺度上(0.1-100nm之间)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的多学科的高科技。
纳米科技是未来高科技的基础,而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。
因此,纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。
纳米技术与纳米材料是一个典型的新兴高技术领域。
虽然许多研究人员已经涉足了该领域的研究,但还有很多研究人员以及相关产业的从业人员对纳米材料还不很熟悉,尤其是如何分析和表征纳米材料、如何获得纳米材料的一些特征信息。
为了满足纳米科技工作者的需要,本文对纳米材料的一些常用分析和表征技术,主要从纳米材料的成分分析、形貌分析、粒度分析、结构分析以及表面界面分析等几个方面进行简要阐述。
1. 纳米材料的粒度分析1.1粒度分析的概念大部分固体材料均是由各种形状不同的颗粒构造而成,因此,细微颗粒材料的形状和大小对材料结构和性能具有重要的影响。
尤其对纳米材料,其颗粒大小和形状对材料的性能起着决定性的作用。
因此,对纳米材料的颗粒大小、形状的表征和控制具有重要意义。
一般固体材料颗粒大小可以用颗粒粒度概念来表述。
对于不同原理的粒度分析仪器,所依据的测量原理不同,其颗粒特性也不同,只能进行有效对比,不能进行横向直接对比。
由于粉体材料颗粒形状不可能都是均匀球形的,有各种各样的结构,因此,在大多数情况下粒度分析仪所测的粒径是一种等效意义上的粒径,和实际的颗粒大小分布会有一定的差异,因此只具有相对比较的意义。
纳米材料的性能测试与表征方法详解纳米材料是指尺寸在纳米级别(1-100纳米)的材料,由于其独特的物理、化学以及电子结构性质,被广泛应用于能源、医疗、电子等领域。
然而,由于纳米材料的尺寸特征,传统的测试与表征方法难以适用。
本文将详细介绍纳米材料的性能测试与表征方法。
首先,纳米材料的形貌与尺寸是最基本的性能指标之一。
扫描电子显微镜(SEM)是一种常用的表征纳米材料形貌的方法。
SEM通过扫描样品表面并测量来自样品表面的二次电子信号以成像,具有高空间分辨率和较大深度。
透射电子显微镜(TEM)是另一种常用的表征纳米材料形貌的方法,它通过透射束电子与样品相互作用而形成显微图像。
SEM和TEM可以提供纳米材料的形貌、粒径分布等信息。
其次,纳米材料的结构是决定其性能的关键因素之一。
X射线衍射(XRD)是一种常用的表征纳米材料结构的方法。
XRD可以通过测量材料中的结晶面间距来推断其晶体结构和晶体学参数,进而研究晶体材料的晶体学性质。
对于非晶态纳米材料,通过X射线散射(SAXS)和中子散射(SANS)等方法可以研究其非晶结构和尺寸分布。
此外,红外光谱(IR)还可以用于分析纳米材料的化学成分和结构。
除了形貌和结构,纳米材料的物理和化学性质也需要进行表征。
我们可以利用扫描探针显微镜(SPM)测量纳米材料的表面形变、磁性和电性等特性。
原子力显微镜(AFM)是一种常用的SPM技术,可以通过测量探针和样品之间的相互作用力来获取样品表面的三维形貌。
磁力显微镜(MFM)和电子探针显微镜(EFM)则可以用来研究磁性和电性特性。
此外,纳米材料的热学性质也是重要的性能指标之一。
热重分析(TGA)可以用来测量纳米材料在升温过程中的质量变化,从而了解纳米材料的热稳定性。
热导率测试则可以测量纳米材料的热导率,了解其导热性能。
对于液态纳米材料,差示扫描量热仪(DSC)可以用来测量材料的熔化和结晶温度。
最后,纳米材料的表面化学性质对其在催化、传感以及生物医学应用中起着至关重要的作用。
一、实验目的1. 了解纳米材料的制备方法及原理;2. 掌握纳米材料的表征方法及原理;3. 培养实验操作技能,提高实验数据分析能力。
二、实验原理纳米材料是指尺寸在1-100纳米之间的材料,具有独特的物理、化学性质。
纳米材料的制备方法主要有化学气相沉积(CVD)、溶胶-凝胶法、水热法等。
本实验采用溶胶-凝胶法制备纳米材料,该方法利用前驱体溶液在特定条件下水解、缩聚,形成凝胶,进而干燥、烧结得到纳米材料。
纳米材料的表征方法主要有X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱(Raman)等。
本实验主要采用XRD和SEM对制备的纳米材料进行表征。
三、实验仪器与试剂1. 仪器:溶胶-凝胶反应器、干燥箱、高温炉、X射线衍射仪、扫描电子显微镜等;2. 试剂:正硅酸乙酯(TEOS)、无水乙醇、盐酸、氨水、蒸馏水等。
四、实验步骤1. 制备纳米材料(1)将一定量的TEOS溶解于无水乙醇中,配制成前驱体溶液;(2)向溶液中加入适量的盐酸,调节pH值为4;(3)将溶液倒入反应器中,在80℃下反应24小时,形成凝胶;(4)将凝胶干燥、烧结,得到纳米材料。
2. 纳米材料表征(1)将制备的纳米材料进行XRD分析,确定晶体结构;(2)将纳米材料进行SEM分析,观察其形貌和尺寸。
五、实验结果与分析1. XRD分析结果(1)实验所得纳米材料为立方晶系,晶胞参数为a=b=c=0.543nm;(2)XRD图谱显示,纳米材料具有明显的峰,表明其具有良好的结晶度。
2. SEM分析结果(1)实验所得纳米材料呈球形,直径在50-100纳米之间;(2)SEM图谱显示,纳米材料表面光滑,无明显的缺陷。
六、实验结论1. 本实验采用溶胶-凝胶法制备了纳米材料,成功制备了具有良好结晶度和形貌的纳米材料;2. 通过XRD和SEM对制备的纳米材料进行表征,确定了其晶体结构和形貌;3. 本实验结果为纳米材料的制备和表征提供了有益的参考。
纳米材料的一般表征方法纳米材料的表征可以分为以下几个部分:形貌表征:透射电子显微镜(TEM)、扫描电子显微镜(SEM)、原子力显微镜(AFM);成份分析:X射线光电子能谱(XPS),电感耦合等离子体原子发射光谱法(ICP-AES),原子吸收分光光度计(AAS);结构表征:红外光谱(FT-IR),拉曼光谱(Raman),动态光散射(DLS)、纳米颗粒跟踪分析(NTA)、X射线衍射(XRD);性质表征-光、电、磁、热、力等:紫外-可见分光光度法(UV-Vis),光致发光(PL)。
1、形貌表征:(1)透射电子显微镜(TEM)是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射,可以形成明暗不同的影像,进而可以用来呈现纳米材料形貌的一种表征方式。
TEM还可以配备高分辨率透射电子显微镜(High-Resolution TEM),可以用于观察纳米材料的晶格参数,进而推断其晶型。
而有的纳米材料由于结构的特殊性,需要使用冷冻电镜(Cryo-TEM)来对其形貌结构进行观察表征。
(2)扫描电子显微镜(SEM)利用聚焦的很窄的高能电子束来扫描样品,通过电子束与样品间的相互作用,来激发各种物理信息,对这些信息进行收集、放大、再成像以达到对样品微观形貌表征的目的。
SEM也广泛用于纳米材料形貌的表征分析。
(3)原子力显微镜(AFM)可以在大气和液体环境下对样品进行纳米区域的物理性质进行探测(包括形貌),以高倍率观察样品表面,而不需要进行其他制样处理,可用于几乎所有样品(对表面光洁度有一定要求),就可以得到样品表面的三维形貌图象。
2、成份分析:(1)X射线光电子能谱(XPS)为化学研究提供分子结构和原子价态方面的信息,纳米材料通过XPS分析其原子价态,这些信息往往与其自身性能密切相关。
(2)ICP-AES主要用来测定岩石、矿物、金属等样品中数十种元素的含量。
(3)AAS可以用来测定样品中的元素含量。
纳米材料的表征与测试技术1纳米材料的表征方法纳米材料的表征主要包括: 1化学成分; 2纳米粒子的粒径、形貌、分散状况以及物相和晶体结构; 3纳米粒子的表面分析。
1.1化学成分表征化学成分是决定纳米粒子及其制品性能的最基本因素。
常用的仪器分析法主要是利用各种化学成分的特征谱线,如采用X射线荧光分析和电子探针微区分析法可对纳米材料的整体及微区的化学组成进行测定。
而且还可以与扫描电子显微镜SEM配合,使之既能利用探测从样品上发出的特征X射线来进行元素分析,又可以利用二次电子、背散射电子、吸收电子信号等观察样品的形貌图像。
即可以根据扫描图像边观察边分析成分,把样品的形貌和所对应微区的成分有机的联系起来,进一步揭示图像的本质。
此外,还可以采用原子l发射光谱AES、原子吸收光谱AAS对纳米材料的化学成分进行定性、定量分析;采用X射线光电子能谱法XPS可分析纳米材料的表一面化学组成、原子价态、表面形貌、表面微细结构状态及表面能态分布等。
1.2纳米徽粒的衰面分析(1)扫描探针显徽技术SPM扫描探针显徽技术SPM以扫描隧道电子显微镜STM ,原子力显徽镜AFM、扫描力显微镜SFM 、弹道电子发射显徽镜BEEM、扫描近场光学显微镜SNOM等新型系列扫描探针显徽镜为主要实验技术,利用探针与样品的不同相互作用,在纳米级乃至原子级的水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质,在纳米尺度上研究物质的特性。
(2)谱分析法①紫外一可见光谱由于(金属粒子内部)电子气(等离子体)共振激发或由于带间吸收,它们在紫外——可见光区具有吸收谱带。
不同的元素离子具有其特征吸收谱。
因此,通过紫外一可见光光谱,特别是与Mie理论的计算结果相配合时,能够获得关于粒子颗粒度、结构等方面的许多重要信息。
此技术简单方便,是表征液相金属纳米粒子最常用的技术。
另外,紫外一可见光谱可观察能级结构的变化,通过吸收峰位置变化可以考察能级的变化。