高中二年级上学期期末复习试题
- 格式:doc
- 大小:92.26 KB
- 文档页数:12
高二第一学期期末十套练习题答案本文为高二第一学期期末十套练习题的详细解答,供同学们参考。
以下是各套练习题的答案及解析:套题一:1.答案:B解析:根据题目描述,疏散标志通常会放在人们逃生的路线上,以指引人们找到离开危险区域的出口。
选项A、C和D均不符合题意。
2.答案:C解析:根据第一段最后一句话可知,学校决定每天早晨从家里接送学生上下车的决定,与交通拥堵问题相关。
选项A、B和D都没有提及交通拥堵。
3.答案:A解析:根据最后一段内容可知,关于为什么他们会使用安全帽这个问题,作者在信的开头部分就已经解释了。
其他选项中没有提及这个问题。
套题二:1.答案:B解析:根据第一段中的"And yet, this tragic event came as no surprise to me" 可知,发生这起事件并不令作者感到意外。
故选B。
2.答案:D解析:根据倒数第二段的最后一句话可知,作者认为不太可能再会发生像妈妈车祸那样的意外事件了。
故选D。
3.答案:A解析:根据文章内容可知,作者妈妈的车祸是由于她对驾驶者的不当行为而发生的。
选项B、C和D都不符合题意。
套题三:1.答案:C解析:根据第一段内容可知,宇航员在太空行走时必须佩戴太空服以便呼吸、保暖和保护自己。
选项A、B和D都没有提到这个作用。
2.答案:B解析:根据第一段最后一句话可知,太空服内有供宇航员呼吸的氧气。
选项A、C和D都没有提及这一点。
3.答案:D解析:根据第二段的最后一句话可知,太空服外层的材料可以抵挡太空的辐射和温度变化。
选项A、B和C都没有提到这一点。
套题四:1.答案:A解析:根据第二段最后一句话的描述,可以推断出Karl可能是因为自身唱功和表演吸引了评委的注意。
选项B、C和D都没有提及这一点。
2.答案:C解析:根据第三段中的"Karl's voice resonated with the audience andhis stage presence was incredible" 可知,Karl的歌声引起了观众的共鸣,并展现了令人难以置信的舞台魅力。
长春市高二年级上学期语文期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共3题;共6分)1. (2分)下列各句中,划线的成语使用恰当的一项是()A . 21世纪是信息时代,一个人如果整日充耳不闻,不去了解大千世界的变化,是不可能有大作为的。
B . 针对某些编辑师心自用、乱改典籍这一不良现象,北京大学的吴小如先生进行了毫不留情地批评。
C . 当社会各阶层人士都在为受灾的同胞慷慨解囊时,这位据说身家过亿的富豪却细大不捐,引起了大家的议论。
D . 在我们都为“中国梦”而心劳日拙的时代,不妨赋予“生无所息”这句格言以崭新的含义,写在引领我们奋进的旗帜上。
2. (2分)下列语句没有语病的一句是()A . 三月的昆明是一年中最美好的季节,每到这个时节就会有大批的中外游客慕名前来。
B . 即使物质生活再丰富,生存条件再优越,但精神生活匮乏,人际关系冷漠,我们依然不能说这是一个和谐社会。
C . 中考复习中,不少学生存在着复习重点不突出,时间安排不合理,有的甚至记住了前面的知识,又忘记了后面的知识。
D . 最近全国各地加大了对醉酒驾车的惩处力度,为的是避免那些骇人听闻的交通事故不再发生。
3. (2分) (2017高二上·寻乌期末) 下列各句中,表达得体的一句是()A . 张老师,我诚挚邀请您莅临我校学术交流研讨会,请您届时为会议给予认真的指导。
B . 老李对父亲刚去世三天就来上班的老张说:“家父刚过世,你还是在家里多休息几天吧。
”C . 小兰在刚开张的小店里买到了她心仪已久的音乐盒,兴奋地对店员说:“下次我还会光临贵店,多多惠顾贵店的。
”D . 小王的专业是珠宝设计,在原来的单位无法发挥所长,只好辞职另谋高就了。
二、现代文阅读 (共3题;共31分)4. (6分) (2018高一上·东辽期中) 阅读下面的文字,完成小题。
孝是人生自然生发的一种亲情。
2022-2023学年北京市中国人民大学附属中学高二上学期期末复习(二)数学试题一、单选题1.设复数,是z 的共轭复数,则( )3i1i z +=-z z z ⋅=A .-3B .-1C .3D .5【答案】D【分析】先利用复数的除法化简,进而得到共轭复数,再利用复数的乘法运算求解.【详解】解:∵,()()()()3i 1i 3i 12i 1i 1i 1i z +++===++-+∴,.12i z =-()()2212i 12i 125z z ⋅=+-=+=故选:D .2.已知向量,,且,则实数的值为( ).(),2,1a m =()1,0,4b =-a b ⊥m A .4B .C .2D .4-2-【答案】A【分析】依题意可得,根据数量积的坐标表示得到方程,解得即可.0a b ⋅=【详解】解:因为,,且,(),2,1a m =()1,0,4b =-a b ⊥ 所以,解得.40a b m ⋅=-+=4m =故选:A3.抛物线的准线方程是( )22y x =A .B .C .D .12x =12x =-18y =18y =-【答案】D【分析】先将抛物线方程化为标准形式,再根据抛物线的性质求出其准线方程.【详解】抛物线的方程可化为x 2y12=故128p =其准线方程为y 18=-故选:D4.已知双曲线C :有相等的焦距,则22221x y a b -=2215x y +=C 的方程为( )A .B .2213x y -=2213y x -=C .D .22193x y -=22139x y -=【答案】B【分析】根据椭圆的焦距可得双曲线C :的焦距,根据双曲线C :2215x y +=22221x y a b -=2c求得,即可得出答案.22221x y a b -=ba =222c ab =+22,a b【详解】解:因为双曲线C :22221x y a b -=所以,ba =b =椭圆的焦距为,2215x y +=4所以双曲线C :的焦距,即,22221x y a b -=24c =2c =又因,解得,所以,2222234c a b a a =+=+=21a =23b =所以C 的方程为.2213y x -=故选:B.5.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽( )米.A .B .C .D .【答案】B【分析】通过建立直角坐标系,设出抛物线方程,将A 点代入抛物线方程求得m ,得到抛物线方程,再把B (x 0,﹣3)代入抛物线方程求得x 0进而得到答案.【详解】如图建立直角坐标系,设抛物线方程为x 2=my ,将A (2,﹣2)代入x 2=my ,得m =﹣2∴x 2=﹣2y ,B (x 0,﹣3)代入方程得x 0,=故水面宽为.故选:B .6.如图,已知正方形所在平面与正方形所在平面构成的二面角,则异面直线ABCD ABEF 60︒与所成角的余弦值为( ).AC BFA .B .CD 1412【答案】A【分析】根据题目条件可知,即为平面与平面构成二面角的平面角,将异面直EBC ∠ABCD ABEF 线与所成角的余弦值转化成直线方向向量夹角余弦值的绝对值即可.AC BF 【详解】根据题意可知,即为平面与平面构成二面角的平面角,所以EBC ∠ABCD ABEF ,60EBC ∠= 设正方形边长为1,异面直线与所成的角为,AC BF θ,,AC AB BC =+ BF BE EF =+EF BA ==- 所以()))(()(BF BE E AC AB BC AB BC F BE AB +==++- 即210(1)11cos 6002BF BE B AC AB AB BC BC E AB =-+-=+-+⨯⨯-=-所以;4c os 1,A A BF BF B C AC C F==-= 即,1cos cos ,4F AC B θ==所以,异面直线与所成角的余弦值为.AC BF 14故选:A.7.对于直线:(),现有下列说法:l 10ax ay a +-=0a ≠①无论如何变化,直线l 的倾斜角大小不变;a ②无论如何变化,直线l 一定不经过第三象限;a ③无论如何变化,直线l 必经过第一、二、三象限;a ④当取不同数值时,可得到一组平行直线.a 其中正确的个数是( )A .B .C .D .1234【答案】C【分析】将直线化为斜截式方程,得出直线的斜率与倾斜角,可判断①正确,④正确;由直线的纵截距为正,可判断②正确,③错误.【详解】直线:(),可化简为:,即,则直线的斜率l 10ax ay a +-=0a ≠210x y a +-=21y x a =-+为,倾斜角为,故①正确;直线在轴上的截距为,可得直线经过一二四象限,故1-135︒y 210a >②正确,③错误;当取不同数值时,可得到一组斜率为的平行直线,故④正确;a 1-故选:C8.已知是椭圆的两个焦点,若椭圆上存在点满足,则的12F F ,22:18x y C m +=C P 1290F PF ∠=︒m 取值范围是( )A .B .(][)0,216,+∞ (][)0,416,+∞ C .D .(][)0,28,+∞ (][)0,48,+∞ 【答案】B【分析】利用圆的直径所对圆周角为,将椭圆上存在点满足,转化为以90︒C P 1290F PF ∠=︒为直径的圆与椭圆有交点,即可求解.12F F 【详解】解:若椭圆上存在点满足,只需满足以为直径的圆与椭圆有交点,C P 1290F PF ∠=︒12F F即,即,122F F b c ≤=22b c ≤当时,椭圆的焦点在轴上,此时,则,解得:,8m <x 2228,,8a b m c m ===-8m m ≤-4m ≤当时,椭圆的焦点在轴上,此时,则,解得:.8m >y 222,8,8a m b c m ===-88m ≤-16m ≥综上,.(][)0,416,m ∈+∞ 故选:B【点睛】本题考查椭圆的基本性质,属于较易题。
期 末 数 学 考 试 高 二 试 卷一、选择题:本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1、已知a>0,-1<b<0,则a ,ab ,ab 2的大小关系是 A .a> ab 2>ab B .ab>ab 2>a C .ab 2>a>ab D .ab 2>ab>a2、已知两定点F 1(-1,0) 、F 2(1,0), 且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹是 A. 椭圆 B. 双曲线 C. 抛物线 D. 线段3、若双曲线的渐近线方程为043=±y x ,则双曲线的离心率为A.45 B.35 C. 45或35 D. 54或534、若方程151022=-+-k y k x 表示焦点在y 上的椭圆,则k 的取值范围是 A .(5,10) B.(215,10) C.)215,5( D.)10,215()215,5(5、已知三角形ABC 的顶点A (2,4),B (-1,2),C (1,0),点P (x ,y )在三角形内部及其边界上运动,则Z=x-y 的最大值和最小值分别是 A .3,1 B .1,-3 C .-1,-3 D .3,-1 6、焦距是10,虚轴长是8,过点(32, 4)的双曲线的标准方程是A 、116922=-y x B 、116922=-x y C 、1643622=-y x D 、1643622=-x y 7.已知函数x x x f 2)(2-=,则满足条件⎩⎨⎧≥-≤+0)()(0)()(y f x f y f x f 的点),(y x 所形成区域的面积为( ▲ )(A )π4(B )π2(C )23π(D )π8、已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为A 、11{|}32x x -<< B 、11{|}32x x x <->或C 、{|32}x x -<< D 、{|32}x x x <->或 9、21,B B 是椭圆短轴的两个端点,过左焦点1F 作x 轴的垂线交椭圆与点P ,O 是坐标原点,若21B F 是1OF 和21B B 的等比中项,则21OB PF 的值是A .2B .22 C .23 D .3210.已知直线0108=-++m y m x 和直线042=-+m y x 平行,则=m( ▲ )(A )2(B )2-(C )2±(D )011、已知曲线122=+by a x 和直线ax+by+1=0(a ,b 为非零实数),在同一坐标系中,它们的图形可能是12.对任意R m ∈,曲线0322=---+-m m y m x y x 都经过定点( ▲ )(A ))1,2( (B ))2,1((C ))2,3((D ))3,2(--13、以双曲线191622=-y x 的右焦点为圆心,且与双曲线的渐近线相切的圆的方程为 A.25)7(22=+-y x B. 9)5(22=+-y x C. 3)5(22=+-y x D. 4)7(22=-+y x14、已知点(x ,y )在直线x+2y=3上移动,则2x +4y 的最小值是( ) A 、8 B 、6 C 、 23 D 、2415、某电脑用户计划使用不超过500元的资金购买单价分别为60元与70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )第11题图A 、8种B 、7种C 、6种D 、5种二、填空题:本大题共5小题,每小题4分,共20分. 请将答案填写在题中的横线上. 16.圆122=+y x 关于直线x -y -2 = 0对称的圆的方程是 ▲ .17、若对于一切正实数x 不等式xx 224+>a 恒成立,则实数a 的取值范围是18、椭圆13610022=+y x 上一点P 到右焦点的距离是8,则P 到左准线的距离是 ; 19、椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为直角时,点P 的横坐标值是 ;20、已知抛物线型拱桥的顶点距水面2米,测量水面宽度为8米.当水面上升1米后,水面宽度为 米三. 解答题 :本大题有6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. 21.(本题10分)已知圆C 经过两点)4,2(-P ,)1,3(-Q ,且在x 轴上截得的弦长为6,求圆C 的方程.22、(本小题满分12分)若点P 到定点F (4,0)的距离比它到直线x+5=0的距离小1 (1)求点P 的轨迹方程;(2)已知点A (2,4),为使PF PA +取得最小值,求点P 的坐标及PF PA +的最小值。
高二第一学期期末十套练习题考试季节再次来临,高二学生们又到了面临期末十套练习题的时候了。
这套题目是为了帮助学生们复习和巩固上学期所学知识而设计的,涵盖了各个学科的内容。
下面我们来一起看看这十套练习题的内容和要求。
第一套练习题:数学本套题共有20道数学题目,包括代数、几何、概率等多个知识点。
每道题目都要求学生用清晰的步骤和正确的思路解答,并给出解法的合理性和准确性的解释。
第二套练习题:物理本套题共有15道物理题目,涉及到力学、光学、磁学等多个知识领域。
要求学生运用所学理论和常识,解答每道题目,并给出合理的物理解释和计算过程。
第三套练习题:化学本套题共有15道化学题目,包括化学反应、化学式、化学方程式等多个知识点。
学生需要通过合理的推理和实验常识,解答每道题目,并给出化学解释和实验依据。
第四套练习题:英语本套题共有20道英语题目,涉及到阅读理解、语法填空、写作等多个部分。
要求学生通过阅读、分析和表达,准确理解每道题目的意思,并给出清晰的解答和写作风格。
第五套练习题:语文本套题共有15道语文题目,包括诗词鉴赏、文言文阅读、现代文阅读等多个知识点。
学生需要通过对古代文化和现代文学的理解,准确解答每道题目,并给出合理的分析和评价。
第六套练习题:历史本套题共有20道历史题目,涉及到中国古代历史、世界近代史等多个内容。
学生需要通过对历史事件和历史人物的理解,解答每道题目,并给出历史背景和事件影响的解释。
第七套练习题:地理本套题共有15道地理题目,包括自然地理、人文地理等多个知识点。
要求学生通过对地理现象和地理问题的理解,解答每道题目,并给出地理分析和解决方案。
第八套练习题:政治本套题共有15道政治题目,涉及到国家制度、法律法规等多个内容。
学生需要通过对政治理论和实践的理解,解答每道题目,并给出政治原则和权威解释。
第九套练习题:生物本套题共有20道生物题目,包括生物细胞、动植物分类、遗传等多个知识点。
要求学生通过对生物现象和实验结果的理解,解答每道题目,并给出生物原理和实验依据。
2022-2023学年山东省济南市高二上学期期末数学试题一、单选题1.已知空间向量,且,则的值为( )()()1,,2,2,1,4a m m b =--=-a b ⊥m A .B .C .6D .103-6-103【答案】B【分析】根据向量垂直得,即可求出的值.2(1)80m m --+-=m 【详解】因为空间向量,且()()1,,2,2,1,4a m m b =--=-a b⊥ .2(1)806m m m ∴--+-=⇒=-故选:B.2.已知等比数列各项均为正数,公比,且满足,则( ){}n a 2q =2616a a =3a =A .8B .4C .2D .1【答案】C【分析】根据等比数列的性质可得,根据各项均为正数,得到,则,进而2416a =44a =432a a q ==求解.【详解】因为,由等比数列的性质可得:,2616a a =242616a a a ==又因为数列各项均为正数,所以,因为公比,则,{}n a 44a =2q =432a a q ==故选:.C3的倾斜角是10+=A .B .C .D .56π6π3π23π【答案】A【详解】试题分析:直线的斜率k ==56π【解析】直线的斜率与倾斜角的关系4.抛物线的准线方程为( )24y x =A .B .1y =-=1x -C .D .116x =-116y =-【答案】D【分析】将抛物线转化成标准式,由定义求出准线.【详解】由得,故抛物线的准线方程为.24y x =214x y =24y x =116y =-故选:D5.如图,在四面体中,,,,,为线段的中点,则OABC OA a = OB b = OC c = 2CQ QB =P OA 等于( )PQA .B .C .D .112233a b c ++ 112233a b c --112233a b c-++121233a b c-++【答案】D【分析】根据空间向量的线性运算求解.【详解】由已知2132PQ OC CQ OP c CB OA =+-=+- 2121()()3232c OB OC a c b c a=+--=+--,121233a b c=-++ 故选:D .6.若圆上恰有两个点到直线的距离为1,则半径的取值范围是222(3)(5)x y r -++=4320x y --=r ( )A .B .C .D .()6,+∞[)6,+∞()4,6[]4,6【答案】C【分析】作图,根据几何意义分析求解.【详解】如图,与直线 平行的距离为1的直线有2条: ,1l23,l l 圆C :的圆心是,依题意及图:圆 与 必有2个交点,与 相离,()()22235x y r -++=()3,5-C 3l 2l圆心C 到 的距离 , ;1l 5d 46r ∴<<故选:C.7.已知双曲线的左、右焦点分别为,点在双曲线的右支上,且22221(0,0)x y a b a b -=>>12,F F P ,则双曲线离心率的取值范围是( )125PF PF =A .B .C .D .31,2⎛⎤⎥⎝⎦3,2⎡⎫+∞⎪⎢⎣⎭(]1,2[)2,+∞【答案】A【分析】由条件结合双曲线的定义求,根据,即可求出结果.12,PF PF 1212+≥PF PF F F 【详解】因为点在双曲线的右支上,由双曲线的定义可得,P 122PF PF a-=又,所以,即,则,125PF PF =242PF a=22aPF =152a PF =因为双曲线中,,1212+≥PF PF F F 即,则,即,32a c ≥32c a ≤32e ≤又双曲线的离心率大于,所以.1312e <≤故选:A.8.如图甲是第七届国际数学家大会(简称ICME -7)的会徽图案,会徽的主题图案是由图乙的一连串直角三角形演化而成的.已知为直角顶点,设这些直角三1122334455667781232,,,OA A A A A A A A A A A A A A A A A A =========角形的周长从小到大组成的数列为,令为数列的前项和,则( ){}n a 2,2n nn b S a =-{}n b n 120S=A .8B .9C .10D .11【答案】C【分析】由题意可得的边长,进而可得周长及,进而可得,可得解.n OA n a n b n S 【详解】由,1122334455667782OA A A A A A A A A A A A A A A ========⋅⋅⋅=可得,,2OA =3OA =⋅⋅⋅n OA =所以,112n n n n n a OA OA A A ++=++=所以,22n n b a===-所以前项和,n 1211n n S b b b =+++== 所以,120110S ==故选:C.二、多选题9.已知椭圆,则的值可能为( )221mx y +=m A B .C .5D .2515【答案】BC【分析】先将椭圆方程化为标准方程,然后分和两种情况结合离心率的定义列方程1m >01m <<求解即可.【详解】可化为.221mx y +=2211x y m +=当时,,椭圆;1m >101m <<221mx y +==5m =当时,,椭圆.01m <<11m >221mx y +==15m =故选:BC.10.已知数列的前项和为,则下列说法正确的是( ){}n a n n S A .若,则211n S n n =-212n a n =-B .若,则当时,是等比数列(),0n n S p q r p q =⋅+≠r p =-{}n a C .若数列为等差数列,,,则{}n a 10a >69S S =78S S >D .若数列为等差数列,,,则时,最大{}n a 150S >160S <8n =n S 【答案】AD【分析】利用题设条件及等差等比数列性质以及前项和公式,一一验证即可.n 【详解】对于选项A :, ,211n S n n =- ()()()221111113122n S n n n n n -∴=---=-+≥,又,()12122n n n S S a n n -∴-==-≥1111110S a ==-=- 则时也符合,故若,则,故选项A 正确;1n =212n a n =-211n S n n =-212n a n =-对于选项B :当时,,此时,,1r p q =-=01nn S p p ⋅-==0n a =数列不是等比数列,故选项B 错误;{}n a 对于选项C :数列为等差数列,,,{}n a 10a >69S S =,,,,11615936a d a d ∴+=+170a d ∴=->8170a a d ∴=+=78S S ∴=故选项C 错误;对于选项D :数列为等差数列,,,{}n a 150S >160S <,即,()151158151502S a a a ∴=+=>80a >,即,()()1611689880S a a a a =+=+<890a a +<,时,最大,故选项D 正确;90a ∴<8n ∴=n S 综上所述:选项AD 正确,故选:AD.11.数学著作《圆锥曲线论》中给出了圆的一种定义:平面内,到两个定点距离之比是常数,A B的点的轨迹是圆.若两定点,动点(0,1)λλλ>≠M ()()2,0,2,0A B -M 说法正确的是( )A .点的轨迹围成区域的面积为M 32πB .面积的最大值为ABMC .点到直线距离的最大值为M 40x y -+=D .若圆上存在满足条件的点,则半径的取值范围为222:(1)(1)C x y r +++=M r 【答案】ACD【分析】设点的轨迹为以点为圆心,(),M x y M ()6,0N圆,可判断A ;得可判断B ;求出点到直线y ⎡∈-⎣(12ABM S AB y =⋅∈ ()6,0N 的距离可判断直线与圆相离,求出点到直线距离的最大值可判断C ;由40x y -+=M 40x y -+=D 选项可知圆与圆可判断D.C N r CN r-≤≤【详解】由题意,设点(),M x y=化简可得,()22632x y -+=所以点的轨迹为以点为圆心,M ()6,0N 所以点的轨迹围成的区域面积为,A 选项正确;M 32π又点满足,(),M x y y ⎡∈-⎣所以,面积的最大值为B 选项错误;(12ABM S AB y =⋅∈ ABM点到直线的距离,()6,0N 40x y -+=d >所以直线与圆相离,所以点到直线距离的最大值为C 选项正确;M 40x y -+==由D 选项可知圆与圆,C N r CN r-≤≤且==CN,r r-≤≤D 选项正确;r ≤≤故选:ACD.12.在棱长为1的正方体中,为侧面的中心,是棱的中点,若点1111ABCD A B C D -E 11BCC B F 11C D 为线段上的动点,则下列说法正确的是( )P 1BDA .的长最小值为PE 12B .的最小值为PE PF ⋅ 148-C .若,则平面截正方体所得截面的面积为12BP PD =PAC 98D .若正方体绕旋转角度后与其自身重合,则的值可以是1BD θθ23π【答案】BCD【分析】建立如图所示的空间直角坐标系,设,,得1(,,)BP BD λλλλ==--(01)λ≤≤,然后用空间向量法求得,判断A ,求得数量积计算最小值判断B ,由(1,1,)P λλλ--PE PE PF ⋅线面平行得线线平行,确定截面的形状、位置,从而可计算出截面面积,判断C ,结合正方体的对称性,利用是正方体的外接球直径判断D .1BD 【详解】建立如图所示的空间直角坐标系,正方体棱长为1,则,,,11(,1,22E (1,1,0)B 1(0,0,1)D ,1(0,,1)2F ,设,,所以,1(1,1,1)BD =--1(,,)BP BD λλλλ==--(01)λ≤≤(1,1,)P λλλ--,11(,,)22PE λλλ=--时,A 错;=13λ=min PE = ,1(1,,1)2PF λλλ=---,111()(1)()()(1)222PE PF λλλλλλ⋅=--+-+-- 2713()1248λ=--所以时,,B 正确;712λ=min 1()48PE PF ⋅=-,则是上靠近的三等分点,,12BP PD =P 1BD 1D 112(,,333P 取上靠近的三等分点,则,AC C G 12(,,0)33G ,显然与平面的法向量垂直,因此平面,12(0,,33PG =- PG 11CDD C (1,0,0)//PG 11CDD C 所以截面与平面的交线与平行,作交于点,PAC 11CDD C PG //CM PG 11C D M 设,则,由得,解得,(0,,1)M k (0,1,1)CM k =- //CM PG 21(1)33k --=12k=则与重合,因此取中点,易得,截面为,它是等腰梯形,M F11A D N //NF AC ACFN ,梯形的高为AC =NF=AN CF ==h ==截面面积为,C 正确;1928S ==,,,,,(1,0,0)A (0,1,0)C 1(1,1,1)B (1,1,0)AC =-1(1,1,1)BD =-- ,,同理,11100AC BD ⋅=-+=1AC BD ⊥ 11AB BD ⊥ 所以是平面的一个法向量,即平面,设垂足为,则1BD 1ACB 1BD ⊥1ACB 1O ,是正方体的外接球的直径,因此正方体绕旋转角度后111123AO C CO B B OA π∠=∠=∠=1BD 1BD θ与其自身重合,至少旋转.D 正确.23π故选:BCD .三、填空题13.已知直线:,,当时,的值为__________.1l60x my ++=2:l ()1220m x y m -++=12l l ∥m 【答案】或1-2【分析】由一般式方程下两直线平行公式进行运算并检验即可.【详解】∵:,,1l60x my ++=2:l ()1220m x y m -++=∴当时,有,解得或,12l l ∥()1210m m ⨯--⨯=1m =-2m =当时,:,,∴满足题意;1m =-1l60x y -+=2:l 10x y -+=12l l ∥当时,:,,∴满足题意.2m =1l260x y ++=2:l 240x y ++=12l l ∥∴当时,的值为或.12l l ∥m 1-2故答案为:或.1-214.已知等差数列的公差为,且是和的等比中项,则前项的和为__________.{}n a 13a 2a 6a {}n a 20【答案】180【分析】利用等差数列的基本量,结合已知条件,即可求得等差数列的首项和公差,再求其前项的和即可.20【详解】由等差数列的公差为,{}n a 1且是和的等比中项,故可得3a 2a 6a ,解得.()()()2111152a a a ++=+112a =-故数列的前项的和{}n a 20.201201920118022S ⨯⎛⎫=⨯-+⨯= ⎪⎝⎭故答案为:.18015.如图,把正方形纸片沿对角线折成直二面角,则折纸后异面直线,所成的角ABCD AC AB CD 为___________.【答案】##60°3π【分析】过点E 作CE ∥AB ,且使得CE =AB ,则四边形ABEC 是平行四边形,进而(或其补DEC ∠角)是所求角,算出答案即可.【详解】过点E 作CE ∥AB ,且使得CE =AB ,则四边形ABEC 是平行四边形,设所求角为,于是.02πθθ⎛⎫<≤⎪⎝⎭cos |cos |DCE θ=∠设原正方形ABCD 边长为2,取AC 的中点O ,连接DO ,BO ,则BO DO ==,而平面平面,且交于AC ,所以平面ABEC ,则.,BO AC DO AC ⊥⊥ACD ⊥ABC DO ⊥DO OE ⊥易得,,而则BE AC ==//BE AC ,BO AC ⊥.BO BE ⊥于是,.OE ==DE ==在中,,取DE 的中点F ,则,所以DCE △2DC CE ==CF DE ⊥cos FE DEC CE ∠==,2,63DEC DCE ππ∠=∠=于是.3πθ=故答案为:.3π16.已知F 为抛物线C :的焦点,过点F 的直线l 与抛物线C 交于不同的两点A ,B ,抛物24y x =线在点A ,B 处的切线分别为和,若和交于点P ,则的最小值为______.1l 2l 1l 2l 2164PFAB+【答案】4【分析】设直线:,利用韦达定理求得,设,利用判别式l 1x my =+AB()()111:0l y y k x x k -=-≠求得直线的方程,进而得到的坐标,从而可得,再利用基本不等P 2221644164444PFm AB m ++=++式即得.【详解】由题可知,设直线:,(1,0)F l 1x my =+直线:与联立消,得,l 1x my =+24y x =x 2440y my --=设,,则,,()11,A x y ()22,B x y 124y y m +=124y y =-∴,()212122444AB x x m y y m =++=++=+设,()()111:0l y y k x x k -=-≠由,可得,()1124y y k x x y x ⎧-=-⎨=⎩2114440y y y x k k -+-=∴,又,21144440y x k k ⎛⎫⎛⎫∆=---= ⎪ ⎪⎝⎭⎝⎭2114y x =∴,12k y =∴,即,()11112:l y y x x y -=-1122y y x x =+同理可得,2:l 2222=+y y x x 所以可得,即,()1212111,242P P x y y y y y m ==-=+=()1,2P m -,∴,当且仅当,即取等号.2222216441641444441PF m m AB m m ++=+=++≥++22411m m +=+1m =±故答案为:4.四、解答题17.已知圆的圆心在直线上,且与直线相切于点.C 10x y --=23100x y +-=()2,2P (1)求圆的方程;C (2)若过点的直线被圆截得的弦的长为4,求直线的方程.()3,2Q --l C AB l 【答案】(1)()22113x y ++=(2)或3x =-43180x y ++=【分析】(1)根据圆的圆心在直线上,设圆心为,再根据圆与直线C 10x y --=(),1a a -相切于点求解;23100x y +-=()2,2P (2)分直线的斜率不存在和直线的斜率存在两种情况,利用弦长公式求解.【详解】(1)解:因为圆的圆心在直线上,C 10x y --=所以设圆心为,(),1a a -又因为圆与直线相切于点,23100x y +-=()2,2P 所以d 解得,0a =所以圆心为,半径为,()0,1-r =所以圆的方程;C ()22113x y ++=(2)当直线的斜率不存在时:直线方程为,3x =-圆心到直线的距离为,3d =所以弦长为,成立;4AB ==当直线的斜率存在时,设直线方程为,即,2(3)y k x +=+320kx y k -+-=圆心到直线的距离为d所以弦长为,4AB ===解得,43k =-所以直线方程为:,43180x y ++=所以直线的方程为 或.l 3x =-43180x y ++=18.在数列中,,当时,其前n 项和满足.{}n a 11a =2n ≥n S 212n n n S a S ⎛⎫=- ⎪⎝⎭(1)求证:是等差数列;1n S⎧⎫⎨⎬⎩⎭(2)设,求的前n 项和.21nn S b n =+{}n b n T 【答案】(1)证明见解析;(2)21n n +【分析】(1)利用可将已知等式整理为,结合可证得结论;1n n n a S S -=-1112n n S S --=11111S a ==(2)由(1)得到,进而求得,再采用裂项相消法求得结果.n S n b 【详解】(1)证明:∵当时,,2n ≥1nn n a S S -=-212n n n S a S ⎛⎫=- ⎪⎝⎭,即:()22111111222n n n n n n n n n S S S S S S S S S ---⎛⎫∴=--=--+ ⎪⎝⎭112n nn n S S S S ---=,又111112112n n n n n n n n n n S S S S S S S S S S ------∴-===11111S a ==数列是以为首项,为公差的等差数列∴1n S ⎧⎫⎨⎬⎩⎭12(2)解:由(1)知:()112121n n n S =+-=-121n S n ∴=-∴()()1111212122121n b n n n n ⎛⎫==⨯-⎪-+-+⎝⎭11111111112335212122121n n T n n n n ⎛⎫⎛⎫∴=⨯-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭19.已知椭圆的中心是坐标原点,它的短轴长,焦点,点,且C O (),0F c 10,0A c c⎛⎫- ⎪⎝⎭2.OF FA = (1)求椭圆的标准方程;C (2)是否存在过点的直线与椭圆相交于两点,且以线段为直径的圆过坐标原点,若A C ,P Q PQ O 存在,求出直线的方程;不存在,说明理由.PQ 【答案】(1);(2)答案见解析.22162x y +=【详解】【试题分析】(1)利用列方程,可求得,由题意可知,由此求得,且出去2OF FA =2c =b =a 椭圆的标准方程.(2) 设直线的方程为,联立直线的方程和椭圆的方程,写出韦达定理,PQ ()3y k x =-利用圆的直径所对的圆周角为直角,转化为两个向量的数量积为零建立方程,由此求得的值.k 【试题解析】(1)由题意知,()10,0,,0b F c A c c ⎛⎫=- ⎪⎝⎭()10,0,2,0OF c FA c c ⎛⎫==- ⎪⎝⎭由,得,解得:2OF FA = 204c c c =- 2.c =椭圆的方程为2226,a b c ∴=+=∴22162x y+==(2),设直线的方程为()3,0A PQ ()3y k x =-联立,得()223162y k x x y ⎧=-⎪⎨+=⎪⎩()222213182760k x k x k +-+-=设,则()()1122,,,P x y Q x y 2212122218276,1313k k x x x x k k -+==++()22222121212222276543399131313k k k y y k x x x x k k k k ⎡⎤-⎡⎤=-++=-+=⎢⎥⎣⎦+++⎣⎦由已知得,得,即OP OQ ⊥12120x x y y +=22222227633060131313k k k k k k--+==+++解得:k=符合直线的方程为.0,∆>∴PQ )3y x =-20.如图所示,在梯形中,,,四边形为矩形,且平面ABCD //AB CD 120BCD ∠=︒ACFE CF ⊥,.ABCD 112AD CD BC CF AB =====(1)求证:;EF BC ⊥(2)点在线段(不含端点)上运动,设直线与平面所成角为,当M BF BE MAC θsin θ=定此时点的位置.M 【答案】(1)证明见解析;(2)点为线段的中点.M BF 【分析】(1)由,求得,在中,用余弦定理求得,再//AB CD 120BCD ∠=︒60ABC ∠=︒ABC AC 使用勾股定理证得,即可证出;AC BC ⊥EF BC ⊥(2)建立空间直角坐标系,设,根据直线与平面BM BF λ=BE MAC 出实数的值即可.λ【详解】(1)在梯形中,∵,,∴,ABCD //AB CD 120BCD ∠=︒60ABC ∠=︒在中,∵,,ABC 2AB =1BC =∴由余弦定理,2222212cos 2122132AC AB BC AB BC ABC =+-⋅⋅⋅∠=+-⨯⨯⨯=∴,∴,222AB AC BC =+AC BC ⊥∵四边形为矩形,∴,ACFE //AC FE ∴.EF BC ⊥(2)由第(1)问,,又∵平面,AC BC ⊥CF ⊥ABCD ∴以为原点,,,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,C CA CB CF x y z 则由已知,,,,,()0,0,0C )A()0,1,0B )E ()0,0,1F ∵点在线段(不含端点)上运动,M BF ∴设,,()()0,1,10,,BM BF λλλλ==-=-()0,1λ∈∴,()()()0,1,00,,0,1,CM CB BM λλλλ=+=+-=-又∵,)CA =∴设平面的一个法向量,则MAC (),,n x y z =,令,则,,00n CM n CA ⎧⋅=⎪⎨⋅=⎪⎩ ⇒()100y z λλ⎧-+=⎪=y λ=0x =1z λ=-∴,()0,,1n λλ=-又∵,直线与平面所成角为,当)1,1BE =- BE MAC θsin θ=∴,sin cos ,n BE n BE n BE θ⋅====解得,12λ=∴,即点为线段的中点.12BM BF= M BF 21.已知等差数列的首项为2,公差为8.在中每相邻两项之间插入三个数,使它们与原数{}n A {}n A 列的项一起构成一个新的等差数列.{}n a (1)求数列的通项公式;{}n a(2)若,,,,是从中抽取的若干项按原来的顺序排列组成的一个等比数列,1k a 2k a ⋅⋅⋅nk a ⋅⋅⋅{}n a ,,令,求数列的前项和.11k =23k =n n b nk ={}n b n n S 【答案】(1);2,()n a n n N +=∈(2)11()3424n n n S =+-⋅【分析】(1)由题意在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的{}n A 等差数列,可知的公差,进而可求出其通项公式;{}n a {}n a 824d ==(2)根据题意可得,进而得到,再代入中得,利用错位相减即可求1=23n n k a -⨯1=3n n k -n b 1=3n n b n -⋅出前项和.n n S 【详解】(1)由于等差数列的公差为8,在中每相邻两项之间插入三个数,使它们与原数{}n A {}n A 列的项一起构成一个新的等差数列,则的公差,的首项和 首项相同为{}n a {}n a 824d =={}n a {}n A 2,则数列的通项公式为.{}n a 22(1)2,()n a n n n N +=+-=∈(2)由于,是等比数列的前两项,且,,则,则等比数列的公比为1k a 2k a 11k =23k =132,6a a ==3, 则,即,.1=23n n k a -⨯112=23=3n n n n k k --⨯⨯⇒1=3n n n b nk n -=⋅①.01221132333(1)33n n n S n n --∴=⨯+⨯+⨯++-⨯+⨯ ②.12313132333(1)33n n n S n n -=⨯+⨯+⨯++-⨯+⨯ ①减去②得.11213(13)1121333313()31322n n nn nn S n n n --⨯--=++++-⋅=+-⋅=-+-⋅- .11()3424nn n S ∴=+-⋅22.已知圆,点,点是圆上任意一点,线段的垂直平分线交直()22:24F x y -+=()2,0E -G F EG 线于点,点的轨迹记为曲线.FG T T C (1)求曲线的方程;C (2)已知曲线上一点,动圆,且点在圆外,过点C ()()002,0M y y >()()222:20N x y r r -+=>M N 作圆的两条切线分别交曲线于点,.M N C A B (i )求证:直线的斜率为定值;AB(ii )若直线与交于点,且时,求直线的方程.AB 2x =Q 2BQM AQMS S=△△AB 【答案】(1)2213y x -=(2)(i )答案见解析(ii )或4623310x y ++=2211130x y +-=【分析】(1)通过几何关系可知,且,由此可知点的轨迹是以点、2ET TF -=42EF =>T E 为焦点,且实轴长为的双曲线,通过双曲线的定义即可求解;F 2(2)(i )设点,,直线的方程为,将直线方程与双曲线方程联立利()11,A x y ()22,B x y AB y kx m =+用韦达定理及求出,即得到直线的斜率为定值;0MA MB k k +=()()2230k k m ++-=AB (ii )由(i )可知,由已知可得,联立方程即可求出,的值,124x x m +=122122AQMBQM S x Sx -==-△△1x 2x 代入即可求出的值,即可得到直线方程.2123x x m =+m 【详解】(1)由题意可知,2ET TF TG TFFG -=-==,且,4=2EF >∴根据双曲线的定义可知,点的轨迹是以点、为焦点,且实轴长为的双曲线,T E F 2即,,,1a =2c =2223b c a =-=则点的轨迹方程为;T 2213y x -=(2)(i )设点,,直线的方程为,()11,A x y ()22,B x y AB y kx m =+联立得,2213y x y kx m ⎧-=⎪⎨⎪=+⎩()2223230k x kmx m ----=其中,且,230k -≠()()22224433k m k m ∆=+-+()221230m k =-+>,,12223kmx x k +=-212233m x x k +=--∵曲线上一点,∴,C ()()002,0M y y >()2,3M 由已知条件得直线和直线关于对称,则,MA MB 2x =0MA MB k k +=即,整理得,12122233x x y y --+=--()()()()121223320x y y x --+--=()()()()121223320x kx m kx m x -+-++--=,()()()1212223430kx x m k x x m +--+--=,()()()2222322343033k m km m k m k k +---+--=--,即,()()221230k m k m +++-=()()2230k k m ++-=则或,2k =-32m k =-当,直线方程为,此直线过定点,应舍去,32m k =-()3223y kx k k x =+-=-+()2,3故直线的斜率为定值.AB 2-(ii )由(i )可知,124x x m +=2123x x m =+由已知得,即,12AQMBQMS S =△△122122AQMBQMS x S x -==-△△当时,,122122x x -=-2122x x =-,即,,1211224x x x x m +=+-=1423m x +=2823m x -=,解得或,2124282333m m x x m +-=⋅=+1m =3123m =-但是当时,,故应舍去,当时,直线方程为,1m =Δ0=3123m =-4623310x y ++=当时,,即,,122122x x -=--2162x x =-164x m =-286x m =-,解得(舍去)或,()()21264863x x m m m =--=+1m =1311m =当时,直线方程为,1311m =2211130x y +-=故直线的方程为或.AB 4623310x y ++=2211130x y +-=。
2022-2023学年北京市中国人民大学附属中学高二上学期期末复习(一)数学试题一、单选题 1.已知复数2ii 1iz =++,则z =( ) A .3 BC .2D .1【答案】B【分析】首先根据复数的除法运算性质化简复数z ,再结合复数的模的概念计算即可. 【详解】()()()2i 1i 2ii i 12i 1i 1i 1i z -=+=+=+++-,则z =故选:B.2.向量(),0,1a x =,()4,,2b y =,若//a b ,则x y +的值为( ) A .0 B .1C .2D .3【答案】C【分析】根据向量平行,得到方程组,求出,x y 的值,得到答案. 【详解】由题意得:a b λ=,即4012x y λλλ=⎧⎪=⎨⎪=⎩,解得:2012x y λ⎧⎪=⎪=⎨⎪⎪=⎩, 故2x y +=. 故选:C3.若直线l 的一个方向向量为()2,2,4v =---,平面α的一个法向量为()1,1,2n =,则直线l 与平面α的位置关系是( ) A .垂直 B .平行C .相交但不垂直D .平行或线在面内【答案】A【分析】根据2n υ=-得到υ与n 共线,即可得到直线l 与平面α垂直.【详解】因为2n υ=-,所以υ与n 共线,直线l 与平面α垂直. 故选:A.4.空间,,,A B C D 四点共面,但任意三点不共线,若P 为该平面外一点且5133=--PA PB xPC PD ,则实数x 的值为( ) A .43-B .13-C .13D .43【答案】C【分析】先设AB mAC nAD =+,然后把向量AB ,AC ,AD 分别用向量PA ,PB ,PC ,PD 表示,再把向量PA 用向量PB ,PC ,PD 表示出,对照已知的系数相等即可求解. 【详解】解:因为空间A ,B ,C ,D 四点共面,但任意三点不共线, 则可设AB mAC nAD =+, 又点P 在平面外,则()()PB PA m PC PA n PD PA -=-+-,即(1)m n PA PB mPC nPD ++=-++, 则1111m nPA PB PC PD m n m n m n -=+++-+-+-,又5133=--PA PB xPC PD ,所以15131113m n mx m n n m n -⎧=⎪+-⎪⎪=-⎨+-⎪⎪=-⎪+-⎩,解得15m n ==,13x =, 故选:C .5.()2,2M 是抛物线()220y px p =>上一点,F 是抛物线的焦点,则MF =( )A .52B .3C .72D .4【答案】A【分析】将点()2,2M 代入22y px =,可得1p =,即可求出准线方程,根据抛物线的定义,抛物线上的点到焦点的距离等于到准线的距离,即可求得MF【详解】解:因为()2,2M 是抛物线()220y px p =>上一点,所以22221p p =⋅⇒=,则抛物线的准线方程为12x =-,由抛物线的定义可知,15222MF =+=, 故选:A.6.已知直线l :()()2110m x m y m ++++=经过定点P ,直线l '经过点P ,且l '的方向向量()3,2a =,则直线l '的方程为( ) A .2350x y -+= B .2350x y --= C .3250x y -+= D .3250x y --=【答案】A【分析】直线l 方程变为()210x y m x y ++++=,可得定点P ()1,1-.根据l '的方向向量()3,2a =,可得斜率为23,代入点斜式方程,化简为一般式即可.【详解】()()2110m x m y m ++++=可变形为()210x y m x y ++++=,解0210x y x y +=⎧⎨++=⎩得11x y =-⎧⎨=⎩,即P 点坐标为()1,1-.因为()23,231,3a ⎛⎫== ⎪⎝⎭,所以直线l '的斜率为23,又l '过点P ()1,1-,代入点斜式方程可得()2113y x -=+,整理可得2350x y -+=. 故选:A.7.在正方体1111ABCD A B C D -中,E 为1CC 中点,112,,,BM MC B N B B x y λ==∃∈R ,使得1A N xAM yAE =+,则λ=( ) A .12B .23C .1D .43【答案】C【分析】正方体中存在三条互相垂直的直线,故我们可以建立空间直角坐标系进行计算.【详解】如图建系,设棱长为6,则()()()()()16,0,0,0,6,3,2,6,0,6,0,6,6,6,66A E M A N λ-()()()10,6,6,4,6,0,6,6,3A N AM AE λ=-=-=-1046,66663x y A N xAM y AE x y y λ=--⎧⎪=+∴=+⎨⎪-=⎩,解之:1λ=故选:C8.若双曲线()222:104y x C a a -=>的一条渐近线被圆()2224x y -+=所截得的弦长为165,则双曲线C的离心率为( ) A 13B 17C .53D 39 【答案】C【分析】首先确定双曲线渐近线方程,结合圆的方程可确定两渐近线截圆所得弦长相等;利用垂径定理可构造方程求得a 的值,进而根据离心率241e a +可求得结果. 【详解】由双曲线方程得:渐近线方程为2ay x =±; 由圆的方程知:圆心为()2,0,半径2r =;2a y x =与2ay x =-图象关于x 轴对称,圆的图象关于x 轴对称,∴两条渐近线截圆所得弦长相等,不妨取2ay x =,即20ax y -=,则圆心到直线距离24d a =+∴弦长为222241622445a r d a --=+,解得:32a =,∴双曲线离心率241651193e a =++. 故选:C.9.已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( ) A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ + 抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P ,∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 4062169-+==+.故选:C .10.双曲线2221(0)16x y a a -=>的一条渐近线方程为124,,3y x F F =分别为该双曲线的左右焦点,M 为双曲线上的一点,则2116MF MF +的最小值为( ) A .2 B .4 C .8 D .14【答案】B【分析】由双曲线定义及渐近线方程得3,5a c ==,126MF MF -=,结合均值不等式、对勾函数单调性及12MF MF 、的取值范围求最小值即可. 【详解】由一条渐近线方程为43y x =得4433a a =⇒=,由双曲线定义可知,126MF MF -=,5c =.要使2116MF MF +的值最小,则1MF 应尽可能大,2MF 应尽可能小,故点M 应为双曲线右支上一点,故126MF MF -=,即216MF MF =-.故21111616662MF MF MF MF +=+-≥=,当且仅当1116MF MF =即14MF =时等号成立,此时21620MF MF =-=-<,故取不到等号. 对勾函数166y x x=+-在()0,4单调递减,在()4,+∞单调递增, ∵22MF c a ≥-=,∴1268MF MF =+≥,故当212,8MF MF ==时,2116MF MF +取得最小值为4. 故选:B.二、填空题 11.已知复数5i12iz =+,则z 的虚部为________. 【答案】1【分析】由复数除法得出2i z =+,即可得虚部 【详解】()()()5i 12i 5i 105i 2i 12i 12i 12i 5z -+====+++-,故虚部为1. 故答案为:112.若空间中有三点()()()1,0,1,0,1,1,1,2,0A B C - ,则点()1,2,3P 到平面ABC 的距离为______.【分析】求出平面ABC 的法向量,利用空间距离的向量公式去求P 到平面ABC 的距离可得答案.【详解】由()()()1,0,1,0,1,1,1,2,0A B C -可得()()1,1,21,1,1BA BC =--=-,, 设平面ABC 的一个法向量为(),,n x y z =, 则0n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ ,即200x y z x y z --=⎧⎨+-=⎩ , 令3x =,则()3,1,2n =- ,又()0,2,4PA =-- ,则点()1,2,3P 到平面ABC 的距离为289PA nn ⋅-==+,故答案为. 13.在下列命题中:①若向量,a b 共线,则向量,a b 所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b 一定不共面; ③若三个向量,,a b c 两两共面,则向量,,a b c 不一定共面;④已知空间的三个向量,,a b c ,则对于空间的任意一个向量p 总存在实数,,x y z 使得p xa yb zc =++. 其中正确命题的是______. 【答案】③【分析】根据共线向量和共面向量的相关定义判断即可.【详解】①若向量,a b 共线,则向量,a b 所在的直线可以重合,并不一定平行,错误;②若向量,a b 所在的直线为异面直线,由向量位置的任意性,空间中两向量可平移至一个平面内,故,a b 共面,错误;③若,,a b c 两两共面,可能为空间能作为基底的三个向量,则,,a b c 不一定共面,正确; ④只有当空间的三个向量,,a b c 不共面时,对于空间的任意一个向量p 总存在实数,,x y z 使得p xa yb zc =++,若空间中的三个向量共面,此说法不成立,错误;综上③正确, 故选:③14.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为___________.【答案】582+##258+【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l 间的距离为2得2PQ =,过()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l 2B '点,有()3,1B ', 连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而()()22434158AB '=--+-所以AP PQ QB ++的最小值为AB PQ '+582582【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程. (2)转化与划归思想是解决距离最值问题中一种有效的途径. (3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.15.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比MQMPλ=()0,1λλ>≠,那么点M 的轨迹就是阿波罗尼斯圆.已知动点M 的轨迹是阿波罗尼斯圆,其方程为221x y +=,定点Q 为x 轴上一点,1,02P ⎛⎫- ⎪⎝⎭且2λ=,若点()1,1B ,则2MP MB +的最小值为______.【答案】10【分析】根据点M 的轨迹方程可得()2,0Q -,结合条件可得2MP MB MQ MB QB +=+≥,结合图象,即可求得.【详解】设(),0Q a ,(),M x y ,所以()22=-+MQ x a y ,又1,02P ⎛⎫- ⎪⎝⎭,所以2212MP x y ⎛⎫=++ ⎪⎝⎭.因为MQ MPλ=且2λ=,所以()2222212-+=⎛⎫++ ⎪⎝⎭x a y x y, 整理可得22242133+-++=a a x y x , 又动点M 的轨迹是221x y +=,所以24203113aa +⎧=⎪⎪⎨-⎪=⎪⎩,解得2a =-,所以()2,0Q -,又2MQ MP =, 所以2MP MB MQ MB QB +=+≥, 当且仅当,,Q M B 三点共线时,等号成立, 因为101123QB k -==+,所以直线QB 方程为:()123y x =+即320x y -+=,圆心到直线距离1015d r =<=, 即直线QB 与圆相交.(如图中的12,M M 点均满足)又因为()1,1B ,所以2MP MB +的最小值为()()22121010++-=BQ10三、解答题16.若两条相交直线1l ,2l 的倾斜角分别为1θ,2θ,斜率均存在,分别为1k ,2k ,且120k k ⋅≠,若1l ,2l 满足______(从①12θθπ+=;②12l l ⊥两个条件中,任选一个补充在上面问题中并作答),求: (1)1k ,2k 满足的关系式;(2)若1l ,2l 交点坐标为()1,1P ,同时1l 过(),2A a ,2l 过()2,B b ,在(1)的条件下,求出a ,b 满足的关系;(3)在(2)的条件下,若直线1l 上的一点向右平移4个单位长度,再向上平移2个单位长度,仍在该直线上,求实数a ,b 的值. 【答案】(1)答案见解析 (2)答案见解析 (3)答案见解析【分析】(1)依题意11tan k θ=,22tan k θ=,若选①利用诱导公式计算可得;若选②根据两直线垂直的充要条件得解;(2)首先表示出直线1l 、2l ,再将点代入方程,再结合(1)的结论计算可得;(3)按照函数的平移变换规则将直线1l 进行平移变换,即可求出1k ,从而求出直线1l 的方程,即可求出a ,再根据(1)求出直线2l 的方程,即可求出b 的值;【详解】(1)解:依题意11tan k θ=,22tan k θ=,且1θ,2θ均不为0或2π, 若选①12θθπ+=,则12θπθ=-,则()122tan tan tan θπθθ=-=-,即120k k +=; 若选②12l l ⊥,则121k k(2)解:依题意直线1l :()111y k x -=-,直线2l :()211y k x -=-,又1l 过(),2A a ,所以()1121k a -=-且1a ≠,即()111k a =-且1a ≠,又2l 过()2,B b ,所以()2211b k -=-且1b ≠,即21b k -=且1b ≠;若选①,则120k k +=,所以121b k k -==-,即()()111b a =--且1a ≠、1b ≠;若选②,则121k k ,所以()()21111b a k k -⨯=-⨯,即2b a +=且1a ≠、1b ≠;(3)解:直线1l :()111y k x -=-,将直线1l 向右平移4个单位长度,再向上平移2个单位长度得到()14121y k x -⎡⎤-=-+⎣⎦,即11215x y k k --=+,所以1152k k -+=-,解得112k =,此时直线1l :()1112y x -=-,所以()1112a =-,解得3a =;若选①,则212k =-,此时直线2l :()1112y x -=--,所以121b -=-,解得12b =;若选②,则22k =-,此时直线2l :()121y x -=--,所以12b -=-,解得1b;17.已知1F ,2F 是椭圆C :22221(0)x ya b a b+=>>的两个焦点,P 为C 上一点.(1)若12F PF △为等腰直角三角形,求椭圆C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于9,求b 的值和a 的取值范围.【答案】1(2)3b =,)+∞【分析】(1)根据1290PF F ︒∠=或2190PF F ︒∠=或1290F PF ︒∠=进行分类讨论,通过求22ce a=来求得椭圆的离心率.(2)根据已知条件列方程求得b ,判断出22c b ≥,结合222a b c =+求得a 的取值范围. 【详解】(1)12F PF △为等腰直角三角形可知有三种情况.当1290PF F ︒∠=时,1||2PF c =,2||PF =,于是12||||1)2PF PF c a +==,得212c e a ===;当2190PF F ︒∠=时,同理求得1e =;当1290F PF ︒∠=时,则P 在椭圆短轴的端点,12||||PF PF =,12||||2PF PF a +==,解得22c e a ===所以椭圆C 1. (2)设(,)P x y ,由12F PF △的面积等于9,得12||92c y ⋅⋅=,①由12PF PF ⊥,得222x y c +=,② 再由P 在椭圆上,得22221x y a b+=,③由②③及222c b a +=,得422b y c=,又由①知242229b y c c ==,故3b =,由②③得22222()a x c b c=-,22c b ∴≥,从而2222218a b c b =+≥=,故32a ≥,3b ∴=,32a ≥时存在满足条件的点P , 故3b =,a 的取值范围为[32,).+∞18.已知直三棱柱111ABC A B C 中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的动点,BF AB ⊥.(1)证明:BF ⊥平面11EA B ;(2)当1B D 为何值时,平面11BB C C 与平面DFE 所成的夹角最小? 【答案】(1)证明见解析 (2)112B D =【分析】(1)先证明AB ⊥平面11BCC B ,由此建立空间直角坐标系,利用向量方法证明1BF EA ⊥,1BF EB ⊥,由线面垂直判定定理证明BF ⊥平面11EA B ;(2)求平面11BB C C 与平面DFE 的法向量,结合向量夹角公式求两平面的夹角余弦,再求其最小值可得1B D 的取值. 【详解】(1)因为三棱柱111ABC A B C 是直三棱柱, 所以1BB ⊥底面ABC ,AB ⊂底面ABC ,所以1BB AB ⊥.因为BF AB ⊥,1BB BF B ⋂=,1BB ⊂平面11BCC B ,BF ⊂平面11BCC B ,所以AB ⊥平面11BCC B . 所以BA ,BC ,1BB 两两垂直.以B 为坐标原点,分别以BA ,BC ,1BB 所在直线为x ,y ,z 轴建立空间直角坐标系,如图,所以()0,0,0B ,()2,0,0A ,()12,0,2A ,()10,0,2B ,()1,1,0E ,()0,2,1F , 因为()0,2,1BF =,()11,1,2EA =-,()11,1,2EB =--, 所以10BF EA ⋅=,10BF EB ⋅=, 所以1BF EA ⊥,1BF EB ⊥,因为11EA EB E ⋂=,1EA ,1EB ⊂平面11EA B , 所以BF ⊥平面11EA B .(2)由题设()(),0,202D a a ≤≤. 设平面DFE 的法向量为(),,m x y z =, 因为()1,1,1EF =-,()1,1,2DE a =--, 所以00m EF m DE ⎧⋅=⎪⎨⋅=⎪⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-. 因为平面11BB C C 的法向量为()2,0,0BA =, 设平面11BB C C 与平面DEF 所成的夹角为θ,则()()2222633cos 22142912127222m BA m BAa a a a a θ⋅====⋅-+⨯+++-⎛⎫-+⎪⎝⎭, 当12a =时,22214a a -+取最小值为272,此时cos θ取最大值为363272=,此时11112B D A B =<,符合题意.故当112B D =时,面11BB C C 与面DFE 所成的夹角最小. 19.如图,已知动圆P 过点()11,0F -,且与圆()222:18F x y -+=内切于点N ,记动圆圆心P 的轨迹为E .(1)求E 的方程;(2)过点1F 的直线l 交E 于A 、B 两点,是否存在实数t ,使得11AB t AF BF =⋅恒成立?若存在,求出t 的值;若不存在,说明理由. 【答案】(1)2212x y +=(2)存在,且22t =【分析】(1)分析可知动点P 的轨迹是1F 、2F 为焦点,以22a 、b 的值,结合椭圆E 的焦点位置可得出椭圆E 的方程;(2)对直线l 的斜率是否存在进行分类讨论,设出直线l 的方程,与椭圆E 的方程联立,利用弦长公式以及两点间的距离求出t 的值,即可得出结论.【详解】(1)解:显然,圆2F 的半径为22P 的半径为r , 由题意可得122PF r PF r ⎧=⎪⎨=⎪⎩,所以,1212222PF PF F F +=>=,则动点P 的轨迹是1F 、2F 为焦点,以2设椭圆E 的方程为()222210x y a b a b+=>>,122F F c =,所以a =1c =,1b ==,故E 的方程为2212xy +=.(2)解:当直线l 的斜率存在时,设直线l 的方程为()1y k x =+, 设点()11,A x y 、()22,B x y ,联立方程组()22121x y y k x ⎧+=⎪⎨⎪=+⎩得()2222124220k x k x k +++-=,所以2122412k x x k +=-+,21222212k x x k -=+.12AB x -==)22112k k +=+.1AF1BF =所以()222221212112228424112122212k k x x x x k k k AF BF k --+++++++==+⋅==.所以11?AB BF =;当直线l 的斜率不存在时,直线l 的方程为=1x -, 联立方程组22121x y x ⎧+=⎪⎨⎪=-⎩,得2A ⎛-⎝⎭、1,2B ⎛- ⎝⎭. 此时AB111222AF BF ⋅==,所以11AB BF=⋅. 综上,存在实数t =11AB t AF BF =⋅恒成立. 【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
高中二年级(上)期末复习测试题第一部分听力(共两节,满分30分)(略)第二部分英语知识运用(共两节,满分45分)第一节单项选择(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。
21. — Do you think I should join the singing group, Anna?—_____ If I were in your shoes, I certainly would.A. None of your business.B. It depends.C. Why not?D. I don‟t think so.22. If I ___ long enough, I would choose to be a doctor, ___ those suffering from AIDS.A. was to live; helpingB. could live; helpC. were to live; helpingD. should have lived; help23. The private school has recently been closed down as a ___ of its terrible management.A. matterB. consequenceC. wholeD. total24. Because of the heavy snowstorm, we have to put off the visit to the painting exhibition ___ in the nearby city until tomorrow.A. to holdB. having heldC. holdingD. being held25. Wherever we go, we find that in no city of China ___ little about the economic development.A. the government caresB. does the government careC. doesn‟t the government careD. the government doesn‟t care26. During holidays, the railways put on _____ trains to make people‟s travel more convenient.A. regularB. particularC. specialD. unusual27. Teachers and parents should know that children can‟t ______ th eir studies when they are hungry.A. insist onB. consist ofC. concentrate onD. accustom to28. When I took his temperature, I found it was two degrees ____ average. He got a fever.A. aboveB. overC. onD. below29. Now that spring is here, you can ________ these fur coats till you need them again next winter.A. put forwardB. put downC. put offD. put away30. Sculpture is an expressive ________ of art as well as literature, painting, music and photography.A. styleB. mannerC. fashionD. form31. Nice words may win friends, but only a person‟s good personality and honor can hold _____.A. thatB. themC. itD. him32. The man, ______ of an attempted robbery, insisted that he was innocent and be set free.A. chargedB. blamedC. ashamedD. accused33. — Why must I leave?—Well, _______, the researchers cannot focus their attention on that experiment.A. with your standing thereB. with you standing thereC. you are standing thereD. you stand there34. ____ their aim may seem good, they probably do not realize that dieting can do harm to their health.A. IfB. BecauseC. WhileD. When35. People try to avoid public transportation delays by using their cars, and this ______ creates further problems.A. in turnB. after allC. in caseD. in time第二节完形填空(共20小题;每小题1.5分,满分30分)TheCollegeBluesThe college campus was covered with beautiful leaves. I walked alone, 36 to enjoy my first autumn at school. But I was feeling 37 and I couldn‟t figure out why. 38 , I had just entered a great college. I had been really 39 to meet new people and live away from home. What was wrong? What I didn‟t know was that I was 40 something that‟s common when people just start college — the college blues.41 everyone‟s situation is unique, it‟s common for first-year college students to feel sad and 42 . “Going to college can change the way that we identify ourselves.43 we‟re in a different world. We may start to 44 who we are and our place in the world,” says psycholo gist Deanna Pledge.She offers some tips to deal with this major 45 . “Preparing yourself before going to college can be really important. 46 that it will be hard at first both emotionally and academically. It is helpful to develop good study 47 before leaving high school, and to seek out 48 help both in high school and at college. It‟s also important to make49 to make friends in this new place.”In time, things started to 50 for me at college. I became familiar w ith my new environment and I 51 being on my own. I took some inspiring 52 , and I joined the track team. Some people invited me to a study group and 53 these people became my good friends. Soon, I didn‟t 54 want to go home on the wee kends anymore. My sadness and uncertainty 55 and I began to feel like myself again. I guess for some people, it just takes a little time!36. A. failing B. managingC. tryingD. turning37. A. away B. down C. off D. up38. A. In all B. Above allC. First of allD. After all39. A. unwilling B. eager C. worried D. nervous40. A. noticing B. bearingC. experiencingD. handling41. A. Unless B. If C. Since D. Although42. A. hopeless B. unluckyC. uncertainD. anxious43. A. All of a sudden B. In the wayC. In a wordD. On the contrary44. A. hate B. dislike C. question D. judge45. A. disaster B. transitionC. errorD. influence46. A. A void B. Expect C. Refuse D. Admit47. A. styles B. forms C. habits D. hopes48. A. personal B. emotionalC. educationalD. physical49. A. plans B. arrangementsC. waysD. efforts50. A. turn up B. look up C. make up D. come up51. A. got down to B. put up withC. got used toD. looked forward to52. A. stories B. actions C. schemes D. courses53. A. immediately B. eventuallyC. surprisinglyD. occasionally54. A. still B. hardly C. even D. only55. A. disappeared B. remainedC. grewD. lost第三部分阅读理解(共20小题;每小题2分,满分40分)AWhat would life be like if an ancient person lived in a modern society? Y ou don‟t need to go too far to find out the answer. Li Xudan, 18, seems to be cut off from the rest of the world.In a noisy crowd, she is the one who‟s left alone, slowly stroking her long black hair with her fingers. She likes flowery dresses and refuses to wear jeans.Her quietness and elegance (优雅) finally landed her the role of Lin Daiyu in TheDreamoftheRedChambertalent show on June 10.At 8, Li was sent to live at her grandfather‟s place, a courtyard at the foot of Zijin Mountain in Nanjing. She spent almost 10 years there. Far away from the downtown, Li grew up listening to the sound of insects and watching the fish in the pond.While other kids were hauling their schoolbags to class, she stayed at home where her grandpa taught her traditional Chinese literature and culture. She displayed her poetic talent by putting her sentiments (多愁善感) into her poems.Li first came to know the life of Lin Daiyu in the Shaoxing Opera version of TheDreamoftheRedChamber. She loved it so much that she attended a drama school in Jiangsu at 12. When she got a chance to read the book, she became absorbed in its world at once. After that, a copy of the book was always at her bedside.“This …Sister Lin‟ didn‟t fall from heaven,” said director Hu Mei. “She was brought up in the ways of Daiyu. Every move or expression of hers expresses it.”Li got both praise and criticism, but she wasn‟t upset. “I came for the …Dream‟,” Li said, “Istruggle for the ideal and won‟t get lost in the world.”56. From the passage we can learn that ________.A. Li Xudan lives in a place cut off from the worldB. Li Xudan‟s parents died when she was eight years oldC. Li Xudan is going to play the role of Lin Daiyu in TheDreamoftheRedChamberD. Li Xudan didn’t know the life of Lin Daiyu before she read the book TheDreamoftheRedChamber57. Why was Li Xudan se nt to live at her grandfather‟s place?A. Because her parents were busy with their business.B. Because she didn‟t like life in a big city.C. Because her parents couldn‟t afford to send her to school.D. It‟s not mentioned in the passage.58. What‟s the b est title of this passage?A. Li was born for the role.B. Lin Daiyu fell from heaven.C. TheDreamoftheRedChamber.D. A new pop star.BI was studying in Paris, taking delight in college classes and weekend train trips. My family-centered father had asked me to look up relatives who might live somewhere nearby. But I wanted to feel free, cutting family ties and abandoning the trappings of my American upbringing. Summer passed. The days grew longer and cooler. And even in the City of Light, I was beginning to miss my family. It was my first time away from home and I was feeling lonely.So on one particular cold day in 1996, I walked to the Armenian Church and took a seat. As the service progressed, I saw an old woman, walking up and down looking for a seat.Given the length of an Armenian church service, I felt unwilling to give up my place, but I was 20 and she was 70. So when she came by, I spoke to her in Armenian and offered her my seat. She took it and I stood beside her. As the service drew toward a close, she quietly spoke to me. “Y ou are not from here, are you?” she whispered.“How did you know?” I asked.“Because the young people here only speak French. Where are you from?”“America, Florida,” I said rolling the “r” to make it sound more Armenian.Keeping her eyes on the service, she said, “I have family in Florida. Three brothers — Sarkis, Dikran and ...” “Ara,” I said, voice trembling. “Ara is my father.”“I have been looking for your father for 30 years,” she cried.She was my “auntie”, a relative of my paternal(父亲的)grandfather’s family. She herself lived in Syria, and was only in Paris occasionally. But she happened to be there at the very same moment. Over oceans and generations, the two of us connected.59. How did the writer feel about her father?A. He was stubborn and fell behind the times.B. He didn‟t give her enough freedom.C. He had a strong sense of family.D. He preferred indoor life to outdoor life.60. Which place does “the City of Light” refer to?A. Florida.B. The Armenian Church.C. The writer‟s college.D. Paris.61. Why didn‟t the writer want to give up her seat to the old lady at first?A. She was afraid of being laughed at.B. She didn‟t want to stand during the long church service.C. She wanted to hear the church service better.D. She didn‟t want to be not iced by others.62. The writer attracted the attention of the old lady because _______.A. she was impressed with the writer‟s kindnessB. the writer‟s appearance was familiarC. she heard the writer speaking ArmenianD. few young people attended Armenian church servicesCPresident Bush‟s dogs often play on the White House lawn, but do you know that he also has cows and a cat? These animals are part of a long history of US presidential pets —from horses to snakes and elephants.President Bush‟s dogs include two Scottish terriers named Barney and Miss Beazley. His cat is named India, which has lived with the Bush family for more than ten years! On his ranch in Crawford, Texas, he keeps a cow named Ofelia.Past presidents brought many interesting animals to the White House. The wife of John Quincy Adams, the sixth President, had silkworms. Theodore Roosevelt, the 26th President, was famous for his many pets. His six kids had snakes, dogs, cats, birds and more. When Roosevelt‟s son Archie got an inf ectious disease, Quentin, another of Roosevelt‟s sons, was worried about him and put the family horse on the White House elevator and took it to Archie‟s upstairs room.During World War I, Woodrow Wilson, the 28th President, kept a herd of sheep on the White House lawn. The wool from these sheep was auctioned (拍卖) to raise money for the American Red Cross —a group that helps people in emergencies.Some of the more unusual US presidential pets have been gifts from other world leaders. James Buchanan, the 15th President, received a herd of elephants from the King of Siam (now called Thailand). The Sultan of Oman gave Martin V an Buren, the 8th President, a pair of tiger cubs.But even the more typical pets have had an unusual time at the White House. Warren Harding, the 29th President, and his family had a birthday party for their dog Laddie and they invited other dogs and served a cake.63. How many pets does President Bush have?A. Less than three.B. Only four.C. More than four.D. Five.64. Why did Roosevelt‟s son Quentin take a horse to Archie‟s room?A. Because he hoped the family horse could cheer sick Archie up.B. Because Archie was worried about the safety of his pet horse.C. Because he wanted Archie to take more exercise.D. Because he was asked to do so by their father.65. Which of the following presidents once raised pets to serve the public?A. President Bush.B. President Wilson.C. President Roosevelt.D. President Adams.66. What is the writer‟s attitude towards US presidents keeping pets in the White House?A. Keeping pets helps improve the relationship with other countries.B. It is meaningless and just a waste of time and effort.C. These pets make the White House more interesting.D. These pets make the boring White House colorful.DThe Internet is good at connecting people, and “Science News for Kids” is a perfect example. Y ou can look at it on computers all over the world. It seems so simple, but the Internet is a complex web of connections. And that web looks a lot like a jellyfish (水母), according to scientists in Israel.Until now, scientists have had trouble mapping the structure of the Internet. It formed almost by accident in the 1960s when people first decided to link their computer networks to share information.The Internet grew as new groups added their computer systems to the structure. Today, when you send an e-mail to a friend next door, it can pass through as many as 30 small networks, or subnetworks, before it arrives at its destination just a second later.To understand the shape of the Internet, scientists once used software that sent packets of information to certain destinations and followed their routes. The packets worked like probes (探测器), showing which subnetworks they traveled through on their way. But until recently, scientists were able to send probes from only a small number of sites, usually at universities in the United States. With such a limited number of starting points, the information stayed close to home. The probes missed more distant sites and links.Scientists in Israel, however, found a way. They asked volunteers to help them send probes from over 12,000 computers around the world. Following them, the scientists counted how many routes connected each subnetwork to the others.This widespread method showed that at the core(核心)of the imaginary jellyfish are about 100 of the most tightly connected subnetworks. Surrounding it are a larger group of subnetworks that have lots of connections to each other and to the core. About o ne fifth of the Internet‟s subnetworks can only communicate to the rest of the world by sending information through the core while 80 percent needn‟t do so, which suggests that the Internet is stronger than commonly thought. Attacks to one part of the Internet probably wouldn‟t des troy the whole system.67. “Science News for Kids” must be _______.A. a magazine providing scientific knowledge for childrenB. a TV programme intended for childrenC. a website focusing on science reportsD. a scientific book that can be read on the computer68. It is hard for scientists to map the structure of the Internet because ________.A. scientists are not interested in doing so nowB. scientists haven‟t found enough volunteers to help themC. the Internet wasn‟t carefully designed at firs tD. the Internet is very complex and it came into being suddenly69. The example given in the third paragraph mainly shows _________.A. the convenience of the InternetB. the fast speed of the InternetC. that the Internet is in fact a very complex systemD. that communication on the Internet is sometimes unnecessary70. Why do scientists think that the whole Internet system can‟t easily break down?A. 80% of subnetworks can reach each other without going through the core.B. A larger group of subnetworks are surrounding the core.C. 20% of subnetworks can communicate to the rest of the world.D. Attacks to the Internet can be avoided by using good software.71. What would be the best title of the passage?A. Fast communication on the Internet.B. New research into the Internet.C. The research into the shape of the Internet.D. Safe access to “Science News for Kids”.EY our best friend is possibly the most important person in your life. But sometimes friendship‟s road is not always s mooth, or it‟s a total dead end. What do you do when this happens?Scenario?穴设想?雪1: DriftingApartY ou‟ve found that your best friend no longer wants to jog with you. She‟d rather hit the chat rooms, or she‟s become crazy about hanging with her new interest.It‟s a bummer when old friends start having less in common. But it might still be worth trying to get into your friend‟s new interest, try something new on your own, or meet some new folks who like doing the things you enjoy. Another thing to try is talking to your friend about it — in a non-this-is-your-fault way. The goal is telling how you feel, not “winning”.Scenario2: Fights“Y es, he is.” “No, he isn‟t.” The argument could continue forever.No matter how sure you are that you‟re right, friendship is based on RESPECT. Since you and your friend aren‟t clones, you will disagree sometimes!Is it worth fighting over? If it’s trivial (价值不大的), why not give it up? Agree to disagree and get on well with life. Even if you’ll never agree, try to see the other person’s viewpoint. At least honor his right to have his own opinions. Never get physical. Violence can make a small problem into a disaster.Scenario3: EndoftheRoadIs the friendship over? If you‟re not the one ending it, it feels as if a knife cut your heart into pieces. But the thing is that you can‟t force someone to be your friend. Give yourself time. But don‟t freeze in a looking-back, holding pattern. Be open to new friendships. Y ou never know when the “next BFF (best friends forever)” will come along.72. Y ou are advised NOT to _____ when your friend reduces communication with you.A. develop the same interest as your friend doesB. blame your friend for not being as friendly to you as beforeC. give in to the friend who has hurt your feeling deeplyD. stick to the friendship that was built up in the past73. In the writer‟s opini on, showing disagreement ________.A. will surely lead to the end of a long friendshipB. shows that you don‟t respect your friendC. is natural and normal behavior of human beingsD. means you have nothing in common with your friend74. Once the friendship is over, it is foolish of you _______.A. to feel sad about itB. to give up your idea to keep the friendshipC. not to ask your friend to stay with youD. to be drowned in sadness forever75. The purpose of the passage is to teach you _______.A. how to mend a broken friendshipB. how to keep a friendship long and solidC. what to do when a friendship changesD. what to do to win new friends第四部分写作(共两节,满分35分)第一节短文改错(共10小题;每小题1分,满分10分)Super Girl Jane Zhang, or Zhang Liangying, was in America for his new76.album. She stayed there for about one month or so. During that month-long 77. stay, she cooperated with many top producers in America and records three 78. songs for her new album. The composers, band members or producers for 79. Jane were all top musician in Chicago. One of them was producer Peter Hyams, 80.who had worked for famous singers such like Celine Dion and R. Kelly. 81.It was not the first time which Jane had worked with American musicians 82. —her previous album included a cooperation with musical talents from83.the US. H. Brothers Music invested over one hundred million yuan84.on that trip and aimed at making Jane an internationally star.85.第二节书面表达(满分25分)假如你叫刘佳,是高二的一名学生,最近在和同学们聊天时,发现大家的学习习惯不同。
一中高二上学期期末复习试题(一)一选择题1.命题“任意的x∈R,x2-x+1<0”的否定是)A.不存在x∈R,x2-x+1<0B.存在x0∈R,x20-x0+1<0C.存在x0∈R,x20-x0+1≥0D.对任意的x∈R,x20-x0+1≥02.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808C.1 212 D.2 0123.设a,b∈R,则“a+b>4”是“a>2,且b>2”的)A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件,抽得正品的概率为( )A.0.09 B.0.98 C.0.97 D.0.965 点(1,1)到直线x+y-1=0的距离为( )A.1 B.2 C.22D. 26.某中学组织了“迎新杯”知识竞赛,从参加考试的学生中抽出若干名学生,并将其成绩绘制成频率分布直方图(如图),其中成绩的围是[50,100],样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100],已知样本中成绩小于70分的个数是36,则样本中成绩在[60,90)的学生人数为( )A.70 B.80 C.90 D.1007.空间直角坐标系中,点A(-3,4,0)和点B(2,-1,6)的距离是( )A.243 B.221 C.9 D.868.设点A(2,-3),B(-3,-2),直线l过P(1,1)且与线段AB相交,则l的斜率k的取值围是( )A.k≥34,或k≤-4 B.-4≤k≤34C.-34≤k≤4 D.以上都不对9.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( ) A.2 000元 B.2 200元 C.2 400元 D.2 800元10.与⊙C:x2+(y+4)2=8相切并且在两坐标轴上截距相等的直线有( ) A.4条 B.3条 C.2条 D.1条11.椭圆x24+y22=1中过P(1,1)的弦恰好被点P平分,则此弦所在的直线方程为( )A.2x+y-3=0 B.2x+y+3=0 C.x+2y+3=0 D.x+2y-3=012.从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32二填空题13.经过点A(1,1)且在x轴上的截距等于在y轴上的截距的直线方程是________.14.执行如图所示的程序框图,则输出的S的值是______15.设实数x,y满足x2+y2-2y=0则x2+y2的最大值是________.三解答题17.袋中有五卡片,其中红色卡片三,标号分别为1,2,3;蓝色卡片两,标号分别为1,2.(1)从以上五卡片中任取两,求这两卡片颜色不同且标号之和小于4的概率;(2)现袋中再放入一标号为0的绿色卡片,从这六卡片中任取两,求这两卡片颜色不同且标号之和小于4的概率.18.(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?19.(12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.20.已知直线l:y=x+m,m∈R.若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程.21.已知椭圆的长轴长是短轴长的2倍,且焦点在x 轴上,又椭圆截直线y =x +2所得线段长为1625,求椭圆的标准方程.22.已知焦点在x 轴上的椭圆的离心率是22,且过点S ⎝⎛⎭⎪⎫-1,22. 1)求椭圆的方程;2)若倾斜角为45°的直线l 和椭圆交于P ,Q 两点,M 是直线l 与x 轴的交点,且有3PM →=MQ →,求直线l 的方程.一中高二上学期期末复习试题一选择题1.命题“任意的x∈R,x2-x+1<0”的否定是)A.不存在x∈R,x2-x+1<0B.存在x0∈R,x20-x0+1<0C.存在x0∈R,x20-x0+1≥0D.对任意的x∈R,x20-x0+1≥0解析:全称命题的否定是特称命题,并把结论否定,故C正确.答案:C2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101 B.808C.1 212 D.2 012解析:由题意得12+21+25+43N=1296,得N=808.答案:B32014·卷)设a,b∈R,则“a+b>4”是“a>2,且b>2”的)A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件解析:∵a>2且b>2⇒a+b>4;反之,a+b>4⇒ / a>2且b>2,∴“a+b>4”是“a >2且b>2”的必要不充分条件.答案:B4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件,抽得正品的概率为( )A.0.09 B.0.98C.0.97 D.0.96解析:设“抽得正品”为事件A,“抽得乙级品”为事件B,“抽得丙级品”为事件C,由题意,事件B与事件C是互斥事件,而事件A与并事件(B∪C)是对立事件;所以P(A)=1-P(B∪C)=1-[P(B)+P(C)]=1-0.03-0.01=0.96.答案:D5 点(1,1)到直线x+y-1=0的距离为( )A.1 B.2C.22D. 2解析:选C 由点到直线的距离公式d=|1+1-1|12+12=22.6.某中学组织了“迎新杯”知识竞赛,从参加考试的学生中抽出若干名学生,并将其成绩绘制成频率分布直方图(如图),其中成绩的围是[50,100],样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100],已知样本中成绩小于70分的个数是36,则样本中成绩在[60,90)的学生人数为( )A.70 B.80C.90 D.100解析:由题意得样本中成绩小于70分的频率是(0.010+0.020)×10=0.3;样本中成绩在[60,90]的频率是(0.020+0.030+0.025)×10=0.75.因此样本中成绩在[60,90)的学生人数为36×0.750.3=90.答案:C7.空间直角坐标系中,点A(-3,4,0)和点B(2,-1,6)的距离是( )A.243 B.221C.9 D.86解析:代入两点间的距离公式得:|AB|=-3-22+4+12+0-62=86.答案:D8.设点A(2,-3),B(-3,-2),直线l过P(1,1)且与线段AB相交,则l的斜率k的取值围是( )A.k≥34,或k≤-4 B.-4≤k≤34C.-34≤k≤4 D.以上都不对解析:选A 由题意知k AP =-3-12-1=-4, k BP =-2-1-3-1=34.由斜率的特点并结合图形可知k ≥34,或k ≤-4.9.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( )A .2 000元B .2 200元C .2 400元D .2 800元解析:设需甲型货车x 辆,乙型货车y 辆,则 ⎩⎪⎨⎪⎧ 20x +10y ≥100,0≤x ≤4,0≤y ≤8,即⎩⎪⎨⎪⎧2x +y ≥10,0≤x ≤4,0≤y ≤8,目标函数即费用为z =400x +300y .画出线性区域图形如图所示,10.(2014·长安一中高一测试)与⊙C :x 2+(y +4)2=8相切并且在两坐标轴上截距相等的直线有( )A .4条B .3条C .2条D .1条解析:当截距为0时,设切线方程为y =kx 即kx -y =0, 由题意得4k 2+1=22,得k =±1,此时直线方程为y =±x ;当截距不为0时,设所求的直线方程为x +y -a =0,由题意得|-4-a |2=22, 得a =0(舍)或a =-8, ∴满足条件的切线有3条. 答案:B11.椭圆x 24+y 22=1中过P (1,1)的弦恰好被点P 平分,则此弦所在的直线方程为( )A .2x +y -3=0B .2x +y +3=0C .x +2y +3=0D .x +2y -3=0解析:设直线与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,则⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4,得(x 1-x 2)(x 1+x 2)=-2(y 1+y 2)(y 1-y 2),又P 为AB 的中点,∴x 1+x 2=2,y 1+y 2=2,∴y 1-y 2x 1-x 2=-12,故所求的直线方程为y -1=-12(x -1).即x +2y -3=0. 答案:D12.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24 B.12 C.22D.32解析:由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a ,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bc a ,把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝⎛⎭⎫bc a 2b 2=1,∴⎝⎛⎭⎫c a 2=12,∴e =c a =22.选C.答案:C 二填空题13.经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是________.解析:当直线过原点时,满足要求,此时直线方程为x -y =0;当直线不过原点时,设直线方程为x a +ya=1,由于点(1,1)在直线上,所以a =2,此时直线方程为x +y -2=0.答案:x -y =0或x +y -2=014.执行如图所示的程序框图,则输出的S 的值是______解析:第一次循环S =-1,i =2,第二次循环S =23,i =3,第三次循环S =32,i =4,第四次循环S =4,i =5,第五次循环S =-1,i =6,此时跳出循环,故输出的值为-1. 15.圆O 有一接正三角形,向圆O 随机投一点,则该点落在接正三角形的概率是________.解析:设圆O 的半径为R ,则正三角形的边长为2R 2-R 24=3R ,∴P =123R ×32R πR 2=334π. 答案:334π16.设实数x ,y 满足x 2+y 2-2y =0,则x 2+y 2的最大值是________.解析:设P (x ,y ),方程x 2+y 2-2y =0表示圆心为C (0,1),半径为1的圆,x 2+y 2=[x -02+y -02]2=|OP |2,画图可得|OP |≤|OC |+1=1+1=2.所以x 2+y 2的最大值是4. 答案:4 三解答题17.袋中有五卡片,其中红色卡片三,标号分别为1,2,3;蓝色卡片两,标号分别为1,2.(1)从以上五卡片中任取两,求这两卡片颜色不同且标号之和小于4的概率;(2)现袋中再放入一标号为0的绿色卡片,从这六卡片中任取两,求这两卡片颜色不同且标号之和小于4的概率.解:(1)从五卡片中任取两的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一标号为0的绿色卡片后,从六卡片中任取两,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.18.(10分)(1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行?(2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直? 解:(1)由题意可知,kl 1=-1,kl 2=a 2-2.∵l 1∥l 2,∴⎩⎪⎨⎪⎧a 2-2=-1,2a ≠2,解得a =-1.故当a =-1时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行. (2)由题意可知,kl 1=2a -1,kl 2=4.∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.故当a =38时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直.19.(12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解:(1)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间.因此乙班平均身高高于甲班.(2)x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.(3)设身高为176 cm 的同学被抽中的事件为A ;从乙班10名同学中抽中两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173)共10个基本事件,而事件A 含有4个基本事件,∴P (A )=410=25. 20.(12分)已知直线l :y =x +m ,m ∈R .若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程.解:解法一:依题意,点P 的坐标为(0,m ).因为MP ⊥l ,所以0-m 2-0×1=-1, 解得m =2,即点P 的坐标为(0,2).从而圆的半径r =|MP |=2-02+0-22=22, 故所求圆的方程为(x -2)2+y 2=8.解法二:设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2.依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则⎩⎪⎨⎪⎧ 4+m 2=r 2,|2-0+m |2=r ,解得⎩⎪⎨⎪⎧ m =2,r =2 2.所以所求圆的方程为(x -2)2+y 2=8.21.已知椭圆的长轴长是短轴长的2倍,且焦点在x 轴上,又椭圆截直线y =x +2所得线段长为1625,求椭圆的标准方程. 解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),又a =2b , ∴椭圆方程可化为x 24b 2+y 2b2=1. 设直线y =x +2与椭圆相交于A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 24b 2+y 2b 2=1,y =x +2,得5x 2+16x +16-4b 2=0, 由题意得方程有两根x 1,x 2,且x 1+x 2=-165,x 1x 2=165-45b 2. 又|AB |= 1+k 2|x 2-x 1|=2·x 1+x 22-4x 1x 2 =2·16225-4⎝⎛⎭⎫165-45b 2=1625. 得b 2=4.故所求的椭圆方程为x 216+y 24=1.22.12分)已知焦点在x 轴上的椭圆的离心率是22,且过点S ⎝ ⎛⎭⎪⎫-1,22. 1)求椭圆的方程; 2)若倾斜角为45°的直线l 和椭圆交于P ,Q 两点,M 是直线l 与x 轴的交点,且有3PM →=MQ →,求直线l 的方程.解:1)设椭圆方程为x 2a 2+y 2b2=1a >b >0), ∵c a =22,且1a 2+12b 2=1,又a 2=b 2+c 2, ∴a 2=2,b 2=1,∴椭圆的方程为x 22+y 2=1. 2)∵直线l 的斜率k =1,设M m,0),P x 1,y 1),Q x 2,y 2),则l :y =x -m . 由⎩⎪⎨⎪⎧ y =x -m ,x 22+y 2=1,消去y ,得3x 2-4mx +2m 2-2=0. ∴x 1+x 2=4m 3,① x 1·x 2=2m 2-23.② ∵3PM →=MQ →,∴3m -x 1,-y 1)=x 2-m ,y 2),∴3m -3x 1=x 2-m ,∴3x 1+x 2=4m .③由①③得x 1=4m 3,x 2=0, 代入②中,得m =±1.此时Δ=16m 2-122m 2-2)=24-8m 2>0. ∴直线l 的方程为y =x +1或y =-x +1.。