沪教版(上海)数学高一上册(试用版)-3.1 函数的概念 课件 品质课件PPT
- 格式:pptx
- 大小:1.39 MB
- 文档页数:23
沪教版新课标高一数学函数的基本性质(一) 函数的概念本文介绍了函数的基本性质,分为三节:函数的概念、函数的奇偶性与单调性以及函数的最值与值域。
其中,第一节详细介绍了函数的定义和三要素:定义域、对应法则和函数值域。
同时解释了符号f(x)的三种含义,以及判定两个函数是否为同一个函数的方法。
此外,文章还讲述了函数图像的基本特征,并阐述了函数定义域的含义和求法。
函数是描述两个变量之间对应关系的数学工具。
具体来说,如果在某个变化过程中有两个变量x和y,对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与之对应,那么y就是x的函数,记作y=f(x)。
其中,x叫自变量,x的取值范围D叫做函数的定义域,和x的值相对应的y的值叫做函数值,函数值的集合叫做值域。
函数由三个基本要素构成,即定义域D、对应法则f以及函数值域。
其中,定义域D和对应法则f起到核心作用,当定义域和对应法则确定时,值域也随之被确定。
符号f(x)有三种含义:表示一个函数、表示一个函数的解析式和表示函数值。
判断两个函数是否为同一个函数,可以通过函数定义来判定,即只要两个函数定义域、对应法则以及值域都相同,则它们为同一个函数。
函数图像是平面直角坐标系中的一个点集,反映了自变量与因变量之间的关系。
函数的定义域是指自变量的取值范围,可以通过对应法则来求得。
需要注意的是,通常用x表示自变量,y表示因变量,但这不是绝对的。
函数的定义域D指的是自变量x的取值范围,也就是函数f的作用对象的取值范围。
这个范围通常是一个数集。
例如,如果一个函数f(x)的定义域为[0,1],那么在表达式f(2x+1)中,2x+1(而不是x)的取值范围必须是[0,1]。
这也是本节的重点知识。
一般来说,函数的定义域可以分为三种情况:1.自然定义域:指使函数解析式有意义的自变量的取值范围。
比如,函数f(x)=√x的定义域是[0,+∞)。
2.给定定义域:函数自带定义域。
高一第一学期数学教案课题:函数的概念(1) 课型:新授课 时间:教学目标:1、理解函数的有关概念2、掌握求函数定义域的基本方法3、掌握判断两个函数是否同一函数的条件教学重点:求函数的定义域的基本方法教学难点:判断两个函数是否同一函数的条件教学过程:【课前预习】1、 预习课本第53、54页(1) 喷水池问题中的两个变量为___________和_______________;(2) 出租车问题中的两个变量为____________和______________。
2、函数的相关概念【课内学习】1、函数相关概念:(1)函数关系:________________________________________________。
(2)函数:_______________________________________________________________________________________________________________________________________。
x 叫做____________;y 叫做_____________;________________叫做函数的定义域;____________叫做函数值;_______________叫做函数的值域。
(3)函数的三要素:_________________________。
2、函数的表示方法:______________________________________。
3、根据函数概念,回答下列问题:(1)x x y -+-=12是不是函数?(2)指出下列函数的定义域,对应法则,值域:①12)(+=x x f ②x x f 2)(=③2)(x x f =④2)(x x f = X ∈{-1,0,1} (3)P56 2例1:求下列函数的定义域1、y=2x 1+ 2、)x )(x (y 32+-=3、y=3x 2-x +⋅+(x -1)04、42+-=x x y5、12312--=x x y 6、x x x y 4323--=小结: 求函数的定义域时,一般应考虑:______________________________________。
函数的基本性质(3–1)函数的基本性质共分三节一、函数的概念二、函数的奇偶性与单调性三、函数的最值与值域(一)函数的概念【知识要点】1.什么是函数函数反映的是在某个变化过程中的两个变量之间的一种对应关系:“在某个变化过程中有两个变量x,y,如果对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与它对应,那么y就是x的函数,记作y=f(x),x叫自变量,x的取值范围D叫做函数的定义域,和x的值相对应的y的值叫做函数值,函数值的集合叫做值域。
”2.什么是函数的三要素有定义可知函数都由3个基本要素构成,即定义域D、对应法则f以及函数值域。
在这3个要素中,定义域D和对应法则f起到核心作用,当定义域和对应法则确定时,值域{y|y=f(x),x∈D}也随之被确定。
3.怎么理解符号f(x)的意义符号f(x)有3种含义:(1)用来表示一个函数;(2)用来表示一个函数的解析式;(3)用来表示函数值。
例如:对于函数f(x)=x+1,我们可以把这个函数简称为f(x);也可以把它的解析式x+1简称为f(x);当把f(x)看成一个具体值时,还可以把f(x)看作是x对应的函数值。
4.怎样判定两个函数是否为同一个函数两个函数是否为同一个函数,可以通过函数定义来判定,即只要两个函数定义域、对应法则以及值域都相同,则它们为同一个函数。
由于值域由定义域和对应法则确定,因此判断两个函数是否为同一函数可简化为判断两个函数定义域及对应法则是否相同。
注意:在表示函数时,通常用x表示自变量,y表示因变量,但这不是绝对的,例如:f(x)=x+1,x∈R 与f(t)=t+1,t∈R表示的就是同一个函数。
5.函数图像,函数图像有何基本特征函数图像是平面直角坐标系中的一个点集。
函数的解析式是从数的方面刻划自变量与因变量之间的关系,而函数的图像是从“形”的角度反映自变量与因变量之间的关系,它们的实质是一致的,它们都是函数的表示形式。