总体均数的区间估计和假设检验
- 格式:pptx
- 大小:432.07 KB
- 文档页数:79
区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。
它们虽然都属于推断统计,但也有明显的不同之处。
区间估计的主要目的是估计总体参数的值,也可以称作参数估计。
根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。
估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。
假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。
假设检验涉及两个立场:备择假设和原假设。
假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。
从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。
总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。
两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。
假设检验与区间估计的关系假设检验和区间估计是统计学中两个重要的概念和方法。
它们在数据分析和推断中经常被使用,并且有密切的关联。
假设检验假设检验是统计学中一种通过样本数据对总体参数进行推断的方法。
它的基本思想是,我们根据样本数据得到的统计量,与我们对总体参数的假设进行比较,从而判断这个假设是否合理。
在假设检验中,我们通常会提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。
原假设是我们要进行推断的对象,备择假设则是原假设不成立时所代表的情况。
然后,我们根据样本数据计算得到一个统计量,并且利用该统计量对原假设进行检验。
这个统计量通常会服从某种已知或近似已知的概率分布。
最后,根据统计量在概率分布中所处位置的概率来决定是否拒绝原假设。
如果这个概率非常小(小于显著性水平),则我们有充分的证据拒绝原假设;反之,如果这个概率较大,则我们没有充分的证据拒绝原假设。
总结一下,假设检验的步骤如下:1.提出原假设和备择假设;2.根据样本数据计算得到一个统计量;3.假设这个统计量服从某种概率分布;4.利用概率分布来计算统计量在概率分布中所处位置的概率;5.根据这个概率来决定是否拒绝原假设。
区间估计区间估计是统计学中一种通过样本数据对总体参数进行估计的方法。
它的基本思想是,我们根据样本数据得到的统计量,以及该统计量的抽样分布特性,构建一个区间,这个区间可以包含真实总体参数的真值。
在区间估计中,我们通常会选择一个置信水平(confidence level),表示我们对该区间包含真实总体参数的程度的置信程度。
常用的置信水平有95%和99%。
然后,我们根据样本数据计算得到一个统计量,并且利用该统计量和抽样分布特性来构建一个置信区间。
这个置信区间具有以下特点:如果我们重复使用相同方法对不同样本进行估计,那么约有95%(或99%)的置信区间会包含真实总体参数的真值。
最后,我们根据置信区间来进行参数估计。
简述假设检验与区间估计之间的关系统计学原理假设检验与区间估计是统计学中两个重要的概念和方法,它们都是用于推断总体参数的。
假设检验是一种通过利用样本信息来判断总体参数的一个或一组特定值是否有效或可接受的方法。
在假设检验中,我们首先设立一个虚无假设(null hypothesis)H0,表示总体参数的一些值或总体参数之间的关系成立;然后通过收集样本数据,计算样本的统计量,然后与建立在虚无假设下的分布进行比较,从而得出对虚无假设的结论。
假设检验的结果可以分为接受虚无假设,拒绝虚无假设两种情况。
区间估计是一种通过利用样本信息来估计总体参数的取值范围的方法。
在区间估计中,我们使用样本数据计算样本的统计量,并根据统计量的抽样分布来构建一个置信区间。
置信区间表示总体参数在一些置信水平下的估计范围,置信水平通常取95%或90%等。
在这个范围内,我们可以合理地认为总体参数落在其中。
区间估计进一步提供了总体参数的不确定性程度。
此外,假设检验与区间估计之间还存在一种互补关系。
在假设检验中,我们可以根据检验的结果拒绝或接受虚无假设,从而判断总体参数是否落在一些给定的取值范围内,这可以视为一种特殊的区间估计。
而在区间估计中,我们利用样本数据估计总体参数的取值范围,这可以视为一种特殊的假设检验,即总体参数的真值是否落在估计的区间内。
综上所述,假设检验与区间估计是统计学中两个重要的概念和方法,它们都是推断总体参数的方法。
假设检验通过对总体参数的一个或一组特定值进行判断来推断,而区间估计通过构建置信区间来估计总体参数的取值范围。
两者在原理和方法上有相似之处,可以互相补充和解释。
在实际应用中,我们可以根据具体的问题选择使用假设检验还是区间估计,或者两者结合应用,从而得出更准确和可靠的推断结果。
第6章总体率的区间估计和假设检验♦掌握率的抽样误差的概念和意义♦掌握总体率区间估计的概念意义和计算方法♦掌握率的U检验的概念和条件,计算方法♦第一节率的抽样误差与总体率的区间估计一、率的抽样误差:在同一总体中按一定的样本含量n抽样,样本率和总体率或样本率之间也存在着差异,这种差异称为率的抽样误差。
例6.1 检查居民800人粪便中蛔虫阳性200人,阳性率为25%,试求阳性率的标准误。
本例:n=800,p=0.25,1-p=0.75,%53.10153.080075.025.0==⨯=pS二、总体率的区间估计㈠正态分布法样本含量n足够大,np与n(1-p)均≥5时,例6.2 求例6.1当地居民粪便蛔虫阳性率的95%可信区间和99%的可信区间。
95%的可信区间为:25%±1.96×1.53% 即(22.00%,28.00%)99%的可信区间为:25%±2.58×1.53% 即(21.05%,28.95%)㈡查表法当样本含量较小(如n≤50),np或n(1-p)<5时,样本率的分布呈二项分布,总体率的可信区间可据二项分布的理论求得。
第二节率的u检验应用条件:样本含量n足够大,np与n(1-p)均≥5 。
此时,样本率p也是以总体率为中心呈正态分布或近似正态分布的。
一、样本率与总体率比较的u♦u值的计算公式为:例6.5 根据以往经验,一般胃溃疡病患者有20%(总体率)发生胃出血症状。
现某医生观察65岁以上胃溃疡病人152例,其中48例发生胃出血,占31.6%(样本率)。
问老年胃np)1(ππσ-=nppSp)1(-=pSupα±nppup)1(||||πππσπ--=-=溃疡病患者是否较一般胃溃疡病患者易发生胃出血。
计算结果及判断58.3152)20.01(20.0|20.0316.0|=--=u判断:u=3.58 > u0.05=1. 64(单侧), P<0.05。
●统计推断(statistical inference):通过样本指标来说明总体特征,这种从样本获取有关总体信息的过程称为统计推断。
●抽样误差(sampling error):由个体变异产生的,随机抽样造成的样本统计量与总体参数的差异,称为抽样误差。
●标准误(standard error of mean,SEM )及X s :通常将样本统计量的标准差称为标准误。
许多样本均数的标准差X s称为均数的标准误,它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。
可通过增加样本含量,设计减少标准差来降低标准误。
●可信区间(confidence interval,CI):按预先给定的概率确定的包含未知总体参数的可能范围。
该范围称为总体参数的可信区间。
它的确切含义是:可信区间包含总体参数的可能性是1- a ,而不是总体参数落在该范围的可能性为1-a 。
●参数估计:指用样本指标值(统计量)估计总体指标值(参数)。
参数估计有两种方法:点估计和区间估计。
●假设检验中P 的含义:指从H0 规定的总体随机抽得等于及大于(或等于及小于)现有样本获得的检验统计量值的概率。
●I 型和II 型错误:I 型错误(type I error ),指拒绝了实际上成立的H0,这类“弃真”的错误称为I 型错误,其概率大小用a 表示;II 型错误(type II error),指接受了实际上不成立的H0,这类“存伪”的误称为II 型错误,其概率大小用b 表示。
●检验效能:1- b 称为检验效能(power of test),它是指当两总体确有差别,按规定的检验水准a 所能发现该差异的能力。
●检验水准:是预先规定的,当假设检验结果拒绝H0,接受H1,下“有差别”的结论时犯错误的概率称为检验水准(level ofa test),记为a 。
●抽样误差:由个体变异和抽样造成的样本统计量与总体参数的差异为★标准差与标准误的区别标准差与标准误的意义、作用和使用范围均不同。
区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。
本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。
一、区间估计区间估计是用样本数据来推断总体参数的取值范围。
它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。
这个范围被称为置信区间。
置信区间常用于描述一个参数的不确定性。
例如,我们要估计某种药物的平均效果。
通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。
然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。
例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。
二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。
假设检验通常分为两类:单样本假设检验和双样本假设检验。
1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。
它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。
(2)选择合适的显著性水平(α),表示我们接受原假设的程度。
(3)计算样本数据的检验统计量,例如t值或z值。
(4)根据显著性水平和检验统计量,判断是否拒绝原假设。
2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。
常见的双样本假设检验包括独立样本t检验和配对样本t检验。
独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。
三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。
区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。
它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。
因此,区间估计对于参数的精确度提供了一个相对准确的度量。