2018-2019学年最新北师大版七年级数学上册《一元一次方程的应用》专题练习及答案-精品试题
- 格式:docx
- 大小:21.89 KB
- 文档页数:4
北师大版数学七年级上册第五章一元一次方程微专题——应用题动点类训练31.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度.(2)根据第(1)题的计算过程和结果,设AC=a,BC=b,其他条件不变,则MN=______ .(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动.设点P的运动时间为t(s).当C、P、Q三点中,有一点恰好是以另外两点为端点的线段的中点时,求时间t.2.已知数轴上有两点A、B,点A表示的数是4,点B表示的数是−11,点C是数轴上一动点.(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B两点之间的距离为1时,求C点在数轴上对应的数是多少?(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.3.距离是天文学、物理学、数学,甚至哲学中的热门话题。
唯有深入了解距离,才能更好地把握宇宙尺度,把握做人做事的分寸。
研究数轴我们发现:若点A在数轴上对应的数为a,点B对应的数为b,则A、B两点之间的距离为AB=|a−b|。
已知如图,点O为原点,点A、B在数轴上对应的数分别为−2和6。
(1)①A,B两点之间的距离为__________;②点R是数轴上一点,若点R到点A的距离为6(RA=6),则点R在数轴上对应的数为___。
(2)数轴上有一动点T,当点T以每秒1个单位长度的速度从O点向左匀速运动时,点A也以每秒4个单位长度的速度向左匀速运动,同时点B也以每秒6个单位长度的速度向左匀速运动,若它们同时出发,则几秒后T点到A、B两点的距离相等?4.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)直接写出动点A的运动速度是___个单位长度/秒,动点B的运动速度是___个单位长度/秒;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?5.如图,AB=12cm,点C在线段AB上,AC=3BC,点P,Q在线段AB上来回运动,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=______cm,BC=______cm;(2)当t=______秒时,点P与点Q第一次重合;当t=______秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?6.已知,线段AB上有三个点C、D、E,AB=18,AC=2BC,D、E为动点(点D在点E的左侧),并且始终保持DE=8.(1)如图1,当E为BC中点时,求AD的长;(2)如图2,点F为线段BC的中点,AF=3AD,求AE的长;(3)若点D从A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位,当运动时间t为多少秒时,使AD、BE两条线段中,一条的长度恰好是另一条的两倍.7.如图,线段AB=36cm,动点P从A出发,以3cm/秒的速度沿射线AB运动,点M为AP的中点.(1)点P出发多少秒后,PB=2PM;(2)当点P在线段AB上运动时,试说明2BM−BP为定值;(3)当点P在线段AB延长线上运动,点N为BP的中点时,请判断线段MN的长度是否发生改变,若改变,请说明理由;若不改变,请求其值.8.已知a是最大的负整数,b是−6的相反数,c=−|−2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)a=______,b=______,c=______;(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒5个单位长度,点M追上点Q后立即返回沿数轴负方向运动.求点M追上点Q后再经过几秒,MQ= 2MP9.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,如果把数轴沿表示−2的点对折A、B两点刚好重合.(1)数轴上点B表示的数是______;AB=______.(2)动点P从A点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于2时求点P表示的数.(3)动点P从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,当点Q到达点A时立即以每秒10个单位长度的速度沿数轴向左匀速运动,当点Q回到点B立即停止,若点P、Q同时出发,同时停止,求当PA=QA时,求点Q表示的数.10.如图,已知在原点为O的数轴上三个点A、B、C,OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发向左以每秒a cm的速度匀速运动.设运动时间为t秒.(1)当点P从点O运动到点C时,求t的值;(2)若a=3,那么经过多长时间P,Q两点相距20cm?(3)当PA+PB=40cm,|QB−QC|=10cm时,求a的值.11.已知数轴上A,B两点表示的数分别为−8和20,若A,B两点同时出发,A点运动速度为每秒3个单位,B点运动速度为每秒1个单位,设运动时间为t秒.(1)点A向右运动,B点向左运动,当t为何值时,A,B两点之间距离为8?(2)若A点和B点都向右运动,多少秒后,A,B两点之间距离为8?(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点A和点B的距离相等?12.已知数轴上点A表示的数为12,点B表示的数为−8.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)当点P与点Q关于原点O对称时,求t的值;(2)是否存在t的值,使得点P与点Q之间的距离为3个单位长度?若存在,请求出t的值;若不存在,请说明理由.13.阅读理解:如图①,数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如,线段AB=0−(−1)=1:线段:BC=2−0=2;线段AC=2−(−1)=3(大的数减去小的数).(1)数轴上点A、B表示的数分别是−3和2,则AB=______;(2)数轴上点M表示的数是−1,线段MN的长为2,则点N表示的数是______;(3)如图②,数轴上点A、B表示的数分别是−4和6,动点P从点A出发,沿AB方向以每秒2个单位长度的速度运动,点P运动多少秒时BP=4.并求此时点P表示的数是多少?14.已知a是最大的负整数,b=−|−5|,c是−4的相反数,且a,b,c分别是点A,B,C在数轴上对应的数.(1)则a=__________,b=__________,c=__________;(2)在数轴上,若点D到A的距离刚好是3,则D点叫做A的“幸福点”则A的幸福点D所表示的数应该是__________;(3)若动点P从点B出发以3个单位长度沿数轴向正方向运动,到达点C后立即原路返回,最后在B处停止运动.动点Q同时从点C出发每秒1个单位长度沿数轴向负方向运动,到达点A后停止运动.求运动几秒后,点P与点Q可以遇见?15.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+|c−9|=0.若点A与点B之间的距离表示为AB=|a−b|,点B与点C之间的距离表示为BC=|b−c|,点B 在点A、C之间,且满足BC=2AB.(1)a=______,b=______,c=______;(2)若点P为数轴上一动点,其对应的数为x,当|x−a|=3时,x=______;当代数式|x−a|+ |x−c|取得最小值时,此时最小值为______.(3)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,设运动时间为t秒.问:当t为何值时,M,N两点之间的距离为2个单位?16.已知:如图线段AB=15,C为线段AB上一点,且BC=6。
七年级数学上--列一元一次方程解应用题专项练习一、数字问题。
1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?2、、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。
二、日历中的方程(掌握日历或卡片中的规律)日历中的规律:横行相邻两数相差____ ;竖行相邻两数相差__ _。
1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是()A n+1B a+(n+1)C a+nD a+(n-1)2、如果今天是星期三,那么一年(365天)以后的今天是星期________3、若今天是星期一,问过2017年后是星期____________.4、将1~7七个自然数分别填入下图锥中的各圆圈内,使三条线段上的三数之和、两圆周上的三数之和都等于12(如右图)5、在日历表中,用一个正方形任意圈出2*2个数,则它们的和一定能被_______整除。
A 3B 4C 5D 66、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?7、表2是从表1中截取的一部分,则a=_______表1 表28、将连续的自然数1~1001按如图的方式排列成一个长方形阵列1 2 3 4 5 6 7 (1)用一个长方形任意圈出3行2列6个数, 8 9 10 11 12 13 14 如果圈出的6个数之和为57,这6个15 16 17 18 19 20 21 数分别是多少?22 23 24 25 26 27 28 (2)用一个正方形框出16个数,要使…… …… 这16个数之和分别等于○11988;○22080 995 996 997 998 999 1000 1001三、等积变形问题。
常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积。
一元一次方程的应用(二)【真题精选】1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是分钟时,选择方式一与方式二的费用相同.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:(注:应纳税额=纳税所得额﹣起征额﹣专项附加扣除)小吴2019年1月纳税所得额是7800元,专项附加扣除2000元,则小吴本月应缴税款元;与此次个税调整前相比,他少缴税款元.17.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.一元一次方程的应用(二)参考答案与试题解析一.试题(共17小题)1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,4x=5(90﹣x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?【分析】首先根据题意,设有x个椅子,则有40﹣x个凳子,然后根据:椅子腿数+凳子腿数=145,列出方程,求出椅子的数量,进而求出凳子的数量即可.【解答】解:设有x个椅子,则有40﹣x个凳子,根据题意列方程,4x+3(40﹣x)=145,解方程,得:x=25,∴40﹣x=40﹣25=15.答:有25个椅子,15个凳子.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据题意列方程得,120x=2×80(42﹣x)解得x=24,则42﹣x=42﹣24=18.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.【分析】可设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,根据方式一与方式二的费用相同的等量关系列出方程计算即可求解.【解答】解:设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,依题意有58+0.25(x﹣150)=88,解得x=270.故当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.故答案为:270.【点评】本题考查了一元一次方程的应用,关键是理解方式一与方式二两种移动电话的计费方式.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?【分析】(1)分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)设一班有x人,根据已知得出两种方案费用一样,进而列出方程求解即可.【解答】解:(1)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(2)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.【点评】本题主要考查了一元一次方程的应用,根据已知得出关于x的方程是解题关键.6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.【分析】(1)根据A、B两家公司的优惠方案所提供的数量关系直接列代数式化简即可;(2)根据购买A、B两个公司体育用品的费用相等,列出方程可求x的值;(3)首先求出还需要购买排球的个数,即x的值,再将x的值分别代入(1)中所求的代数式,与10500比较,即可求解.【解答】解:(1)由A公司的优惠方案得,购买A公司体育用品的费用为:0.8×(100×50+40x)=(32x+4000)元;购买B公司体育用品的费用为:100×50+40(x﹣50)=(40x+3000)元;(2)依题意有32x+4000=40x+3000,解得x=125.故此时x的值为125;(3)还需要排球:600﹣(100+50)﹣50﹣100×2=200(个).在A公司采购需要的费用为:32×200+4000=10400<10500,在B公司采购需要的费用为:40×200+3000=11000>10500,所以能满足训练要求,应在A公司采购.【点评】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解两个公司的优惠方案是解决问题的关键.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?【分析】可设他们买了x张优惠票,根据等量关系:买票共花费了1640元,依此列出方程求解即可.【解答】解:设他们买了x张优惠票,根据题意列方程得:80x+120(x﹣3)=1640,80x+120x﹣360=1640,200x=2000,解得x=10.答:他们买了10张优惠票.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡【分析】设一年内在便利店购买咖啡x次,用x表示出购买各类会员年卡的消费费用,把x=75、85代入计算,比较大小得到答案.【解答】解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查的是有理数的混合运算的应用,掌握有理数的混合运算法则是解题的关键.10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?【分析】设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有(106﹣2x)人.根据初一(1)班有20多人,不足30人得出20<x<30,再分①46<106﹣2x≤60,②106﹣2x>60两种情况进行讨论,根据三个班都以班为单位购票,则一共应付1365元列出方程,求解即可.【解答】解:设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有[101﹣x﹣(x﹣5)]=(106﹣2x)人.依题意可知,20<x<30,∴x﹣5<25,46<106﹣2x<66.①如果46<106﹣2x≤60,那么15x+15(x﹣5)+12(106﹣2x)=1365,解得x=28,符合题意.所以x﹣5=23,101﹣x﹣x+5=50;②如果106﹣2x>60,那么15x+15(x﹣5)+10(106﹣2x)=1365.解得x=38.∵38>30,∴x=38不合题意舍去.答:初一(1)班有28人,初一(2)班有23人,初一(3)班有50人.【点评】本题考查了一元一次方程的应用,设初一(1)班有x人,根据x的取值范围得出初一(2)班与初一(3)班人数的范围,进而进行分类讨论是解题的关键.11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?【分析】(1)根据总价=单价×数量,即可求出结论;(2)设复印x张时,两处的收费相同,由甲,乙两店收费相同,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张,依题意,得,解方程组,得,答:小明预订了B等级门票2张,C等级门票5张.【点评】本题考查了二元一次方程组的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?【分析】(1)根据表格中的数据列出相应的方程,从而可以得到初一(2)班的人数;(2)根据表格中的数据和(1)中的结果,可知两个班一起购买最省钱,从而可以求得可以省多少钱.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.【点评】本题考查二元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?【分析】(1)根据里程费+时长费,列式可得车费;(2)根据行车里程1千米,列式可得车费;(3)可设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据等量关系:里程费+时长费=车费37.4元,列出方程求出速度,进一步得到从学校到小华家快车行驶的路程.【解答】解:(1)应付车费=1.8×6+0.8×10=18.8(元).故应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据题意得,解得x=12.∴3x=36.∴(千米).答:从学校到小华家快车行驶了9千米.故答案为:18.8;14.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出方程是解题的关键.15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有3人.【分析】设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.【解答】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x﹣120×0.9x=1080﹣996,解得:x=7,∴=3.故答案为:3.【点评】此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:。
北师大版七年级数学上册第五章一元一次方程之应用:销售打折类专项训练1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?2.在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?3.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是 元.4.学校准备购买一些足球,原计划订购50个,每个80元,店方表示:如果多购,可以优惠,结果校方实际订购了60个,每个减价5元,但商店获得了同样多的利润,求每个足球的成本价.5.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120150方案一每件商品出售价格按标价降价30%按标价降价a%方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.6.已知A、B两件服装的成本共1000元,某服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利260元,问A、B两件服装的成本各是多少元?7.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?8.2019年某商场于元旦之际开展优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到六折(按原价的60%支付)和八折(按原价的80%支付),共支付408元,其中甲种商品原价400元.(1)请问乙种商品原价是多少元?(2)在本次买卖中,甲种商品最终亏损m%,乙种商品最终盈利2m%,但商场不盈不亏,请问甲种商品的成本是多少元?亏损多少元?9.某商店将某种皮鞋按成本加价40元作为标价,又以标价的8折优惠卖出,结果每双皮鞋仍可获利24元,问这种皮鞋的成本价为多少元?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.11.某社区惠民水果店第一次用615元从龙泉水果批发市场购进甲、乙两种不同品种的苹果,其中甲品种苹果重量比乙品种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果.其中甲苹果的重量不变,乙苹果的重量是第一次的3倍;甲苹果按原价销售,乙苹果打折销售.第二次甲、乙两种苹果都销售完以后获得的总利润为735元,求第二次乙苹果按原价打几折销售?(3)惠民水果店发现乙苹果特别好卖,准备再购买一定量乙苹果.并发现相同品质的乙苹果,驷马桥水果批发市场的价格比龙泉水果批发市场的价格便宜,就决定去驷马桥水果批发市场购买,乙苹果价格如下表:购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元惠民水果店分两次从驷马桥水果批发市场共购买乙苹果80千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出352元,请问惠民水果店第一次,第二次分别从驷马桥水果批发市场购买乙苹果多少千克?12.若甲、乙两种商品的单价之和为500元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高2%,求甲、乙两种商品的原来单价?13.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?14.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:一次性购物标价总和优惠办法低于200元不予优惠全部九折优惠低于500元但不低于200元500元或超过500元全部八折优惠(1)王老师一次性购物标价总和为600元,他实际付款 元(直接写出答案).(2)若顾客在该超市一次性购物实际付款360元,问此顾客一次性购物标价总和为多少元?15.某商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?参考答案1.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.2.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.3.解:(1)设商场第一次购进x套运动服,由题意得:.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为=160(元),第二批运动服的进价为=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为:240.4.解:设每个足球的成本价是x元,根据题意得50(80﹣x)=60(80﹣5﹣x)解得x=50答:每个足球成本为50元.5.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)6.解:设A服装成本为x元/件,B服装成本(1000﹣x)元/件,由题意,得30%x+20%(1000﹣x)=260解得x=600则1000﹣x=1000﹣600=400(元)答:A服装成本为600元/件,B服装成本400元/件.7.解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.8.解:(1)设乙商品原价为x元,由题意,得400×0.6+0.8x=408解得:x=210答:原价为210元;(2)设甲商品的成本是y元,则乙商品的成本是(408﹣y)元.由题意,得m%y=2m%(408﹣y)解得:y=272272﹣240=32(元)答:甲商品的成本是272元,亏损32元.9.解:设这种皮鞋的成本价为x元.根据题意得:0.8×(x+40)=x+24,解得:x=40.原方程的解是x=40.答:这种皮鞋的成本价为40元.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.11.解:(1)设第一次购进乙种苹果x千克,则甲的件数为(2x+15)千克,根据题意得:8x+5×(2x+15)=615.解得:x=30∴2x+15=75答:第一次购进乙种苹果30千克,甲种苹果75千克.(2)设第二次乙苹果售价为每千克15y元,根据题意得:(10﹣5)×75+(15y﹣8)×30×3=735解得:y=0.8答:第二次乙种苹果是按原价打8折销售.(3)设第一次购买a千克苹果,第二次购买(80﹣a)千克苹果.分三种情况考虑:①当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够80千克,不成立.②当第一次购买苹果不超过20千克,第二次购买苹果超过40千克,得:6a+4(80﹣a)=352解得:a=16∴80﹣a=80﹣16=64③第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克,得:5a+4(80﹣a)=352解得:a=32∴80﹣a=80﹣32=48答:第一次购买16千克苹果,第二次购买64千克苹果;或者第一次购买32千克苹果,第二次购买48千克苹果.12.解:设甲商品的原单价为x元,则乙商品的原单价为(500﹣x)元,依题意,得:(1﹣10%)x+(1+5%)(500﹣x)=500×(1+2%),解得:x=100,∴500﹣x=400.答:甲商品的原单价为100元,乙商品的原单价为400元.13.解:设每支铅笔的原价是x元,根据题意得:100x﹣100×0.85x=27,解得:x=1.8.答:每支铅笔的原价是1.8元.14.解:(1)600×0.8=480(元).故答案为:480.(2)设此顾客一次性购物标价总和为x元,∵500×0.8=400>360∴200<x<500.依题意,得:0.9x=360,解得:x=400.答:顾客一次性购物标价总和为400元.15.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120+120﹣x﹣y=﹣10(元).答:卖这两件衣服总的是亏损,亏损了10元钱.。
北师大版数学七年级上册5.4应用一元一次方程--打折销售同步练习一、选择题1.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24B.28C.31D.32答案:D解析:解答:如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据题意得36(x-4)=21×48,解得x=32.答:此时甲尺的刻度21会对准乙尺的刻度32.故选D.分析:由将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,得出甲尺相邻两刻度之间的距离:乙尺相邻两刻度之间的距离=48:36=4:3,如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据甲尺的刻度21与刻度0之间的距离=乙尺刻度x与刻度4之间的距离列出方程,解方程即可.2.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元答案:B解析:解答:设进价为x元,则该商品的标价为1.5x元,由题意得1.5x×0.8-x=500,解得:x=2500.则标价为1.5×2500=3750(元).则3750×0.9-2500=875(元).故选:B.分析:设进价为x元,则该商品的标价为1.5x元,根据“按标价打八折销售该电器一件,则可获利润500元”可以得到x的值;然后计算打九折销售该电器一件所获得的利润.3.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A.25台B.50台C.75台D.100台答案:C解析:解答:设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得:x=3(100-x),解得:x=75.故选C.分析:设今年购置计算机的数量是x台,根据今年购置计算机数量是去年购置计算机数量的3倍列出方程解得即可.4.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00B.12:00C.13:00D.16:00答案:C解析:解答:设开幕式当天该景区游客人数饱和的时间约为x点,则(x-8)×(1000-600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.分析:设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.5.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100答案:B解析:解答:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.分析:设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.6.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元答案:A解析:解答:设1月份每辆车售价为x元,则2月份每辆车的售价为(x-80)元,依题意得100x=(x-80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.分析:设1月份每辆车售价为x元,则2月份每辆车的售价为(x-80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.7.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元答案:D解析:解答:设进货价为x元,由题意得:(1+100%)x…60%=60,解得:x=50,故选:D.分析:根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.8.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是()B.20斤C.30斤D.15斤答案:C解析:解答:设小王购买豆角的数量是x斤,则3×80%x=3(x-5)-3,整理,得2.4x=3x-18,解得x=30.即小王购买豆角的数量是30斤.故选:C.分析:设小王购买豆角的数量是x斤,依据“之前一人只比你少买5斤就是按标价,还比你多花了3元”列出方程并解答.9.高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶()千米.A.36B.37C.55D.91答案:A解析:解答:∵4和9的最小公倍数为36,∴第二次同时经过这两种设施是在36千米处.故选A.分析:让4和9的最小公倍数加上19即为第二次同时经过这两种设施的千米数.10.某品牌不同种类的文具均按相同折数打折销售,如果原价300元的文具,打折后售价为240元,那么原价75元的文具,打折后售价为()A.50元B.55元D.65元答案:C解析:解答:设该品牌不同种类的文具均按x折销售.依题意得300x=240,解得x=8,即打8折销售,所以75×0.8=60(元).故选:C.分析:设该品牌不同种类的文具均按x折销售.则利用“原价300元的文具,打折后售价为240元”求得x的值,然后由75×0.1x可以求得打折后的售价.11.某单位元旦期间组织员工到正定出游,原计划租用28座客车若干辆,但有4人没有座位,若租用同样数量的33座客车,只有一辆空余了11个座位,其余客车都已坐满,则该单位组织出游的员工有()A.80人B.84人C.88人D.92人答案:C解析:解答:设租用28座客车x辆.则28x+4=33x-11,解得x=3,则28x+4=28×3+4=88(人),即该单位组织出游的员工有88人.故选:C.分析:设租用28座客车x辆.根据员工人数不变列出关于x的方程并解答.12.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.则这款空调每台的进价()A.1000B.1100D .1300答案:C解析:解答:设这款空调每台的进价为x 元,根据题意得:1635×80%-x =9%x ,解得:x =1200,则这款空调每台的进价为1200元.故选C .分析:设这款空调每台的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果.13.某商场将一款品牌时装按标价打九折出售,可获利80%;若按标价打七折出售,可获利( )A .30%B .40%C .50%D .56%答案:B解析:解答:设按标价打七折出售,设可获利x ,再设成本为a 元,根据题意,得 ()()10810.90..7a x a ++=, 解得x =0.4=40%.即按标价打七折出售,可获利40%.故选:B .分析:如果设按标价打七折出售,设可获利x ,再设成本为a 元,那么根据标价不变列出方程,解方程即可.14.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( )A .100元B .90元C .810元D .819元解析:解答:设原价为x.2(),x⨯-=110%81解得x=100.故选:A.分析:可设该商品原来的价格是x元,根据等量关系式:原价×(1-降低率)2=81,列出方程即可求解.15.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是()A.16元B.18元C.20元D.25元答案:C解析:解答:设原价为x元,由题意得:0.9x-0.8x=2解得x=20.故选:C.分析:等量关系为:打九折的售价-打八折的售价=2.根据这个等量关系,可列出方程,再求解.二、填空题16.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为______元.答案:100.解析:解答:设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.分析:根据题意可知商店按零售价的8折再降价10元销售即销售价=150×80%-100,得出等量关系为150×80%-10-x=x×10%,求出即可.17.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省______元.答案:18或46.8.解析:解答:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288-450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.分析:按照优惠条件第一次付180元时,所购买的物品价值不会超过300元,不享受优惠,因而第一次所购物品的价值就是180元;300元的9折是270元,因而第二次的付款288元所购买的商品价值可能超过300元,也有可能没有超过300元.计算出两次购买物品的价值的和,按优惠条件计算出应付款数.18.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了______千克.答案:5.解析:解答:设买了甲种药材x千克,乙种药材(x-2)千克,依题意,得20x+60(x-2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.分析:设买了甲种药材x千克,乙种药材(x-2)千克,根据用280元买了甲、乙两种药材,甲种药材比乙种药材多买了2千克,列方程求解.19.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票______张.答案:50.解析:解答:设当日售出成人票x张,儿童票(100-x)张,可得:50x+30(100-x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.分析:根据总售出门票100张,共得收入4000元,可以列出方程求解即可.20.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是______元.答案:128.解析:解答:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.分析:设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折-获利,可得出方程:200×80%-25%x=x,解出即可.三、解答题21.小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?答案:A号计算器的单价为35元,则B型号计算器的单价是25元.解答:设A号计算器的单价为x元,则B型号计算器的单价是(x-10)元,依题意得:5x=7(x-10),解得x=35.所以35-10=25(元).答:A号计算器的单价为35元,则B型号计算器的单价是25元.解析:分析:设A号计算器的单价为x元,则B型号计算器的单价是(x-10)元,依据“5台A型号的计算器与7台B型号的计算器的价钱相同”列出方程并解答.22.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?答案:九年级一班胜、负场数分别是5和3.解答:设胜了x 场,那么负了(8-x )场,根据题意得:2x +1…(8-x )=13,x =5,8-5=3.答:九年级一班胜、负场数分别是5和3.解析:分析:设胜了x 场,那么负了(8-x )场,根据得分为13分可列方程求解.23.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿直线匀速爬向B 点的过程中,到达C 点时用了6分钟,那么还需要多长时间才能到达B 点?答案:蜗牛还需要4分钟到达B 点.解答:设蜗牛还需要x 分钟到达B 点.则3656x +⨯=(), 解得x =4.答:蜗牛还需要4分钟到达B 点.解析:分析:设蜗牛还需要x 分钟到达B 点.根据路程=速度×时间列出方程并解答.24.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m ,4.7m .请你算出小明1月份的跳远成绩以及每个月增加的距离.答案:小明1月份的跳远成绩是3.9m ,每个月增加的距离是0.2m .解答:设小明1月份的跳远成绩为xm ,则4.7-4.1=3(4.1-x ),解得x =3.9.则每个月的增加距离是4.1-3.9=0.2(m ).答:小明1月份的跳远成绩是3.9m ,每个月增加的距离是0.2m .解析:分析:设小明1月份的跳远成绩为xm ,则5月份-2月份=3(2月份-1月份),据此列出方程并解答.25.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?答案:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.解答:设每件衬衫降价x元,依题意有120×400+(120-x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.解析:分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.。
新北师大版数学七年级上册一元一次方程专题复习 一、选择题: 1.下面的等式中,是一元一次方程的为( )A .3x +2y =0B .3+m =10C .2+x 1=x D .a 2=162.下列结论中,正确的是( )A .由5÷x =13,可得x =13÷5B .由5 x =3 x +7,可得5 x +3 x =7C .由9 x =-4,可得x =-49D .由5 x =8-2x ,可得5 x +2 x =83.下列方程中,解为x =2的方程是( )A .3x =x +3B .-x +3=0C .2x =6D .5x -2=84.解方程时,去分母得( )A .4(x +1)=x -3(5x -1)B .x +1=12x -(5x -1)C .3(x +1)=12x -4(5x -1)D .3(x +1)=x -4(5x -1)5.若31(y +1)与3-2y 互为相反数,则y 等于( )A .-2B .2C .78D .-786.关于y 的方程3y +5=0与3y +3k =1的解完全相同,则k 的值为( )A .-2B .43C .2D .-347.父亲现年32岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( )A .32-x =5-xB .32-x =10(5-x)C .32-x =5×10D .32+x =5×108.小华在某月的月历中圈出几个数,算出这三个数的和是36,那么这个数阵的形式可能是( )A .B .C .D .9.某商品的售价比原售价降低了15%,现售价是34元,那么原来的售价是( )A .28元B .32元C .36元D .40元10.用72cm 长的铁丝做一个长方形的教具,要使宽为15cm,那么长是( )A .28.5cmB .42cmC .21cmD .33.5cm二、填空题:11.设某数为x ,若它的3倍比这个数本身大2,则可列出方程___________.12.将方程3x -7=-5x +3变形为3x +5x =3+7,这个变形过程叫做______.13.当y =______时,代数式与41y +5的值相等.14.若与31互为倒数,则x =______.15.三个连续奇数的和是75,则这三个数分别是___________.16.一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为______元.17.若x =-3是关于x 的方程3x -a =2x +5的解,则a 的值为______.18.单项式-3a x +1b 4与9a 2x -1b 4是同类项,则x =______.19.一只轮船在A 、B 两码头间航行,从A 到B 顺流需4小时,已知A 、B 间的路程是80千米,水流速度是2千米/时,则从B 返回A 用______小时.三、解方程:(1)9-10x=10-9x (2) 2(x+3)-5(1-x)=3(x -1) (3)2x -13 =x+22+1(4)310.40.342x x -=+ (5)301.032.01=+-+x x (6)112[(1)](1)223x x x --=-(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
北师大版七年级数学上册第五章《一元一次方程》应用:行程类专项训练(含答案)1.已知某铁路桥长1000米,现有一列火车匀速从桥上通过,火车从车头上桥到车尾离桥共用了1分钟,整列火车完全在桥上的时间为40秒,求火车的长度及其行驶速度.2.A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?3.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.4.甲、乙两车从相距360千米的A、B两地匀速相向而行,甲车从A地出发,乙车从B地出发.(1)若甲车比乙车先出发1小时,则两车在乙车出发后经2小时相遇;若乙车比甲车先出发2.5小时,则两车在甲车出发后经1.5小时相遇.问甲、乙两车每小时各行驶多少千米?(2)若甲车先出发,3小时后乙车也出发.甲车到达B地后立即返回(忽略掉头等时间),结果与乙车同时到达A地.已知甲车速度是乙车速度的1.25倍,问乙车出发后多少时间两车第一次相遇?5.甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米.如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,问何时甲丙两车相距15千米?6.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60km/h,乙车的速度为90km/h,甲车先出发1h后乙车再出发,乙车到达B地后在原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?7.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?8.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?9.列方程解应用题:甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知A,B两地相距200km.(1)经过多长时间两车相遇;(2)两车相遇的地方离A地多远?10.列方程解应用题:某校全校学生从学校步行去烈士陵园扫墓,他们排成长为250米的队伍,以50米/分钟的平均速度行进,当排头出发20分钟后,学校有一份文件要送给带队领导,一名教师骑自行车以150米/分钟的平均速度按原路追赶学生队伍,学校离烈士陵园2千米.(1)教师能否在排头队伍到达烈士陵园前送到在排头前带队领导手里?(2)送信教师和带队领导停下来交谈了一分钟,交谈过程中队伍继续前进,然后领导要求送信老师马上赶到队尾,防止有意外情况发生,他按追赶时的平均速度需要多少时间就可以赶到队尾;(3)送信教师赶到队尾后,和最后的同学一起走,送信老师还需要多少时间可到达烈士陵园.11.钱塘江江面宽阔,水流速度也有很大不同.在江面的中间,水的速度是每小时45里,沿岸的地方水的速度是每小时25里.今有一汽船顺江的中间往下游行驶,4小时行驶了440里,问从沿岸返回原处需几小时?12.从甲地到乙地的长途汽车原行驶7小时可以到达,开通高速公路后,路程缩短10千米,车速平均每小时增加50千米,结果只需4小时即可到达.求汽车在高速公路上平均每小时可以行驶多少千米?13.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口,已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行多少小时?14.小刘开着小桥车,其平均速度为100km/h,小张开着大货车,都从A地去B地,小刘比小张晚出发1小时,最后两车同时到达B地,已知:小轿车的平均速度是大货车的平均速度的2倍.(1)A地到B地的路程是多少?(列方程解答)(2)当小刘出发时,求小张离B地还有多远?15.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?参考答案1.解:方法一:设火车行驶速度为x米/秒,由题意得:60x﹣1000=1000﹣40x,解得:x=20,火车的长为=200(米).方法二:设火车的速度为x米/秒,火车长为y米,则,解得:.答:火车的长度为200米,速度为20米/秒.2.解:设甲列车每小时行x千米,可得:4(x﹣50+x)+2x=1000.4x﹣200+4x+2x=1000,10x=1200,x=120.答:甲车每小时行120千米3.解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B两地之间的距离是60千米.4.解:(1)设甲车每小时行驶x千米,乙车每小时行驶y千米,由题意得:解得:答:甲车每小时行驶80千米,乙车每小时行驶60千米.(2)设乙车每小时行驶m千米,则甲车每小时行驶1.25m千米,由题意得:=∴720﹣3.75m=360×1.25解得:m=72经检验,m=72是原方程的解∴1.25m=1.25×72=90360﹣90×3=90(km)∴90÷(90+72)=(小时)答:乙车出发后小时两车第一次相遇.5.【解答】解:设t小时后乙、丙两汽车相遇,则(50+45)t=(40+50)(t+),解得t=3.故(50+45)t=95×3=285(千米).即:A、B两市的距离是285千米.设x小时甲、丙两车相距15千米.①当甲、丙两车相遇前相距15千米,由题意,得(40+50)x=285﹣15解得x=3.②当甲、丙两车相遇后相距15千米,由题意,得(40+50)x=285+15解得x=.综上所述,3或小时后,甲丙两车相距15千米.6.解:(1)设乙车出发x小时追上甲车,由题意得:60+60x=90x解得x=2故乙车出发2小时追上甲车.(2)乙车出发后t小时与甲车相距50km,存在以下三种情况:①乙车出发后在追上甲车之前,两车相距50km,则有:60+60t=90t+50 解得t=;②乙车超过甲车且未到B地之前,两车相拒50km,则有:60+60x+50=90t解得t=;③乙车到达B地而甲车未到B地,两车相距50km,则有:60+60t+50=360 解得t=.故乙车出发小时、小时或小时与甲车相距50km.7.解:设甲骑自行车每小时行x千米,乙骑自行车每小时行(x﹣12)千米,依题意得:5x﹣(5+1)(x﹣12)=36,解得:x=18,x﹣12=21﹣12=9.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.8.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.9.解:(1)设经过x小时两车相遇,根据题意得:(60+90)x=200,解得:x=,答:经过小时两车相遇;(2)根据题意得:60×=80(千米),答:两车相遇的地方离A地80千米.10.解:(1)2000÷50=40(分钟),2000÷150+20=(分钟),∵40>,∴教师能在排头队伍到达烈士陵园前送到在排头前带队领导手里.(2)设送信教师按追赶时的平均速度需要x分钟就可以赶到队尾,根据题意得:(150+50)x=250﹣50×1,解得:x=1.答:他按追赶时的平均速度需要1分钟就可以赶到队尾.(3)设送信教师需要y分钟可追上带队领导,根据题意得:(150﹣50)y=50×20,解得:y=10,∴(2000+250)÷50﹣20﹣y﹣2=13.答:送信老师还需要13分钟可到达烈士陵园.11.解:设从沿岸返回原处需x小时,由题意得:(440÷4﹣45﹣25)x=440∴(110﹣70)x=440∴40x=440∴x=11答:从沿岸返回原处需11小时.12.解:设汽车原来平均每小时可以行驶x千米.根据题意,有7x﹣10=4(x+50).解得,x=70.∴x+50=120.答:汽车在高速公路上平均每小时可以行驶120千米.13.解:船的速度为:60÷4﹣6=9(千米/时),设此船回到原地,还需再行x小时,60﹣4×(9﹣6)=(9+3)x,解得,x=4,答:此船回到原地,还需再行4小时.14.解:(1)设小张时间为xh,由题意得:100(x﹣1)=(100÷2)x,解得:x=2,100×(2﹣1)=100(km),答:娄A地到B地的路程是100km;(2)100﹣100÷2×1=50(km),答:当小刘出发时,小张离长沙还有50km.15.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。
一元一次方程应用题专项训练一、体积(周长)问题(变化前=变化后)1、某居民楼顶有一个直径和高均为4m的圆柱形的储水箱,现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m。
那么在容积不变的前提下水箱的高度将由原先的4m增高为多少m?2、某钢铁厂计划把一个地面直径为6cm,高为30cm的“瘦长”形圆柱钢材,锻压成底面直径是12cm的“矮胖”形圆柱零件, 求锻压后圆柱零件的高?3.用一个底面半径40毫米,高120毫米的圆柱形玻璃杯向一个底面半径100毫米的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10毫米,求大玻璃杯的高度。
4.两个圆柱形容器,他们的直径分别为4cm和8cm,高分别为39cm和10cm .我们现在第二个容器里倒满水,然后再将其倒入第一个容器中。
问:倒完以后,第一个容器的水面离容器口有多少厘米?小刚是这样做的:设倒完以后,第一个容器里的水面离容器口有xcm.列方程ㄫ×22×(39—x)=ㄫ×42×10.解得x=—1.你能对他的结果做出合理的解释吗?5.用一根长为10米的铁丝围成一个长方形(1)使得这个长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?面积呢?(2)使得该长方形的长比宽多0.8米,此时长方形的长和宽各是多少米?面积多少平方米?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米? 面积呢?(4)填写表格并思考你有什么发现?6.用一根长10米铁线在墙边围成一个鸡棚,使长比宽大4米,问围成的鸡棚的长和宽各是多少呢?若墙长5米,这样设计合理吗?7.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示。
小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示。
小颖所钉长方形的长、宽各为多少厘米?二、总数之间的等量关系1.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,原有树苗多少棵?2.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.计划做多少个“中国结”3、“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?4.某工程,甲单独做12天完成,乙单独做8天完成.现在由甲先做3天,乙再参加做,求完成这项工程乙还需要几天?5.一艘轮船从甲码头到乙码头顺流行驶用3小时,从乙码头到甲码头逆流行驶用4小时,已知轮船在静水中的速度为30千米/时,求水流的速度6、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数。
北师大版七年级数学上册第五章列一元一次方程解应用题专题练习题1、某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.2、采摘茶叶是茶农一项很繁重的劳动,利用单人便携式采茶机能大大提高生产效率.实践证明,一台采茶机每天可采茶60公斤,是人手工采摘的5倍,购买一台采茶机需2400元.茶园雇人采摘茶叶,按每采摘1公斤茶叶m元的标准支付雇工工资,一个雇工手工采摘茶叶20天获得的全部工钱正好购买一台采茶机.(1)求m的值;(2)有两家茶叶种植户王家和顾家均雇人采摘茶叶,王家雇用的人数是顾家的2倍.王家所雇的人中有的人自带采茶机采摘,的人手工采摘,顾家所雇的人全部自带采茶机采摘.某一天,王家付给雇工的工资总额比顾家付给雇工的工资总额少600元.问顾家当天采摘了多少公斤茶叶?3、某市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.估计小明家下月总用电量为200度.(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为200度,用峰谷电费付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?4、在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.5、盈盈超市第一次用6000元购进甲,乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲,乙两种商品的进价和零售价如下表(注:获利=售价﹣进价):甲乙进价(件/元)2230售价(件/元)2940(1)第一次进货时甲,乙两种商品各购进多少件?(2)该超市第二次以第一次的进价又购进甲,乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍,甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完后盈利2130元,求第二次乙种商品是按原价打几折销售的.6、国庆期间,某公园门票规定如下表:购票人数1﹣50张51~100张100张以上每人门票价13元11元9元某校七年级(1)(2)两个班共104人去游园,如果以班为单位购票,共付1240元,其中(1)班人数大于40人小于50人,试问:(1)这两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票最省钱?7、某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?8、为了进行资源的再利用,学校准备针对库存的桌椅进行维修,现有甲、乙两木工组,甲每天修桌凳14套,乙每天比甲多7套,甲单独修完这些桌凳比乙单独修完多用20天.学校每天付甲组80元修理费,付乙组120元修理费.(1)请问学校库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你选哪种方案,为什么?9、请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.10、某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A、B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元.A公司的优惠政策为:每买一张办公桌赠送一把椅子;B公司的优惠政策为:办公桌和椅子都实行八折优惠.(1)若到A公司买办公桌的同时买m把椅子,则应付多少钱?(2)若规定只能选择一家公司购买桌椅,什么情况下到任意一家公司购买付款一样多?(3)如果添置的20张办公桌和30把椅子,可到一家公司购买或A、B公司分开购买,请你设计一种购买方案,使所付款额最少,最少付款额是多少?(可不说明理由)11、现在,某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?12、某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.13、一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)14、某公司要把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好一次可以运完.已知大、小货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为大货车630元/辆,小货车420元/辆,运往B地的运费为大货车750元/辆,小货车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,剩下的货车前往B地,那么当前往A地的大货车有多少辆时,总运费为11350元.15、为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机场的时间仅剩90分钟,7点30分小颖发现爸爸忘了带身份证,急忙通知爸爸返回,同时她乘坐出租车以40千米/小时的平均速度直奔机场,与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返回,结果不到30分钟就遇上小颖(打电话,拿身份证及上出租车的时间忽略不计),并立即按原速赶往机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶了千米,爸爸返回了千米(均用含x的代数式表示);(2)求小颖从7点30分出发经过多少时间与爸爸相遇;(3)小颖的爸爸能否在规定的时间内赶到机场?16、某中学举行数学竞赛,计划用A,B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?17、A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?35.甲、乙两地的路程为600km,一辆客车从甲地开往乙地.从甲地到乙地的最高速度是每小时120km,最低速度是每小时60km.(1)这辆客车从甲地开往乙地的最短时间是h,最长时间是h.(2)一辆货车从乙地出发前往甲地,与客车同时出发,客车比货车平均每小时多行驶20km,3h两车相遇,相遇后两车继续行驶,各自到达目的地停止.求两车各自的平均速度.(3)在(2)的条件下,甲、乙两地间有两个加油站A、B,加油站A、B相距200km,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与加油站B的路程.参考答案1、某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.【解答】解:(1)设每件衬衫降价x元,根据题意可得:(120﹣80)×400+(500﹣400)(120﹣x﹣80)=80×500×45%,解得:x=20,答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标;(2)由题意可得:[20×120+5×(120﹣20)]÷25=116(元),答:该公司购买这25件衬衫的平均价格是116元.2、采摘茶叶是茶农一项很繁重的劳动,利用单人便携式采茶机能大大提高生产效率.实践证明,一台采茶机每天可采茶60公斤,是人手工采摘的5倍,购买一台采茶机需2400元.茶园雇人采摘茶叶,按每采摘1公斤茶叶m元的标准支付雇工工资,一个雇工手工采摘茶叶20天获得的全部工钱正好购买一台采茶机.(1)求m的值;(2)有两家茶叶种植户王家和顾家均雇人采摘茶叶,王家雇用的人数是顾家的2倍.王家所雇的人中有的人自带采茶机采摘,的人手工采摘,顾家所雇的人全部自带采茶机采摘.某一天,王家付给雇工的工资总额比顾家付给雇工的工资总额少600元.问顾家当天采摘了多少公斤茶叶?【解答】解:(1)由题意:×20×m=2400,解得:m=10;(2)设顾家雇了x人,则王家雇了2x人,其中:人自带采茶机采摘,人人手工采摘,由题意得:60x×10=×x×10+60×x×10+600解得:x=15 (人)所以,顾家当天采摘了共采摘了15×60=900(公斤),答:顾家当天采摘了900公斤茶叶.3、某市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.估计小明家下月总用电量为200度.(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为200度,用峰谷电费付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?【解答】解:(1)按普通电价付费:200×0.53=106元,按峰谷电价付费:50×0.56+150×0.36=82元.所以按峰谷电价付电费合算,能省106﹣82=24元;(2)设那月的峰时电量为x度,根据题意得:0.53×200﹣[0.56x+0.36(200﹣x)]=14,解得x=100.答:那月的峰时电量为100度.4、在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.【解答】解:(1)设七年级2班有男生有x人,则女生有(x+2)人,由题意得:x+x+2=50,解得:x=24,女生:24+2=26(人),答:七年级2班有男生有24人,则女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,1880:1040≠2:1,所以原计划男生负责箭筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套,设男生应向女生支援y人,由题意得:120(24﹣y)=(26+y)×40×2,解得:y=4,答:男生应向女生支援4人时,才能使每小时剪出的筒身与筒底相同.5、盈盈超市第一次用6000元购进甲,乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲,乙两种商品的进价和零售价如下表(注:获利=售价﹣进价):甲乙进价(件/元)2230售价(件/元)2940(1)第一次进货时甲,乙两种商品各购进多少件?(2)该超市第二次以第一次的进价又购进甲,乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍,甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完后盈利2130元,求第二次乙种商品是按原价打几折销售的.【解答】解:(1)设第一次甲种商品购进x件,依题意:22x+30(x+15)=6000,解此方程:x=150;(x+15)=90,答:第一次甲,乙两种商品分别购进150件和90件;(2)设第二次乙种商品按打y折销售,依题意:(29﹣22)×150+(40×﹣30)×90×3=2130,解此方程:y=8.5,答:第二次乙种商品是按原价打8.5折销售的.6、国庆期间,某公园门票规定如下表:购票人数1﹣50张51~100张100张以上每人门票价13元11元9元某校七年级(1)(2)两个班共104人去游园,如果以班为单位购票,共付1240元,其中(1)班人数大于40人小于50人,试问:(1)这两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你如何购票最省钱?【解答】解:(1)设(1)班有x人,则(1)班有(104﹣x)人,根据题意得13x+11(104﹣x)=1240,解得x=48,104﹣x=104﹣48=56.答:(1)班有48人,(2)班有56人;(2)104×9=936(元),1240﹣936=304(元).答:两班联合起来,作为一个团体购票,可省304元;(3)13×48=624(元),11×51=561(元).答:(1)班买51张票最省钱.7、某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元时,能租出多少辆轿车?(2)已知11月份的保养费开支为12900元,问该月租出了多少辆轿车?(3)比较10、11两月的月收益,哪个月的月收益多?多多少?【解答】解:(1)设10月份未租出x辆轿车,依题意得,50x=3600﹣3000,解得x=12.所以,租出的轿车为100﹣12=88(辆).答:10月份能租出88辆轿车;(2)设11月份租出y辆轿车,依题意得:150y+50(100﹣y)=12900解得y=79.答:11月份租出79辆轿车;(3)10月份收益:(3600﹣150)×88﹣50×12=303000(元).11月份收益:[3000+50(100﹣79)]×79﹣12900=307050(元).因为307050﹣303000=4050(元),所以11月份收益多,多4050元.8、为了进行资源的再利用,学校准备针对库存的桌椅进行维修,现有甲、乙两木工组,甲每天修桌凳14套,乙每天比甲多7套,甲单独修完这些桌凳比乙单独修完多用20天.学校每天付甲组80元修理费,付乙组120元修理费.(1)请问学校库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你选哪种方案,为什么?【解答】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:14(x+20)=21x,解得:x=40,总数:21×40=840(套),答:乙单独做需要40天完成,甲单独做需要60天,一共有840套桌椅;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:840÷(14+21)=24(天),则一共需要:24×(120+80)+24×10=5040(元),故选择方案三合算.9、请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【解答】解:(1)设一个暖瓶x元,则一个水杯(38﹣x)元,根据题意得:2x+3(38﹣x)=84.解得:x=30.一个水杯=38﹣30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15﹣4)×8=208元.因为208<216.所以到乙家商场购买更合算.10、某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A、B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元.A公司的优惠政策为:每买一张办公桌赠送一把椅子;B公司的优惠政策为:办公桌和椅子都实行八折优惠.(1)若到A公司买办公桌的同时买m把椅子,则应付多少钱?(2)若规定只能选择一家公司购买桌椅,什么情况下到任意一家公司购买付款一样多?(3)如果添置的20张办公桌和30把椅子,可到一家公司购买或A、B公司分开购买,请你设计一种购买方案,使所付款额最少,最少付款额是多少?(可不说明理由)【解答】解:(1)210×20+70×(m﹣20)=70m+2800(元).答:若到A公司买办公桌的同时买m把椅子,则应付(70m+2800)元钱.(2)设买x把椅子,到任意一家公司购买付款一样多,根据题意得:210×20+70(x﹣20)=80%(210×20+70x),解得:x=40.答:买40把椅子时,到任意一家公司购买付款一样多.(3)购买方案为:到A公司购买20张办公桌,A公司赠送20把椅子,再到B 公司购买10把椅子.最少付款额为210×20+80%×70×10=4760元.11、现在,某商场进行元旦促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果该商场还能盈利25%,那么这台冰箱的进价是多少元?【解答】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,顾客购买1500元金额的商品时,买卡与不买卡花钱相等;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.12、某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.13、一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程40x+30x=7×2.(本小题只需要列出方程,不用解)【解答】解:(1)设这名队员从掉头返校到追上队伍,经过了y小时,根据题意得:50y﹣30y=30××2,解得:y=1.5.答:这名队员从掉头返校到追上队伍,经过了1.5小时.(2)设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意得:40x+30x=7×2.故答案为:40x+30x=7×2.14、某公司要把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好一次可以运完.已知大、小货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为大货车630元/辆,小货车420元/辆,运往B地的运费为大货车750元/辆,小货车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,剩下的货车前往B地,那么当前往A地的大货车有多少辆时,总运费为11350元.【解答】解:(1)设大货车用x辆,则小货车用(20﹣x)辆,根据题意得:15x+10(20﹣x)=240,解得:x=8,∴20﹣x=20﹣8=12.答:大货车用8辆.小货车用12辆.(2)设前往A地的大货车有a辆,那么到A地的小货车有(10﹣a)辆,到B 地的大货车(8﹣a)辆,到B的小货车有12﹣(10﹣a)=a+2辆,根据题意得:630a+420(10﹣a)+750(8﹣a)+550(2+a)=11350,即10a+11300=11350,解得:a=5.答:当前往A地的大货车有5辆时,总运费为11350元.15、为赴某地考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆轿车(平均速度为60千米/小时)从家里出发赶往距家45千米的某机场,此时距规定到达机。
北师大版七年级数学上册《第三章一元一次方程的应用》同步练习题及答案一、解答题1.一艘船从甲码头到乙码头顺流航行,用了3.2h,从乙码头返回甲码头逆流航行,用了4.8h,已知水流的速度为3km/h,求这艘船在静水中的速度.2.A、B是一条数轴上不同的两点,它们所对应的数分别是47x-和317x+,且点A和点B到原点的距离相等,求A,B两点之间的距离.3.某中学到商店购买足球和排球,购买足球40个,排球30个共花费4000元,已知购买一个足球比购买一个排球多花30元.(1)求购买一个足球和一个排球各需多少元?(2)学校决定第二次购买足球和排球共50个,正好赶上商场对商品价格进行调整,一个足球售价比第一次购买时提高了10%,一个排球按第一次购买时售价的九折出售,如果学校第二次购买足球和排球的总费用是第一次购买总费用的86%,求学校第二次购买排球多少个?4.如图,小明用一张正方形纸片剪出两个宽都是5cm的长条,如果其中一个长条的面积是另一个长条的1.2倍,求原来正方形纸片的边长.5.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:甲种乙种进价(元/千克)59售价(元/千克)813(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?6.为参加学校“一二九”合唱比赛,七年级一班和七年级二班准备购买演出服.下面是某服装厂给出的演出服价格表:购买服装数量(套)1~4546~9091及91以上每套服装价格(元)908070已知两班共有学生89人(每班学生人数都不超过80人),如果两班单独购买服装,每人只买一套,那么一共应付7540元.问七年级一班和七年级二班各有学生多少人?7.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的34还少1个,请问每个女生平均买几个气球?8.某服装厂计划若干天完成一批订单任务,如果平均每天生产16套服装,那么就比订单任务少生产80套;如果平均每天生产20套服装,那么就比订单任务多生产20套,该服装厂原计划多少天完成订单任务?9.“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?10.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天11.某中学组织学生去郊游,一队学生从学校出发,以5千米/时的速度步行先走,一位老师在学生出发40分钟后骑摩托车追赶,速度为30千米/时,结果他们同时到达目的地,求目的地距学校多少千米?12.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.13.某车间每天能制作甲种零件500只,或者制作乙种零件250只,甲、乙两种零件各一只配成一套产品,现在要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?14.(列方程或方程组解应用题)一个通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米,结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少?这段路程是多少?15.昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?16.在社会与实践的课堂上,刘老师组织七(1)班的全体学生用硬纸板制作圆柱体(图1).七(1)班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪20个圆柱侧面(图2)或剪10个圆柱底面(图3).(1)七(1)班有男生、女生各多少人?(2)原计划男生负责剪圆柱侧面,女生负责剪圆柱底面,要求一个圆柱侧面配两个圆柱底面,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时内剪出的侧面与底面配套.17.为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各班领取:第一班领取全部的110,第二班领取100棵和余下的110,第三班领取200棵和余下的110,第四班领取300棵和余下的110,最后树苗全部被领完时各班领取的树苗相等.(1)这次植树任务,一共种植多少棵树苗?(2)学校将树苗运输到植树地,已知学校到植树地路程为120km,有汽车和火车两种运输工具,汽车和火车的速度分别为60km/h和100km/h,两种运输方式的收费项目及收费标准如下表所示:运输工具运输费(元/吨•千米)保管费(元/吨•小时)过路费(元)装卸及管理费(元)汽车252000火车 1.8501600若树苗重量为a吨,分别表示出两种方式的运费;(3)在(2)的条件下,若每吨树苗为180棵,在节省费用和时间的前提下选用哪种方式运输更合理?18.如图,在图1、图2中6cm AB =,点C 在线段AB 上,2AC BC =直角三角板EOF (90EOF ∠=︒)的直角边OE 放在线段MN 上,现将一动点P 沿A→B→A 方向以1cm /秒的速度向右匀速运动,时间为t 秒(012t ≤≤),同时将直角三角板EOF 绕点O 以30/︒秒的速度顺时针匀速旋转一周.(1)BC = ______cm ;(2)当60EOM ∠=︒,求旋转时间t 的值;(3)若5EON FON ∠=∠,求此时线段PC 的长度.参考答案1.【答案】船在静水中的速度为15km/h. 2.【答案】83.【答案】(1)购买一个足球需要70元,购买一个排球需要40元;(2)学校第二次购买排球10个. 4.【答案】解:设原来正方形纸片的边长为xcm ,根据题意得:()5 1.255x x =⨯-解得: 30x =答:原来正方形纸片的边长为 30cm.【解析】【分析】设原来正方形纸片的边长为xcm ,则剪下的一个长条的长为xcm ,宽为5cm ,另一个长方形条的宽为5cm ,长为(x -5)cm ,然后根据长方形的面积计算公式及其中一个长条的面积是另一个长条的1.2倍建立方程,求解即可.5.【答案】(1)甲种水果购进65千克,乙种水果购进75千克(2)获得的利润是495元6.【答案】一班有47人,二班有42人或一班有42人,二班有47人 7.【答案】28.【答案】解:设原计划x 天完成任务则: 16802020x x +=- 解得: 25x =∴原计划25天完成订单任务.【解析】【分析】根据题中的相等关系工作总量不变可列方程求解. 9.【答案】(1)走路快的人在前面,300步;(2)500步. 10.【答案】解:表格中的填法不唯一,如:单价 数量 总价 今天 12 12xx 明天 10.8-2410.8x x -24由题意,得10.8 - 12=1. 解得 x =348. 348÷12=29答:小明今天需购买29个纸杯蛋糕.【解析】【分析】根据单价×数量=总价可以表示出今天购买的数量为12x,由题意可得明天的购买单价为12×0.9=10.8,总价为x -24,则明天的购买数量为-2410.8x ,然后根据明天比今天多买1个列方程求解即可 11.【答案】解:设目的地距学校x 千米那么4053060x x -= 解得:x =4经检验,x =4(千米)符合题意. 答:目的地距学校4千米.【解析】【分析】设目的地距学校x 千米,根据题意列出方程4053060x x -=,再求解即可。
北师大版七年级数学上册第五章一元一次方程之应用:销售打折类专项训练1.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?2.在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?3.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是 元.4.学校准备购买一些足球,原计划订购50个,每个80元,店方表示:如果多购,可以优惠,结果校方实际订购了60个,每个减价5元,但商店获得了同样多的利润,求每个足球的成本价.5.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120150方案一每件商品出售价格按标价降价30%按标价降价a%方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.6.已知A、B两件服装的成本共1000元,某服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利260元,问A、B两件服装的成本各是多少元?7.一件商品按进价提高40%后标价,然后打八折卖出,结果仍能获利18元,问这件商品的进价是多少元?8.2019年某商场于元旦之际开展优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买甲、乙两种商品,分别抽到六折(按原价的60%支付)和八折(按原价的80%支付),共支付408元,其中甲种商品原价400元.(1)请问乙种商品原价是多少元?(2)在本次买卖中,甲种商品最终亏损m%,乙种商品最终盈利2m%,但商场不盈不亏,请问甲种商品的成本是多少元?亏损多少元?9.某商店将某种皮鞋按成本加价40元作为标价,又以标价的8折优惠卖出,结果每双皮鞋仍可获利24元,问这种皮鞋的成本价为多少元?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.11.某社区惠民水果店第一次用615元从龙泉水果批发市场购进甲、乙两种不同品种的苹果,其中甲品种苹果重量比乙品种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果.其中甲苹果的重量不变,乙苹果的重量是第一次的3倍;甲苹果按原价销售,乙苹果打折销售.第二次甲、乙两种苹果都销售完以后获得的总利润为735元,求第二次乙苹果按原价打几折销售?(3)惠民水果店发现乙苹果特别好卖,准备再购买一定量乙苹果.并发现相同品质的乙苹果,驷马桥水果批发市场的价格比龙泉水果批发市场的价格便宜,就决定去驷马桥水果批发市场购买,乙苹果价格如下表:购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元惠民水果店分两次从驷马桥水果批发市场共购买乙苹果80千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出352元,请问惠民水果店第一次,第二次分别从驷马桥水果批发市场购买乙苹果多少千克?12.若甲、乙两种商品的单价之和为500元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原单价之和提高2%,求甲、乙两种商品的原来单价?13.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?14.乐清市某服装店在国庆期间对顾客实行优惠,规定如下:一次性购物标价总和优惠办法低于200元不予优惠全部九折优惠低于500元但不低于200元500元或超过500元全部八折优惠(1)王老师一次性购物标价总和为600元,他实际付款 元(直接写出答案).(2)若顾客在该超市一次性购物实际付款360元,问此顾客一次性购物标价总和为多少元?15.某商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?参考答案1.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.2.解:设小杨改在本超市一次性购买与上两次相同的商品,应付款x元.根据题意,得①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=325答:小杨改在本超市一次性购买与上两次相同的商品,应付款296元或325元.3.解:(1)设商场第一次购进x套运动服,由题意得:.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为=160(元),第二批运动服的进价为=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为:240.4.解:设每个足球的成本价是x元,根据题意得50(80﹣x)=60(80﹣5﹣x)解得x=50答:每个足球成本为50元.5.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)6.解:设A服装成本为x元/件,B服装成本(1000﹣x)元/件,由题意,得30%x+20%(1000﹣x)=260解得x=600则1000﹣x=1000﹣600=400(元)答:A服装成本为600元/件,B服装成本400元/件.7.解:设这件商品的进价是x元,由题意得:(1+40%)x×80%=x+18,解得:x=150,答:这件商品的进价是150元.8.解:(1)设乙商品原价为x元,由题意,得400×0.6+0.8x=408解得:x=210答:原价为210元;(2)设甲商品的成本是y元,则乙商品的成本是(408﹣y)元.由题意,得m%y=2m%(408﹣y)解得:y=272272﹣240=32(元)答:甲商品的成本是272元,亏损32元.9.解:设这种皮鞋的成本价为x元.根据题意得:0.8×(x+40)=x+24,解得:x=40.原方程的解是x=40.答:这种皮鞋的成本价为40元.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.11.解:(1)设第一次购进乙种苹果x千克,则甲的件数为(2x+15)千克,根据题意得:8x+5×(2x+15)=615.解得:x=30∴2x+15=75答:第一次购进乙种苹果30千克,甲种苹果75千克.(2)设第二次乙苹果售价为每千克15y元,根据题意得:(10﹣5)×75+(15y﹣8)×30×3=735解得:y=0.8答:第二次乙种苹果是按原价打8折销售.(3)设第一次购买a千克苹果,第二次购买(80﹣a)千克苹果.分三种情况考虑:①当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够80千克,不成立.②当第一次购买苹果不超过20千克,第二次购买苹果超过40千克,得:6a+4(80﹣a)=352解得:a=16∴80﹣a=80﹣16=64③第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克,得:5a+4(80﹣a)=352解得:a=32∴80﹣a=80﹣32=48答:第一次购买16千克苹果,第二次购买64千克苹果;或者第一次购买32千克苹果,第二次购买48千克苹果.12.解:设甲商品的原单价为x元,则乙商品的原单价为(500﹣x)元,依题意,得:(1﹣10%)x+(1+5%)(500﹣x)=500×(1+2%),解得:x=100,∴500﹣x=400.答:甲商品的原单价为100元,乙商品的原单价为400元.13.解:设每支铅笔的原价是x元,根据题意得:100x﹣100×0.85x=27,解得:x=1.8.答:每支铅笔的原价是1.8元.14.解:(1)600×0.8=480(元).故答案为:480.(2)设此顾客一次性购物标价总和为x元,∵500×0.8=400>360∴200<x<500.依题意,得:0.9x=360,解得:x=400.答:顾客一次性购物标价总和为400元.15.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:120﹣x=20%x,120﹣y=﹣20%y,解得:x=100,y=150,∴120+120﹣x﹣y=﹣10(元).答:卖这两件衣服总的是亏损,亏损了10元钱.。
5. 3应用一元一次方程--水箱变高了
一、选择题:
1. 长方形的长是宽的3倍,如果宽增加了4m而长减少了5m,那么面积增加15m2,设长方形
原来的宽为xm,所列方程是()
A. (x+4)(3x-5)+15=3x2
B. (x+4)(3x-5)-15=3x2
C. (x-4)(3x+5)-15=3x2
D. (x-4)((3x+5)+15=3x2
2. 内径为120mm的圆柱形玻璃杯,和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同
样多的水,则玻璃杯的内高为()
A. 150mm
B. 200mm
C. 250mm
D. 300mm
二、填空题:
3. 三角形的周长是84cm,三边长的比为17:13:12,则这个三角形最短的一边长为
4. 一个底面直径6cm,高为50cm的“瘦长”形圆柱钢材锻压成底面直径10cmde“矮胖”形
圆柱零件毛坯,高变成多少?
(1)本题用来建立方程的相等关系为
(2)设填表
底面半径高体积
锻压前
锻压后
(3)列出方程,解得方程。
5. 用直径为4cmde圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆
钢。
6. 一块长、宽、高分别为4cm ,3cm ,2cm 的长方体橡皮泥,要用它来捏一个底面半径为1.5cmde 圆柱,若它的高士xcm ,则可列方程。
7. 要锻造一个直径20cm ,高16cm 的圆柱形毛坯,应截取直径16cm 的圆钢cm
8. 直径为4cm 的圆钢,截取才能锻造成重量为0.628kg 的零件毛坯(每立方厘米重6g ,π取3.14)。
9. 把一个半径为3cm 的铁球熔化后,能铸造个半径为1cm 的小铁球(球的体积为
3R 3
4π)
10. 一张覆盖在圆柱形罐头侧面的商标纸,展开是一个周长为88cmde 正方形(不计接口部
分),这个罐头的容积是(精确到1立方厘米,π取3.14)。
三、解答题:
11. 把直径6cm ,长16cm 的圆钢锻造成半径为4cmde 圆钢。
求锻造后的圆钢的长。
12. 要分别锻造直径70mm ,高45mm 和直径30mm ,高30mm 的圆柱形零件毛坯各一个,需要
截取直径50mm 的圆钢多长?
13. 一捆粗细均匀的钢丝,重量为132kg,剪下35米后,余下的钢丝重量为121kg,求原来
这根钢丝的长度。
14. 把一个长宽高分别为8cm,7cm,6cm的长方体铁块和一个棱长5cmde正方体铁块,熔炼
成一个直径为20cm的圆柱体,这个院子体的高是多少?(精确到0.01cm)
15. 长方体甲的长宽高分别为260mm,150mm,325mm,长方体乙的地底面积为130 130mm2。
已知甲的体积是乙的体积的2.5倍,求乙的高。
5.4答案:
一、选择题:
1. B
2. B
二、填空题:
3. 24cm
4.(1)V 锻压前=V 锻压后 (2)设高为xcm (3))cm (1850)2
6
(2=⋅⋅π 5. 12cm 6. x 5.12342⋅⋅=⨯⨯π 7. 25cm 8. 8.3cm 9. 27个
10. 848cm 2 三、解答题
11.9cm 12. 99cm 13. 43.2m 14. 1.47cm 15. 43.2cm.。