数模及模数转换器接口71DA转换器
- 格式:ppt
- 大小:683.00 KB
- 文档页数:15
电路基础原理数字信号的模数转换与数模转换电路基础原理:数字信号的模数转换与数模转换在现代电子技术中,数字信号的模数转换和数模转换是非常重要的概念。
它们是将模拟信号转换为数字信号和将数字信号转换为模拟信号的过程。
本文将探讨数字信号的模数转换和数模转换的基本原理及其在电路中的应用。
一、数字信号的模数转换数字信号的模数转换(Analog-to-Digital Conversion, ADC)是指将模拟信号转换为数字信号的过程。
在这个过程中,连续的模拟信号被离散化为一系列离散的数字信号。
模数转换的过程包括采样和量化两个步骤。
采样是指对连续时间内的模拟信号进行离散化,取样点的时间间隔称为采样周期。
而量化则是对采样得到的离散信号进行幅度的近似描述,将其转换为一系列离散的数值。
在实际应用中,模数转换器(ADC)通常采用电压-数字转换器(Voltage-to-Digital Converter, VDC)来实现。
VDC使用一系列的比较器来比较模拟信号与参考电压之间的差异,并将其转换为数字信号。
数字信号的模数转换在现代电子技术中具有广泛的应用。
例如,在通信领域中,模数转换是将声音、图像等模拟信号转换为数字信号的关键步骤。
在工业自动化中,模数转换则是传感器将物理量转换为数字信号的基础。
二、数字信号的数模转换数字信号的数模转换(Digital-to-Analog Conversion, DAC)是指将数字信号转换为模拟信号的过程。
在这个过程中,一系列离散的数字信号被重构为连续的模拟信号。
数模转换的过程包括数值恢复和模拟滤波两个步骤。
数值恢复是指根据数字信号的编码方式,将数字信号转换为相应的数值。
而模拟滤波则是通过滤波器对数值恢复后的数字信号进行平滑处理,去除数字信号中的高频成分,生成连续的模拟信号。
在实际应用中,数模转换器(DAC)通常采用数字-电压转换器(Digital-to-Voltage Converter, DVC)来实现。
AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。
AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。
本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。
一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。
它采用逐渐逼近的方法逐位进行转换。
其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。
逐次逼近型AD转换器的转换速度相对较快,精度较高。
2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。
它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。
模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。
3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。
它的转换速度较快,但其实现成本相对较高。
并行型AD转换器适用于高速数据采集和信号处理。
4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。
它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。
逐渐逼近型AD转换器转换速度较慢,但精度较高。
5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。
第12章 数模(D/A)转换与模数(A/D)转换接口§12.1 D/A转换器接口D/A(Digit to Analog)和A/D(Analog to Digit)转换是计算机与外部世界联系的重要接口。
在一个实际的系统中,有两种基本的量——模拟量和数字量。
外界的模拟量要输入给计算机,首先要经过A/D转换,才能由计算机进行运算、加工处理等。
若计算机的控制对象是模拟量,也必须先把计算机输出的数字量经过D/A转换,才能控制模拟量。
D/A和A/D转换的具体电路已经在数字电路课程中讲述。
本章主要介绍如何把D/A 和A/D转换的芯片与CPU进行接口以及用CPU控制这些转换的软件编程如何实现。
12.1.1 CPU与8位D/A芯片的接口D/A转换通常是由输入的二进制数的各位控制一些开关,通过电阻网路,在运算放大器的输入端产生与二进制数各位的权成比例的电流,经过运算放大器相加和转换而成为与二进制数成比例的模拟电压。
若CPU的输出数据要通过D/A转换变为模拟量输出,当然要把CPU数据总线的输出连到D/A的数字输入上。
但是,由于CPU要进行各种信息的加工处理,它的数据总线上的数据是不断地改变的,它输出给D/A的数据只在输出指令的几个微秒中出现在数据总线上。
所以,必须要有一个锁存器,把CPU输出给D/A转换的数据锁存起来,直至输送新的数据为止。
一个最简单的D/A芯片与CPU的接口电路如图12-1所示。
其中,以锁存器74100作为CPU与D/A转换之间的接口。
CPU把74100作为一个输出端口,用地址27H来识别,则CPU输给D/A的数据要用一条I/O写(即输出)指令来实现。
图12-1的电路可应用于许多场合,例如:(1) 驱动一个侍服电机;(2) 控制一个电压—频率转换器(用于锁相环路);(3) 控制一个可编程的电源;(4) 驱动一个模拟电表。
12.1.2 8位CPU与12位(高于8位的)D/A转换器的接口1.一种12位D/A转换芯片这里介绍一种12位D/A转换片子DAC1210。
A/D转换器模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。
通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。
由于数字信号本身不具有实际意义,仅仅表示一个相对大小。
故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。
而输出的数字量则表示输入信号相对于参考信号的大小。
模数转换器最重要的参数是转换的精度,通常用输出的数字信号的位数的多少表示。
转换器能够准确输出的数字信号的位数越多,表示转换器能够分辨输入信号的能力越强,转换器的性能也就越好。
A/D转换一般要经过采样、保持、量化及编码4个过程。
在实际电路中,有些过程是合并进行的,如采样和保持,量化和编码在转换过程中是同时实现的。
一般来说,AD比DA贵,尤其是高速的AD,因为在某些特殊场合,如导弹的摄像头部分要求有高速的转换能力。
一般那样AD要上千美元。
还有通过AD的并联可以提高AD的转换效率,多个AD同时处理数据,能满足处理器的数字信号需求了。
模数转换过程包括量化和编码。
量化是将模拟信号量程分成许多离散量级,并确定输入信号所属的量级。
编码是对每一量级分配唯一的数字码,并确定与输入信号相对应的代码。
最普通的码制是二进制,它有2n个量级(n为位数),可依次逐个编号。
模数转换的方法很多,从转换原理来分可分为直接法和间接法两大类。
直接法是直接将电压转换成数字量。
它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡(见图)。
控制逻辑能实现对分搜索的控制,其比较方法如同天平称重。
先使二进位制数的最高位Dn-1=1,经数模转换后得到一个整个量程一半的模拟电压VS,与输入电压Vin 相比较,若V in>VS,则保留这一位;若V in<V in,则Dn-1=0。
然后使下一位Dn-2=1,与上一次的结果一起经数模转换后与V in相比较,重复这一过程,直到使D0=1,再与V in相比较,由V in>VS还是V in<V来决定是否保留这一位。
如何设计简单的模数转换器和数模转换器电路在电子领域中,模数转换器(ADC)和数模转换器(DAC)是常见的电路设备,它们可以将模拟信号转换为数字信号或将数字信号转换为模拟信号。
本文将介绍如何设计一种简单但有效的模数转换器和数模转换器电路。
一、模数转换器(ADC)电路设计:ADC的作用是将模拟信号转换为数字信号。
以下是一个简单的ADC电路设计方案:1. 采样电路:ADC的第一阶段是采样,即对模拟信号进行定期的采样。
可以使用开关电容电路或样保持电路来实现这一功能。
这些电路可以将输入信号保持在一个电容中,然后在固定的采样时间内读取电容电压。
2. 量化电路:采样之后,接下来需要将模拟信号量化为数字信号。
使用比较器和计数器可以实现这一过程。
比较器将采样信号与一个参考电压进行比较,并产生高低电平的输出信号。
计数器用于计算比较器输出信号的个数,并将其转换为数字表示。
3. 数字处理电路:ADC的最后一步是数字处理,即将量化后的数字信号进行处理和滤波。
这个过程可以使用微处理器或数字信号处理器(DSP)来完成。
数字处理电路可以对信号进行滤波、平滑和放大等操作,以提高最终输出结果的质量。
二、数模转换器(DAC)电路设计:DAC的作用是将数字信号转换为模拟信号。
以下是一个简单的DAC电路设计方案:1. 数字信号处理:DAC的第一步是对数字信号进行处理。
这可以通过计算机、FPGA或其他数字处理设备来完成。
在这一步中,将数字信号转换为对应的数值表示。
2. 数字到模拟转换:将处理后的数字信号转换为模拟信号的常用方法是使用数字锯齿波发生器。
数字锯齿波发生器通过逐步增加或减小电压的值来产生连续的模拟输出信号。
可以使用操作放大器和运算放大器来实现这个功能。
3. 输出放大和滤波:模拟信号产生后,可能需要通过放大器进行放大以适应实际应用场景。
此外,还可以使用滤波器来去除模拟信号中的噪声和杂散成分,以提高输出信号的质量和稳定性。
总结:通过以上简单的电路设计方案,我们可以实现基本的模数转换器和数模转换器。
da转换器工作原理
DA转换器(数字到模拟转换器)的工作原理是将数字信号转
换为模拟信号。
下面将介绍DA转换器的工作原理。
DA转换器可以分为两个主要部分:数字部分和模拟部分。
数字部分接收来自数字输入源的二进制输入数据,并将其转换为模拟信号。
这个过程分为三个主要阶段:采样、量化和编码。
首先,在采样阶段,DA转换器将输入的连续模拟信号转换为
采样信号。
采样信号是在一定时间间隔内对模拟信号进行采样得到的,采样率决定了采样信号的频率。
采样率越高,转换后的模拟信号越接近原始模拟信号。
接下来,在量化阶段,数字部分将采样信号的振幅划分为固定的离散级别。
这个过程使用一个模数转换器完成,将连续变化的模拟信号转换为一系列固定的离散值。
量化级别的数量决定了转换后的数字信号的精度。
较高的量化级别意味着更高的精度。
最后,在编码阶段,数字部分将离散的量化值转换为二进制代码。
这个过程使用一个编码器完成,将每个量化值映射到一个二进制代码。
编码后的二进制代码表示转换后的数字信号。
模拟部分用来将编码后的二进制代码转换为连续的模拟信号。
这个过程主要涉及一个数模转换器,它根据输入的二进制代码选择相应的电压或电流输出。
输出的连续模拟信号经过滤波器
处理后,得到最终的模拟输出信号。
总结起来,DA转换器的工作原理是通过采样、量化和编码将数字信号转换为模拟信号,并通过模拟部分将编码后的二进制代码转换为连续的模拟信号。
这个过程使得数字信号能够在模拟电路中被处理和传输。
数模转换器和模数转换器实验报告材料一、实验目的1.学习和掌握数模转换器和模数转换器的原理和工作方式;2.了解数模转换器和模数转换器在各种应用领域的具体应用;3.掌握数模转换器和模数转换器的实际测量方法和数据处理。
二、实验器材和原理1.数模转换器(DAC):将数字信号转换为模拟信号。
它可以将二进制数字信号转换为连续的模拟信号,并且可以根据控制信号的不同而输出不同的电压或电流;2.模数转换器(ADC):将模拟信号转换为数字信号。
它能够实时取样模拟信号,并将其转换为对应的数字信号;3.示波器:用于观测和显示信号波形;4.信号发生器:用于产生输入信号。
三、实验过程1.数模转换器实验:(1)将示波器的X轴连接到数模转换器的数字输入端,Y轴连接到模拟输出端;(2)通过示波器上的控制按钮,调整示波器显示的方式,使其能够显示数模转换器输出的模拟信号波形;(3)使用信号发生器产生不同频率的正弦信号,并通过数模转换器将其转换为模拟信号;(4)观察和记录示波器上显示的模拟信号波形,并进行分析和比较。
2.模数转换器实验:(1)将信号发生器的输出连接到模数转换器的模拟输入端;(2)调整信号发生器的频率和幅度,产生不同的模拟信号;(3)将模拟信号输入到模数转换器中,并观察和记录模数转换器输出的数字信号;(4)使用示波器观测和记录模数转换器输出的数字信号波形,并进行分析和比较。
四、实验结果和数据处理1.数模转换器实验结果:根据示波器显示的模拟信号波形,可以观察到数模转换器能够将输入的数字信号转换为连续的模拟信号,并且输出的模拟信号的波形与输入信号的波形一致。
2.模数转换器实验结果:根据示波器显示的数字信号波形,可以观察到模数转换器能够将输入的模拟信号实时取样并转换为对应的数字信号。
对于不同频率和幅度的输入信号,模数转换器能够正确地输出对应的数字信号。
五、实验结论数模转换器和模数转换器是将数字信号和模拟信号相互转换的重要器件。
数模转换器与模数转换器基本原理数模转换器(DAC)和模数转换器(ADC)是现代电子设备中常见的模拟信号处理电路,它们用于将数字信号转换为模拟信号或将模拟信号转换为数字信号。
本文将详细介绍数模转换器和模数转换器的基本原理。
一、数模转换器(DAC)基本原理数模转换器将数字信号转换为模拟信号,通常用于将数字数据转换为模拟信号输出,如音频、视频等。
数模转换器的基本原理如下:1. 数字信号表示:数字信号由一系列离散的数值表示,通常用二进制表示。
比如,一个八位的二进制数可以表示0-255之间的数字。
2. 数字量化:数字量化是将连续的模拟信号离散化,将其转换为一系列离散的数值。
这可以通过将模拟信号分成若干个均匀的间隔来实现。
例如,将模拟信号分为256个等间隔的量化等级。
3. 数字到模拟转换:数字到模拟转换的过程是将离散的数字信号转换为连续的模拟信号。
这可以通过使用数字信号的离散值对应的模拟信号的电压值来实现。
比如,将一个八位的二进制数转换为0-5V之间的电压。
4. 输出滤波:为了减少转换过程中的噪声和失真,通常需要对转换器的输出信号进行滤波。
滤波器可以通过消除高频噪声、平滑信号等方式来实现,以获得更好的模拟输出信号。
二、模数转换器(ADC)基本原理模数转换器将模拟信号转换为数字信号,通常用于模拟信号的数字化处理,如传感器信号采集、音频信号编码等。
模数转换器的基本原理如下:1. 模拟信号采样:模拟信号是连续变化的信号,模数转换器需要将其离散化。
采样是指周期性地测量模拟信号的幅度。
采样频率越高,采样精度越高,对原始模拟信号的还原能力越强。
2. 量化和编码:量化是将采样后的模拟信号转换为离散的数字量,包括离散幅度和离散时间。
编码是将量化后的信号用二进制表示。
常用的编码方式有二进制编码、格雷码等。
3. 数字信号处理:模数转换器的输出是数字信号,可以通过数字信号处理进行后续的处理和分析。
例如,可以对采集到的传感器数据进行滤波、数学运算等。
电路数模转换与模数转换理解模拟与数字信号的转换在现代电子技术中,模拟信号和数字信号的转换是非常重要的。
模拟信号是连续变化的,它可以应用于音频、视频和传感器等领域。
而数字信号是离散的,能够以二进制形式表示,广泛应用于计算机和通信系统。
为了实现模拟和数字信号之间的转换,人们发展了数模转换和模数转换技术。
1. 数模转换数模转换是将数字信号转换为模拟信号的过程。
在这个过程中,将离散的数字信号转换为连续变化的模拟信号。
数模转换器(DAC)是实现这一转换的关键设备。
数模转换的基本原理是根据数字信号的大小,控制输出信号的幅度。
数模转换器内部存储有一系列的数字值,通过选择合适的数字值,即可获得所需的输出模拟信号。
数模转换器通常包括采样和保持电路、数字/模拟转换电路和滤波电路。
2. 模数转换模数转换是将模拟信号转换为数字信号的过程。
在这个过程中,将连续变化的模拟信号转换为离散的二进制数字信号。
模数转换器(ADC)是实现这一转换的关键设备。
模数转换的基本原理是通过对模拟信号进行采样和量化,再将采样和量化数据编码为二进制形式。
模数转换器通常包括滤波电路、采样电路、量化电路和编码电路。
3. 模拟与数字信号的转换应用模拟与数字信号的转换应用广泛,下面以音频和通信领域为例进行讨论。
3.1 音频领域在音频领域,模拟与数字信号的转换被广泛应用于音频播放和录制设备中。
通过ADC将声音转换为数字信号后,可以方便地进行数字处理和存储。
而通过DAC将数字信号转换为模拟信号后,可以驱动扬声器产生声音。
3.2 通信领域在通信领域,模拟与数字信号的转换被广泛应用于调制解调器和通信系统中。
调制解调器通过模数转换将模拟信号转换为数字信号用于传输,再通过数模转换将数字信号转换为模拟信号用于接收。
这种方式可以有效地提高通信系统的抗干扰性能和信息传输速率。
总结:电路中的数模转换和模数转换是实现模拟与数字信号转换的重要技术。
数模转换器和模数转换器在音频、通信等领域具有广泛的应用。