2018四川中考试题研究题库--数学. 几何图形综合题 8 6
- 格式:wps
- 大小:2.92 MB
- 文档页数:16
成都市二0一八年高中阶段教育学校统一招生考试〔含成都市初中毕业会考〕数 学A 卷〔共100分〕第一卷〔选择题,共30分〕一、选择题〔本大题共10个小题,每题3分,共30分,每题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上〕1.实数,,,a b c d 在数轴上对应的点的位置如下图,这四个数中最大的是〔 〕A .aB .bC .cD .d2.2021年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号〞中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为〔 〕A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯ 3.如下图的正六棱柱的主视图是〔 〕4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是〔 〕A .()3,5-B .()3,5- C.()3,5 D .()3,5-- 5.以下计算正确的选项是〔 〕A .224x x x +=B .()222x y x y -=-C.()326x yx y = D .()235x x x -•=6.如图,ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是〔 〕A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的选项是〔 〕A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是〔 〕 A .x = 1 B .1x =- C.3x = D .3x =- 9.如图,在□ABCD 中,60B ∠=︒,C ⊙的半径为3,那么图中阴影局部的面积是〔 〕A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,以下说法正确的选项是〔 〕A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第二卷〔非选择题,共70分〕二、填空题〔本大题共4个小题,每题4分,总分值16分,答案填在答题卡上〕11.等腰三角形的一个底角为50︒,那么它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,假设摸到黄色乒乓球的概率为38,那么该盒子中装有黄色兵乓球的个数是 .13.a 6=b 5=c 4,且26a b c +-=,那么a 的值为 .14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .假设2DE =,3CE =,那么矩形的对角线AC 的长为 .三、解答题〔本大题共6小题,共54分.解答过程写在答题卡上〕15. 〔本小题总分值12分,每题6分〕〔1〕23282sin 603+-︒+-. 〔2〕化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16.〔本小题总分值6分〕假设关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.〔本小题总分值8分〕为了给游客提供更好的效劳,某景区随机对局部游客进行了关于“景区效劳工作满意度〞的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答以下问题:〔1〕本次调查的总人数为 ,表中m 的值 ; 〔2〕请补全条形统计图;〔3〕据统计,该景区平均每天接待游客约3600人,假设将“非常满意〞和“满意〞作为游客对景区效劳工作的肯定,请你估计该景区效劳工作平均每天得到多少名游客的肯定. 18. 〔本小题总分值8分〕由我国完全自主设计、自主建造的首艘国产航母于 2018 年 5 月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距 80 海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.〔参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈.〕19. (本小题总分值10分)如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于点(),4B a . 〔1〕求一次函数和反比例函数的表达式;〔2〕设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N .假设,,,A O M N 为顶点的四边形是平行四边形,求点M 的坐标.20.〔本小题总分值10分〕如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G .〔1〕求证:BC 是O ⊙的切线;〔2〕设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长;〔3〕假设8BE =,5sin 13B =,求DG 的长.ADB 卷〔共50分〕一、填空题(本大题共5个小题,每题4分,共20分,答案填在答题卡上〕21.0.2x y +=,31x y +=,那么代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解?周髀算经?时给出的“赵爽弦图〞是我国古代数学的瑰宝.如下图的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,那么针尖落在阴影区域的概率为 .23.0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…〔即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--〕,按此规律,2018S = .(用含a 的代数式表示)24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点〔点A 在第三象限〕,将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围局部〔如图中阴影局部〕为双曲线的“眸〞,PQ 为双曲线的“眸径〞当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 〔本大题共3个小题,共30分.解答过程写在答题卡上〕26.〔本小题总分值8分〕为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y 〔元〕与种植面积()2x m 之间的函数关系如下图,乙种花卉的种植费用为每平方米100元.〔1〕直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;〔2〕广场上甲、乙两种花卉的种植面积共21200m ,假设甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.〔本小题总分值10分〕在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′〔点A ,B 的对应点分别为A ′,B ′〕射线CA ′,CB ′分别交直线m 于点P ,Q . 〔1〕如图1,当P 与A ′重合时,求ACA ∠′的度数; 〔2〕如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; 〔3〕在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.假设存在,求出四边形PA B Q ′′的最小面积;假设不存在,请说明理由.28.(本小题总分值12分)如图,在平面直角坐标系xOy 中,以直线 x =52 为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.〔1〕求抛物线的函数表达式;〔2〕设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,假设34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; 〔3〕假设在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案 A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.〔1〕解:原式12242=+-⨯+124=+94〔2〕解:原式()()11111x x x x x+-+-=⨯+ ()()111x x xx x+-=⨯+ 1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:〔1〕120,45%;〔2〕比拟满意;12040%=48⨯〔人〕图略; 〔3〕12+543600=1980120⨯〔人〕. 答:该景区效劳工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD=∴,27.2CD =∴〔海里〕. 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD=∴,20.4BD =∴〔海里〕.答:还需要航行的距离BD 的长为20.4海里.19.解:〔1〕一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.一次函数与反比例函数()0ky x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x=>∴.〔2〕设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷21.0.36 22.121323.1a a+- 24.2725.32 26.解:〔1〕()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩〔2〕设甲种花卉种植为2am ,那么乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:〔1〕由旋转的性质得:'2AC A C ==.90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.〔2〕M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan 2PCB A ∠=∠=∴,322PB BC ==∴.tan tanQ PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴.〔3〕''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:〔几何法〕取PQ 中点G ,那么90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小.min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =.法二:〔代数法〕设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=〞成立,PQ ==∴28.解:〔1〕由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.〔2〕作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,那么34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC 〔G 在BC 下方〕,1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,94x +=∴,G ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. 〔3〕由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点. OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PN PM BN=∴,AM BN PN PM •=•∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,1k ==-+∴.。
2018年四川省达州市初中毕业、升学考试学科(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省达州市,1,3分) 2018的相反数是().A.2018 B.-2018 C.12018 D.-12018.【答案】B.【解析】∵a的相反数是-a,∴2018的相反数是-2018.故选B.【知识点】相反数2.(2018四川省达州市,2,3分)二次根式24x 中x的取值范围是().A.x<-2 B.x≤-2 C.x>-2 D.x≥-2【答案】D.【解析】由2x+4≥0,得x≥-2.故选D.【知识点】二次根式中被开方数的非负性3.(2018四川省达州市,3,3分)下列图形中是中心对称图形的是().DC.B.A.【答案】B.【解析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.根据中心对称图形的定义,得图形B是中心对称图形.故选B.【知识点】中心对称图形4.(2018四川省达州市,4,3分)如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为().A .30°B .35°C .40°D .45°231CADB第4题图 【答案】B .【解析】如图,∵AB ∥CD ,∠1=45°,∴∠4=45°,∵∠3=80°,∴∠2=35°.故选B.4231CADB【知识点】平行线的性质;三角形的外角5.(2018四川省达州市,5,3分)下列说法正确的是( ). A .“打开电视机,正在播放《达州》新闻”是必然事件;B .天气预报“明天降水概率50%”是指明天有一半的时间会下雨;C .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是2S 甲=0.3,2S 乙=0.4,则甲的成绩更稳定;D .数据6,6,7,7,8的中位数与众数均为7. 【答案】C. 【解析】 判断正误 A “打开电视机,正在播放《达州》新闻”是随机事件错误B天气预报“明天降水概率50%”是指明天有一半的可能性会下雨错误 C 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是2S 甲=0.3,2S 乙=0.4,则甲的成绩更稳定正确D 数据6,6,7,7,8的中位数7,众数为6,7 错误故选C.【知识点】随机事件;概率;方差;中位数;众数6.(2018四川省达州市,6,3分)平面直角坐标系中,点P 的坐标为(m ,n ),则向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知1OA =(x 1,y 1),2OA =(x 2,y 2),若x 1·x 2+y 1·y 2=0,则1OA 与2OA 互相垂直.下列四组向量:①1OB =(3,-9),2OB =(1,-13);②1OC =(2,π°),2OC =(12-,-1);③1OD =(cos30°,tan45°),2OD =(sin30°,tan45°); ④1OE =(5+2,2),2OE =(5―2,22). 其中互相垂直的组有( ).A .1组B .2组C .3组D .4组 【答案】A.【解析】①1OB =(3,-9),2OB =(1,-13);∵3×1+(―9)×(―13)≠0,∴1OB 与2OB 互相不垂直. ②1OC =(2,π°),2OC =(12-,-1);∵2×12-+(―9)×(―1)=0,∴1OC 与2OC 互相垂直. ③1OD =(cos30°,tan45°),2OD =(sin30°,tan45°);∵cos30°·sin30°+tan45°·tan45°≠0,∴1OD 与2OD 互相不垂直. ④1OE =(5+2,2),2OE =(5―2,22). ∵(5+2)×(5―2)+2×22≠0,∴1OE 与2OE 互相不垂直. 故选A.【知识点】阅读理解题;向量7.(2018四川省达州市,7,3分)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是().第7题图xyxyxyxyD.C.B.A.OOOO【答案】D.【解析】在铁块未露出水面前,弹簧读数不变(等于铁块的重力减去所受的浮力),当铁块开始露出水面后,随着排开水的体积减小,浮力减小,则弹簧读数将不断增大,直至铁块完全露出水面后,弹簧的读数将等于铁块的重力,之后将保持不变.故选D.【知识点】变量的表示方法--图象法8.(2018四川省达州市,8,3分)△ABC的周长为19,点D、E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为().A.32B.2 C.52D.3MDNEBAC第8题图【答案】C,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线9.(2018四川省达州市,9,3分)如图,E 、F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC ,连接DE 、DF 并延长,分别交AB 、BC 于点G 、H ,连接GH ,则ADG BGHSS的值为( ).A .12 B .23 C .34D .1GH F E CAB D第9题图【答案】C .【解析】如图,过点H 作HM ∥AB 交AD 于M ,连接MG . 设S 平行四边形ABCD =1.∵AE =CF =14AC , ∴S △ADE =14S △ADC =18S 平行四边形ABCD =18,S △DEC =38. ∴S △AEG =19S △DEC =124. ∴S △ADG =S △ADE +S △AEG =18+124=16. ∵CH AD =13,∴S △AMG =23S △ADG =19. ∵AG CD =13,∴S △GBH =2 S △AMG =29.∴ADG BGHS S=1629=34. 故选C.M GHFE C AB D【知识点】相似三角形的性质;同底等高面积相等10.(2018四川省达州市,10,3分)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2. 下列结论:①abc <0;②9a +3b +c >0;③若点M (12,y 1)、N (52,y 2)是函数图象上的两点,则y 1<y 2; ④-35<a <-25.其中正确结论有( ).A .1个B . 2个C .3个D . 4个xy x =2A–1123B O第10题图 【答案】D【解析】∵抛物线开口向下,∴a <0.∵-2ba>0,∴b >0.∵抛物线交y 轴于正半轴,∴c >0. ∴abc <0,①正确;当x =3时, y =9a +3b +c >0,②正确;∵对称轴为直线x =2,点M (12,y 1)与对称轴的距离大于点N (52,y 2)与对称轴的距离,∴y 1<y 2,③正确;∵抛物线与x 轴的交点坐标分别为A (-1,0),(5,0), ∴二次函数的解析式为y =a (x +1)(x -5) =a (x 2-4x -5)=ax 2-4ax -5a .∵抛物线与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点), ∴2<-5a <3.∴-35<a <-25,④正确. 故选D.【知识点】二次函数的图象与性质二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上.11.(2018四川省达州市,11,3分)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,预计达州市2018年快递业务量将达到 5.5亿件,数据 5.5亿用科学记数法表示为___________. 【答案】5.5×108【解析】数据5.5亿用科学记数法表示为5.5×108. 故答案为:5.5×108 【知识点】科学记数法12.(2018四川省达州市,12,3分)已知a m =3,a n =2,则2m n a -的值为___________. 【答案】92.【解析】∵a m =3,a n =2,∴2m n a -=2m n a a ÷()=32÷2=92. 故答案为:92.【知识点】幂的乘方;同底数幂的除法13.(2018四川省达州市,13,3分)若关于x 的分式方程3233x a a x x+=--无解,则a 的值为___________.【答案】1.【解析】去分母将分式方程转化为整式方程,由分式方程无解,得到x =3,代入整式方程求出a 的值即可.注意:要考虑分母不为0. 解:去分母得:x -3a =2a (x -3), 由分式方程无解,得到x =3,把x =3代入整式方程得:3-3a =2a (3-3), 解得:a =1. 故答案为:1.【知识点】分式方程的解14.(2018四川省达州市,14,3分)如图,平面直角坐标系中,矩形OABC 的顶点A (-6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为___________.xyC 1B 1A 1B C AO第14题图 【答案】(-23,6). 【解析】如图,xy D EC 1B 1A 1B C AO∵矩形OABC 的顶点A (-6,0),C (0,23).∴OA =6, AB =OC =23. ∵tan ∠AOB =236,∴∠AOB =30°, 在Rt △DOC 1中,∵∠DOC 1=30°,OC 1=23, ∴OD =4,DC 1=2. ∵B 1C 1=6,∴B 1D =4, 在Rt △DEB 1中,∵∠DB 1E =30°,∴DE =2, B 1E =23. ∴B 1(-23,6). 故答案为:(-23,6).【知识点】平面直角坐标系;锐角三角函数;旋转的性质15.(2018四川省达州市,15,3分)已知:m 2-2m -1=0,n 2+2n -1=0且mn ≠1,则1mn n n++的值为___________. 【答案】3.【解析】∵mn ≠1,∴m ≠1n. 由已知得m 2-2m =n 2+2n , ∴(m +n )(m -n -2)=0. ∴m =-n 或m -n -2=0. ∵n 2+2n -1=0,∴n +2-1n =0. ∴1mn n n ++=m +1+1n =1-n +1n=1+2=3. 【知识点】代数式的值;平方差公式;因式分解;16.(2018四川省达州市,16,3分)如图,Rt △ABC 中,∠C =90°,AC =2,BC =5,点D 是BC 边上一点且CD =1,点P 是线段DB 上一动 ,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当点P 从点D 出发运动至点B 停止时,点O 的运动路径长为___________.ODBACP第16题图 【答案】22【解析】如图,以AC 为斜边在AC 的右下方作等腰Rt △AEC ,以AD 为斜边在AD 的右下方作等腰Rt △AMD ,以AB 为斜边在AB 的下方作等腰Rt △ANB ,连接NM 并延长,则点E 、点C 在NM 的延长线上.NM O DBACPE NM O D BACP∵∠C =90°,∠ANB =90°, ∴A 、C 、B 、N 四点共圆.∴∠ANC =∠ABC .∴△ANE ∽△ABC . ∴NE BC =AEAC. 在等腰Rt △AEC 中,AC =2,∴AE =2. ∵5NE=22,∴NE =522.当点P 与点C 重合时,点O 的位于点E 的位置.当点P 从点D 出发运动至点B 停止时,点O 的从点M 出发运动至点N .∵DB BC =45,∴MN NE =45,∴MN =22. 【知识点】圆的基本性质;四点共圆;相似三角形的判定与性质,比例的性质三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤)17.(2018四川省达州市,17,6分) 计算:2018-1()+-21-2()-|2-12 |+4sin60° 【思路分析】本题考查实数的运算. 计算时, 先分别求出2018-1()、-21-2()、12、sin60°的值 ,再进行实数的混合运算,注意运算顺序. 【解题过程】解:原式=1+4-(2-23)+4×32=1+4-2+23+23 =3+23.【知识点】实数的运算;有理数的乘方;负整数指数幂;算术平方根;绝对值;特殊角的三角函数值18.(2018四川省达州市,18,6分) 化简代数式:23-111x x xx x x ÷-+-(),再从不等式组2(x 1)16x 103x 1x --≥⎧⎨+>+⎩①②的解集中取一个合适的整数值代入,求出代数式的值.【思路分析】先求出不等式组的解集,然后化简代数式,根据题意选取合适的整数值代入,求出代数式的值.【解题过程】解:解不等式①,得x ≤1, 解不等式②,得x >-3, ∴不等式组2(x 1)16x 103x 1x --≥⎧⎨+>+⎩①②的解集为-3<x ≤123-111x x xx x x ÷-+-()=231-111x x x x x x x +--⨯-()()() =31-11111x x x x x x x x x+--+⨯-+()()()()()() =3(x +1)-(x -1) =3x +3-x +1 =2x +4. ∵x ≠0,x ≠±1∴当x 取-2时,原式=2×(-2)+4=0. 【知识点】解不等式(组);分式的化简求值19.(2018四川省达州市,19,7分)为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中 选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.选项人数100300500300A B CD 25%EEDCBA20040060080010000第19题图(1)本次调查中,一共调查了___________名市民;扇形统计图中,B 项对应的扇形圆心角是___________度;补全条形统计图;(2)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.【思路分析】(1)由统计图,得常用交通工具为D 的有500人,占比25%,所以本次调查中,一共调查了市民500÷25%=2000(名); 其它各项如下表: 交通工具 人数 所占的百分比 对应的扇形圆心角 A 100 100÷2000=5% 360°×5%=18° B 300 300÷2000=15%360°×15%=54° C 800 1―5%―15%―25%―15%=40% 360°×40%=144° D 500 25%360°×25%=90° E300300÷2000=15%360°×15%=54°补全条形统计图(略)(2)用列表法或画树状图法,求甲、乙两人恰好选择同一种交通工具上班的概率. 【解题过程】解:(1)2000, 54°,补全条形统计图:选项人数1003005003008002004006008001000ABCDE(2)列表法A B C D A (A ,A ) (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C ) (C ,D ) D (D ,A )(D ,B )(D ,C )(D ,D )画树状图的方法开始乙甲D C B A A B C DD C B A A B C D DCBA从上面的表格(或树状图)可以看出,所有可能的结果共有16种,且每种结果出现的可能性相同,其中甲、乙两人恰好选择同一种交通工具上班的有4种,即(A ,A ),(B ,B ),(C ,C ),(D ,D ),∴P (甲、乙两人恰好选择同一种交通工具上班)=41164;【知识点】扇形统计图;条形统计图;概率20.(2018四川省达州市,20,6分)在数学实验活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A 处测得雕塑顶端点C 的仰角为30°,再往雕塑方向前进4米至B 处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)45°30°CAB第20题图【思路分析】认真审题,找出题中的等量关系,应用锐角三角函数构建关于x 方程,解方程可得答案.【解题过程】解:如图,设雕塑的高CD 为x 米.45°30°xx4DCAB在Rt △ACD 中,AD =tan30x ︒,在Rt △BCD 中,BD =tan 45x︒=x , 根据题意,得AD -BD =4,即tan30x︒-x =4. 解得x =23+2.答:雕塑的高CD 为(23+2)米. 【知识点】锐角三角函数的实际应用21.(2018四川省达州市,21,7分) “绿水青山就是金山银山”的理念已融入人们的日常生活中,因此越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同. (1)求该型号自行车的进价与标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3 辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?【思路分析】(1))本小题的等量关系是按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.根据等量关系列、解方程即可解决问题.(2)本小题的等量关系是每月的利润W =实际售价×销售数量.根据等量关系列、解方程可得. 【解题过程】解:(1)设该型号自行车的进价为x 元,则标价为(1+50%)x 元. 根据题意,得8[(1+50%)x ×0.9-x ]=7[(1+50%)x -100-x ] 整理,得2.8x =3.5x -700 解得x =1000(元), (1+50%)x =1500(元) .答: 该型号自行车的进价为1000元,则标价为1500元.(2)设该型号自行车降价a 元时,每月获利W 最大.根据题意,得W =(155-1000-a )(51+320x) =-320a 2+48020a +25500 =-320(a 2-160a +802-802)+25500 =-320(a -80)2+26460. 当a =80时,每月获利最大,最大利润是26460元.即该型号自行车降价80元时,每月获利最大,最大利润是26460元. 【知识点】一元一次方程的应用; 一元二次方程的应用;22.(2018四川省达州市,22,8分)已知,如图,以等边△ABC 的边BC 为直径作⊙O ,分别交AB 、AC 于点D 、E ,过点D 作DF ⊥AC 于点F. (1)求证:DF 是⊙O 的切线;(2)若等边△ABC 的边长为8,求由DE 、DF 、EF 围成的阴影部分的面积.E F D O A BC第22题图【思路分析】(1)先根据等腰三角形的三线合一性质证点D 是AB 的中点,然后根据三角形中位线定理得OD ∥AC ,又DF ⊥AC ,所以OD ⊥DF ,所以DF 是⊙O 的切线;(2)根据阴影部分的面积=△DEF 的面积-DE 所含的弓形面积列式计算可得. 【解题过程】解:(1)连接OD ,CD .E F D O A BC∵BC 是直径,∴∠BDC =90°.∵等边△ABC ,∴点D 是AB 的中点.∵点O 是BC 的中点,∴根据三角形中位线定理得OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线;(2)连接OD ,OE ,DE .E F D O A BC∵点D 是AB 的中点,点E 是AC 的中点,∴DE 是△ADE 的中位线. ∵等边△ABC 的边长为8,∴等边△ADE 的边长为4. ∵DF ⊥AC ,∴EF =2,DF =23.∴△DEF 的面积=12·EF ·DF =12×2×23=23. ∴△ADE 的面积=△ODE 的面积=43.∴扇形ODE 的面积=2604360π⋅⋅=83π.∴阴影部分的面积=△DEF 的面积-DE 所含的弓形面积 =23-(83π-43)=63-83π. 【知识点】三角形中位线定理;切线的判定;扇形面积公式23.(2018四川省达州市,23,9分) 矩形中,OB =4,OA =3,分别以OB 、OA 为x 轴、y 轴,建立如图1所示的平面直角坐标系,F 是BC 边上一个动点(不与B 、C 重合),过点F 的反比例函数y =k x(k >0)的图象与边AC 交于点E .xy xy 图2图1G EF FEC ABOC A BO第23题图(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值;(3)如图2,将△CEF 沿EF 折叠,点C 恰好落在OB 边上的点G 处,求此时反比例函数的解析. 【思路分析】(1)先根据题意求出点F 的坐标,然后求得反比例函数解析式,最后求出点E 的坐标;(2)根据正切的定义,得tan ∠EFC =EC FC =43; (3)过点E 作ED ⊥OB 于D ,利用相似三角形的性质构建关于m 的方程,由m 的值,求得点F 的坐标,进而求得k 值,反比例函数解析式可求.【解题过程】解:(1)∵矩形中,OB =4,OA =3,当点F 是BC 的中点时,F 的坐标为(4,1.5),此时,反比例函数的解析式为y =6x.当y =3,x =2,∴点E 的坐标(2,3); (2)在Rt △EFC 中,tan ∠EFC =EC CF =43; (3)过点E 作ED ⊥OB 于D ,则∠EGD +∠DEG =90°. ∵∠EGF =90°,∴∠EGD +∠BGF =90°,∴∠DEG =∠BGF . ∵∠GBF =90°,∴△DEG ∽△BGF . ∴DE EG =GBGF. ∴22DE EG =22GB GF . ∵EC CF =43,∴EG GF=43.设EG =4m ,GF =3m ,则BF =3-3m .∴2916m =2229(33m)(3m)m --.∴m =2532.3-3m =2132∴点E 的坐标(4,2132); 设反比例函数的解析式为y =k x,即2132=4k ,∴k =218. ∴反比例函数的解析式为y =218x. xy D GE FC ABO【知识点】反比例函数;相似三角形的判定与性质24.(2018四川省达州市,24,11分)阅读材料:已知:如图1,等边△A 1A 2A 3内接于⊙O ,点P 是12A A 上的任意一点,连接PA 1,PA 2,PA 3,可证:PA 1+PA 2=PA 3,从而得到12123PA PA PA PA PA +++=12是定值.(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整:MOA 3A 1A 2P第24题图1证明:如图1,作∠PA 1M =60°,A 1M 交A 2P 的延长线于点M . ∵△A 1A 2A 3是等边三角形, ∴∠A 3A 1A 2=60°. ∴∠A 3A 1P =∠A 2A 1M ,又A 3 A 1=A 2A 1,∠A 1A 3P =∠A 1A 2P , ∴△A 1A 3P ≌△A 1A2M .∴PA 3=MA 2=PA 2+PM =PA 2+PA 1 ∴12123PA PA PA PA PA +++=12,是定值.(2)延伸:如图2,把(1)中条件“等边△A 1A 2A 3”改为“正方形A 1A 2A 3A 4”, 其余条件不变,请问121234PA PA PA PA PA PA ++++还是定值吗?为什么?O A 3A 4A 1A 2P第24题图2(3)拓展:如图3,把(1)中条件“等边△A 1A 2A 3”改为“正五边形A 1A 2A 3A 4 A 5”,其余条件不变,则1212345PA PA PA PA PA PA PA +++++=___________(只写出结果).OA 3A 4A 5A 1A 2P第24题图 3参考数据:如图,等腰△ABC 中,若顶角∠A =108°,则BC =152+ AC ;若顶角∠A =36°,则BC =152-+ AC . 36°108°36°72°72°36°A ABBC【思路分析】(1)阅读材料,得出方框内的内容.先根据全等三角形的性质得PA 3=MA 2,PA 1=MA 1,然后根据全等三角形的判定和性质得PA 1=PM . (2)用类比的方法证得121234PA PA PA PA PA PA ++++还是定值.(3)用类比的方法证得1212345PA PA PA PA PA PA PA +++++还是定值.【解题过程】解:(1)方框内的内容为: ∴PA 3=MA 2,PA 1=MA 1, ∵∠PA 1M =60°,∴△PA 1M 是等边三角形. ∴PA 1=PM . (2)是定值.理由:如图2,作∠PA 1M =90°,A 1M 交A 2P 的延长线于点M .N MO A 3A 4A 1A 2P∵A 1A 2A 3A 4是正方形, ∴∠A 4A 1A 2=90°. ∴∠A 4A 1P =∠A 2A 1M ,又A 4 A 1=A 2A 1,∠A 1A 4P =∠A 1A 2P , ∴△A 1A 4P ≌△A 1A 2M . ∴PA 4=MA 2,PA 1=MA 1, ∵∠PA 1M =90°, ∴PM =2PA 1.∴PA 4=MA 2=PA 2+PM =PA 2+2PA 1,作∠PA 2MN =90°,A 2N 交A 1P 的延长线于点MN . 同理可得PA 3=PA 1+2PA 2, ∴PA 3+PA 4=(1+2) (PA 1+PA 2) ∴121234PA PA PA PA PA PA ++++=12+2=1-22,是定值.(3)1212345PA PA PA PA PA PA PA +++++=13+5=354-,是定值.【知识点】全等三角形的判定和性质;等边三角形的判定和性质;勾股定理;分母有理化;多边形内角和;类比的思想方法25.(2018四川省达州市,25,12分)如图,抛物线经过原点 O (0,0),点A (1,1),点B (72,0).(1)求抛物线解析式;(2)连接OA ,过点A 作AC ⊥OA 交抛物线于C ,连接OC ,求△AOC 的面积; (3) 点M 是y 轴右侧抛物线上一动点,连接OM ,过点M 作MN ⊥OM 交x 轴于点N .问:是否存在点M ,使以点O 、M 、N 为顶点的三角形与(2)中的△AOC 相似,若存在,求出点M 的坐标;若不存在,说明理由.x y xy 第25题图备用图72721CBA O11CBAO【思路分析】(1)设抛物线解析式为y =ax (x -72),用待定系数法求得a 的值即可;(2)延长CA 交y 轴于点E .先求出点E 的坐标,再求出AC 所在直线的解析式,之后求出抛物线与AC 所在直线的交点C 的坐标. △AOC 的面积可求.(3)存在. 过点M 作MF ⊥x 轴于点F ,因为MNO ∽△FMO ,MNO ∽△AOC ,所以△FMO ∽△AOC . 设点M (a ,|-25 a 2+75a|),利用相似构建关于a 的方程,解之可得点M 的坐标. 【解题过程】解:(1)设抛物线解析式为y =ax (x -72). ∵点A (1,1),∴1=a (1-72),∴a =-25.∴抛物线解析式为y =-25x (x -72)=-25x 2+75x . ① (2)如图,延长CA 交y 轴于点E.xy 72E D11C B A O∵点A (1,1),∴点A 在坐标轴夹角的平分线上. ∴∠AOE =45°. ∵AC ⊥OA ,∴E (0,2).设AC 所在直线的解析式为y =k x +b . 根据题意,得1,2,k b b =+⎧⎨=⎩解得1,2,k b =-⎧⎨=⎩∴AC 所在直线的解析式为y =-x +2. ② 联立①②,得227,55y x 2,y x x ⎧=-+⎪⎨⎪=-+⎩ 解得111,1,x y =⎧⎨=⎩(舍去)或225,-3,x y =⎧⎨=⎩∴点C (5,-3). ∴OD =5,CD =3.∴△AOC 的面积=12·OD ·(1+CD )=12×5×4=10.(3)存在点M ,使以点O 、M 、N 为顶点的三角形与(2)中的△AOC 相似. 如图,过点M 作MF ⊥x 轴于点F ,则MNO ∽△FMO .xy F 1NCA B OMxy F N1CBAOM∵MNO ∽△AOC , ∴△FMO ∽△AOC . ∴MF FO =OAAC. ∵点A (1,1),∴OA =2.∵点C (5,-3),∴AC =42. ∴OA AC =14. 设点M (a ,|-25 a 2+75a|),∴227|55a a a -+|=14. ∴|-25 a 2+75a|=4a .当-25 a 2+75a ≥0时,-25 a 2+75a =4a . 整理,得8a 2-23a =0 解得a 1=238,a 2=0(不合题意,舍去), 当a =238时,-25 a 2+75a =2332,∴点M (238,2332);当-25 a 2+75a <0时,-25 a 2+75a =-4a .整理,得8a 2-33a =0 解得a 1=338,a 2=0(不合题意,舍去), 当a =338时,-25 a 2+75a =3332,∴点M (338,3332).综上,满足条件的点有两个,分别是M(238,2332),M(338,3332).【知识点】待定系数法求函数解析式;二元一次方程组;相似三角形的判定与性质;一元二次方程。
2018四川省中考数学真题试卷5套(含答案及名师解析)2018年四川省达州市中考数学真题一、单项选择题:(每题3分,共30分)1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)二次根式中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣23.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°5.(3分)下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为76.(3分)平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,则与互相垂直.下面四组向量:①=(3,﹣9),=(1,﹣);②=(2,π0),=(2﹣1,﹣1);③=(cos30°,tan45°),=(sin30°,tan45°);④=(+2,),=(﹣2,).其中互相垂直的组有()A.1组B.2组C.3组D.4组7.(3分)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.8.(3分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.39.(3分)如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A.B.C.D.110.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.12.(3分)已知a m=3,a n=2,则a2m﹣n的值为.13.(3分)若关于x的分式方程=2a无解,则a的值为.14.(3分)如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为.15.(3分)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.16.(3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D 出发运动至点B停止时,点O的运动路径长为.三、解答题17.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;18.(6分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.19.(7分)为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了名市民;扇形统计图中,B项对应的扇形圆心角是度;补全条形统计图;(2)若甲、乙两人上班时从A,B,C,D四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.20.(6分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)21.(7分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?22.(8分)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.23.(9分)矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.24.(11分)阅读下列材料:已知:如图1,等边△A1A2A3内接于⊙O,点P是上的任意一点,连接P A1,P A2,P A3,可证:P A1+P A2=P A3,从而得到:是定值.(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;证明:如图1,作∠P A1M=60°,A1M交A2P的延长线于点M.∵△A1A2A3是等边三角形,∴∠A3A1A2=60°,∴∠A3A1P=∠A2A1M又A3A1=A2A1,∠A1A3P=∠A1A2P,∴△A1A3P≌△A1A2M∴P A3=MA2=P A2+PM=P A2+P A1.∴,是定值.(2)延伸:如图2,把(1)中条件“等边△A1A2A3”改为“正方形A1A2A3A4”,其余条件不变,请问:还是定值吗?为什么?(3)拓展:如图3,把(1)中条件“等边△A1A2A3”改为“正五边形A1A2A3A4A5”,其余条件不变,则=(只写出结果).25.(12分)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.【参考答案】一、单项选择题:(每题3分,共30分)1.B【解析】2018的相反数是﹣2018,故选:B.2.D【解析】由题意,得2x+4≥0,解得x≥﹣2,故选:D.3.B【解析】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.B【解析】∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3﹣∠4=80°﹣45°=35°,故选:B.5.C【解析】A、打开电视机,正在播放《达州新闻》”是随机事件,故此选项错误;B、天气预报“明天降水概率50%,是指明天有50%下雨的可能,故此选项错误;C、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定,正确;D、数据6,6,7,7,8的中位数为7,众数为:6和7,故此选项错误;故选:C.6.A【解析】①∵3×1+(﹣9)×(﹣)=6≠0,∴与不垂直.②∵2×2﹣1+π0×(﹣1)=0,∴与垂直.③∵cos30°×sin30°+tan45°×tan45°≠0,∴于不垂直.④∵+×≠0,∴与不垂直.故选:A.7.D【解析】由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.8.C【解析】∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.9.C【解析】∵四边形ABCD是平行四边形∴AD=BC,DC=AB,∵AC=CA,∴△ADC≌△CBA,∴S△ADC=S△ABC,∵AE=CF=AC,AG∥CD,CH∥AD,∴AG:DC=AE:CE=1:3,CH:AD=CF:AF=1:3,∴AG:AB=CH:BC=1:3,∴GH∥BC,∴△BGH∽△BAC,∴==()2=()2=,∵=,∴=×=,故选:C.10.D【解析】①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a<﹣,故④正确故选:D.二、填空题(每小题3分,共18分)11. 5.5×108【解析】5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.12. 4.5【解析】∵a m=3,∴a2m=32=9,∴a2m﹣n===4.5.故答案为:4.5.13.1或【解析】去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.14.(﹣2,6)【解析】连接OB1,作B1H⊥OA于H,由题意得,OA=6,AB=OC﹣2,则tan∠BOA==,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴点B1的坐标为(﹣2,6),故答案为:(﹣2,6).15.3【解析】由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.16.2【解析】过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC﹣CE=CF﹣CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=﹣=2.故答案为2.三、解答题17.解:原式=1+4﹣(2﹣2)+4×,=1+4﹣2+2+2,=7.18.解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4,,解①得:x≤1,解②得:x>﹣3,故不等式组的解集为:﹣3<x≤1,把x=﹣2代入得:原式=0.19.解:(1)本次调查的总人数为500÷25%=2000人,扇形统计图中,B项对应的扇形圆心角是360°×=54°,C选项的人数为2000﹣(100+300+500+300)=800,补全条形图如下:故答案为:2000、54;(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表可知共有16种等可能结果,其中甲、乙两人恰好选择同一种交通工具上班的结果有4种,所以甲、乙两人恰好选择同一种交通工具上班的概率为=.20.解:如图,过点C作CD⊥AB,交AB延长线于点D,设CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tan A=,即=,解得:x=2+2,答:该雕塑的高度为(2+2)米.21.解:(1)设进价为x元,则标价是1.5x元,由题意得:1.5x×0.9×8﹣8x=(1.5x﹣100)×7﹣7x,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a元,利润为w元,由题意得:w=(51+×3)(1500﹣1000﹣a),=﹣(a﹣80)2+26460,∵﹣<0,∴当a=80时,w最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.22.解:(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)连接OE、作OG⊥AC于点G,∴∠OGF=∠DFG=∠ODF=90°,∴四边形OGFD是矩形,∴FG=OD=4,∵OC=OE=OD=OB,且∠COE=∠B=60°,∴△OBD和△OCE均为等边三角形,∴∠BOD=∠COE=60°,CE=OC=4,∴EG=CE=2、DF=OG=OC sin60°=2,∠DOE=60°,∴EF=FG﹣EG=2,则阴影部分面积为S梯形EFDO﹣S扇形DOE=×(2+4)×2﹣=6﹣.23.解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=3﹣=∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==,(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴=,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.24.解:(1)如图1,作∠P A1M=60°,A1M交A2P的延长线于点M.∵△A1A2A3是等边三角形,∴∠A3A1A2=60°,∴∠A3A1P=∠A2A1M又A3A1=A2A1,∠A1A3P=∠A1A2P,∴△A1A3P≌△A1A2M∴P A3=MA2,∵PM=P A1,∴P A3=MA2=P A2+PM=P A2+P A1.∴,是定值.(2)结论:是定值.理由:在A4P上截取AH=A2P,连接HA1.∵四边形A1A2A3A4是正方形,∴A4A1=A2A1,∵∠A1A4H=∠A1A2P,A4H=A2P,∴△A1A4H=△A1A2P,∴A1H=P A1,∠A4A1H=∠A2A1P,∴∠HA1P=∠A4A1A2=90°∴△HA1P的等腰直角三角形,∴P A4=A4+PH=P A2+P A1,同法可证:P A3=P A1+P A2,∴(+1)(P A1+P A2)=P A3+P A4,∴P A1+P A2=(﹣1)(P A3+P A4),∴=.(3)结论:则=.理由:如图3﹣1中,延长P A1到H,使得A1H=P A2,连接A4H,A4A2,A4A1.由△HA4A1≌△P A4A2,可得△A4HP是顶角为36°的等腰三角形,∴PH=P A4,即P A1+P A2=P A4,如图3﹣2中,延长P A5到H,使得A5H=P A3.同法可证:△A4HP是顶角为108°的等腰三角形,∴PH=P A4,即P A5+P A3=P A4,∴=.故答案为.25.解:(1)设抛物线解析式为y=ax(x﹣),把A(1,1)代入得a•1(1﹣)=1,解得a=﹣,∴抛物线解析式为y=﹣x(x﹣),即y=﹣x2+x;(2)延长CA交y轴于D,如图1,∵A(1,1),∴OA=,∠DOA=45°,∴△AOD为等腰直角三角形,∵OA⊥AC,∴OD=OA=2,∴D(0,2),易得直线AD的解析式为y=﹣x+2,解方程组得或,则C(5,﹣3),∴S△AOC=S△COD﹣S△AOD=×2×5﹣×2×1=4;(3)存在.如图2,作MH⊥x轴于H,AC==4,OA=,设M(x,﹣x2+x)(x>0),∵∠OHM=∠OAC,∴当=时,△OHM∽△OAC,即=,解方程﹣x2+x=4x得x1=0(舍去),x2=﹣(舍去),解方程﹣x2+x=﹣4x得x1=0(舍去),x2=,此时M点坐标为(,﹣54);当=时,△OHM∽△CAO,即=,解方程﹣x2+x=x得x1=0(舍去),x2=,此时M点的坐标为(,),解方程﹣x2+x=﹣x得x1=0(舍去),x2=﹣,此时M点坐标为(,﹣);∵MN⊥OM,∴∠OMN=90°,∴∠MON=∠HOM,∴△OMH∽△ONM,∴当M点的坐标为(,﹣54)或(,)或(,﹣)时,以点O,M,N 为顶点的三角形与(2)中的△AOC相似.2018年四川省广安市中考数学真题一、选择题(每小题,只有一个选项符合题意,本大题共10个小题,每小题3分,共30分。
2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.×1063.(3分)如图所示的正六棱柱的主视图是()A. B. C. D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()第7题第9题A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小 D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈,cos70°≈,tan70°≈2,75,sin37°≈,cos37°≈,tan37°≈)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,四、填空题(每小题4分,共20分)21.(4分)已知x+y=,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.第22题第24题第25题23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.五、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少最少总费用为多少元\27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】2A:实数大小比较;29:实数与数轴.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U1:简单几何体的三视图.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)【考点】KD:全等三角形的判定与性质.【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.(3分)【考点】VD:折线统计图;W1:算术平均数;W4:中位数;W5:众数;W6:极差.【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3分)【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)【考点】X4:概率公式.【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)【考点】S1:比例的性质.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;LB:矩形的性质.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=海里,在直角三角形BCD中,BD=CD•tan∠BCD=海里.答:还需航行的距离BD的长为海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)【考点】MR:圆的综合题.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题。
2018年四川省成都市中考数学试卷(解答附后)一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是()A.(3,−5) B.(−3,5) C.(3,5) D.(−3,−5)5.(3分)下列计算正确的是()A.x2+x2=x4 B.(x﹣y)2=x2−y2 C.(x2 y)3=x6y D.(−x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃8.(3分)分式方程x+1x +1x−2=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在□ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2π C.3π D.6π10.(3分)关于二次函数y=2x2+4x−1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知a6=b5=c4,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+√83﹣2sin60°+|−√3|(2)化简:(1−1x+1)÷x x 2−116.(6分)若关于x 的一元二次方程x 2−(2a +1)x+a 2=0有两个不相等的实数根,求a 的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度 学生数(名) 百分比非常满意12 10% 满意54 m 比较满意n 40% 不满意 6 5% 根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(−2,0),与反比例函数y=k(x>0)的图象交于B(a,4).x(1)求一次函数和反比例函数的表达式;(x>0)的图象于点(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kxN,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.(4分)已知a>0,S1=1a,S2=−S1−1,S3=1S2,S4=−S3−1,S5=1S4,…(即当n为大于1的奇数时,S n=1S n−1;当n为大于1的偶数时,S n=−S n−1−1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.25.(4分)设双曲线y=k(k>0)与直线y=x交于A,B两点(点A在第三象限),将双x曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=k(k>0)的眸径为6时,k的值为.x二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ACB=90°,AB=√7,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A′,B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c 与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析A卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【考点】数轴、数的大小比较。
2018年中考四川省成都市中考数学试题A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD Y 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 .13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G . (1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.ADB 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x +-+-=⨯+()()111x x x x x+-=⨯+1x =- 16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.Q 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里.19.解:(1)Q 一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. Q 一次函数与反比例函数()0k y x x =>交于(),4B a .24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷 21.0.36 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-. 当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒Q ,//m AC ,'90A BC ∠=︒∴,cos ''BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M Q 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB ==∴. tan tan 2Q PCA ∠=∠=Q,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=Q ''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =Q ,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q , ∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >Q ,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >Q,x =∴96748G ⎛+- ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点. OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫⎪⎝⎭∴. AMP PNB ∆∆Q ∽,AM PN PM BN =∴,AM BN PN PM •=•∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >Q ,6163k -+==-+∴.。
四川省二0一八高中阶段教育学校统一招生考试(含成都市初三毕业会考)A卷(共100分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【解析】分析:根据实数的大小比较解答即可.详解:由数轴可得:a<b<c<d,故选D.点睛:此题考查实数大小比较,关键是根据实数的大小比较解答.2. 2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 如图所示的正六棱柱的主视图是()B.C.D.【答案】A【解析】分析:根据主视图是从正面看到的图象判定则可.详解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选A.点睛:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4. 在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.【答案】C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选C.点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.5. 下列计算正确的是()A. B.C. D.【答案】D【解析】分析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.详解:x2+x2=2x2,A错误;(x-y)2=x2-2xy+y2,B错误;(x2y)3=x6y3,C错误;(-x)2•x3=x2•x3=x5,D正确;故选D.点睛:本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6. 如图,已知,添加以下条件,不能判定的是()A. B. C. D.【答案】C【解析】分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.详解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA定理,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;故选C.点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7. 如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A. 极差是8℃B. 众数是28℃C. 中位数是24℃D. 平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8. 分式方程的解是()A. B. C. D.【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9. 如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【答案】C【解析】分析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.详解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选C.点睛:本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10. 关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 等腰三角形的一个底角为,则它的顶角的度数为__________.【答案】【解析】分析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.详解:∵等腰三角形底角相等,∴180°-50°×2=80°,∴顶角为80°.故答案为:80°.点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12. 在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色兵乓球的个数是__________.【答案】6【解析】分析:直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.详解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.点睛:此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13. 已知,且,则的值为__________.【答案】12【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=12.故答案为:12.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14. 如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点.若,,则矩形的对角线的长为__________.【答案】【解析】分析:连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.详解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=,在Rt△ADC中,AC=.故答案为.点睛:本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1).(2)化简.【答案】(1);(2)x-1.【解析】分析:(1)利用有理数的乘方、立方根、锐角三角函数和绝对值的意义进行化简后再进行加减运算即可求出结果;(2)先将括号内的进行通分,再把除法转化为乘法,约分化简即可得解.详解:(1)原式=;(2)解:原式.点睛:本题考查实数运算与分式运算,运算过程不算复杂,属于基础题型.16. 若关于的一元二次方程有两个不相等的实数根,求的取值范围.【答案】【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.详解:∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴△=[-(2a+1)]2-4a2=4a+1>0,解得:a>-.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17. 为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中的值为;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.【答案】(1)120,45%;(2)补图见解析;(3)1980人.【解析】分析:(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.详解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980人游客的肯定.点睛:本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18. 由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)【答案】还需要航行的距离的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.详解:由题知:,,.在中,,,(海里).在中,,,(海里).答:还需要航行的距离的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19. 如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.【答案】(1).;(2)的坐标为或.【解析】分析:(1)根据一次函数y=x+b的图象经过点A(-2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.详解:(1)一次函数的图象经过点,,,.一次函数与反比例函数交于.,,,.(2)设,.当且时,以A,O,M,N为顶点的四边形为平行四边形.即:且,解得:或(负值已舍),的坐标为或.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20. 如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点.(1)求证:是的切线;(2)设,,试用含的代数式表示线段的长;(3)若,,求的长.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】分析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.详解:(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB•AF=xy,则AD=(3)连接EF,在Rt△BOD中,sinB=,设圆的半径为r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE•sin∠AEF=10×,∵AF∥OD,∴,即DG=AD,∵AD=,则DG=×=.点睛:此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.B卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21. 已知,,则代数式的值为__________.【答案】0.36【解析】分析:原式分解因式后,将已知等式代入计算即可求出值.详解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.36点睛:此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.22. 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.【答案】【解析】分析:设勾为2k,则股为3k,弦为k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为k,∴大正方形面积S=k×k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:.故答案为:.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...【答案】【解析】分析:根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.详解:S1=,S2=-S1-1=--1=-,S3=,S4=-S3-1=-1=-,S5=,S6=-S5-1=(a+1)-1=a,S7=,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=-.故答案为:-.点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.24. 如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为__________.【答案】【解析】分析:首先延长NF与DC交于点H,进而利用翻折变换的性质得出NH⊥DC,再利用边角关系得出BN,CN的长进而得出答案.详解:延长NF与DC交于点H,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k-k=k,∵cosC=cosA=,∴CN=CH=7k,∴BN=2k,∴.故答案为:.点睛:此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.25. 设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.【答案】【解析】分析:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=-x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.详解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(-,-),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(-,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(-+2,+2).又∵点P′在双曲线y=上,∴(-+2)•(+2)=k,解得:k=.故答案为:.点睛:本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26. 为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当和时,与的函数关系式;(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?【答案】(1);(2)应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设甲种花卉种植为a m2,则乙种花卉种植(12000-a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)(2)设甲种花卉种植面积为,则乙种花卉种植面积为..当时,.当时,元.当时,.当时,元.,当时,总费用最低,最低为119000元.此时乙种花卉种植面积为.答:应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.27. 在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,),射线,分别交直线于点,.(1)如图1,当与重合时,求的度数;(2)如图2,设与的交点为,当为的中点时,求线段的长;(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.【答案】(1)60°;(2);(3)【解析】分析:(1)由旋转可得:AC=A'C=2,进而得到BC=,依据∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB=BC=,依据tan∠Q=tan∠A=,即可得到BQ=BC×=2,进而得出PQ=PB+BQ=;详解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB=,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,∴S四边形PA'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形PA'B′Q=3-.点睛:本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.28. 如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.【答案】(1).;(2)点坐标为;.(3). 【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:解得,,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方时,直线与关于对称.,,.,,.综上所述,点坐标为;.(3)由题意可得:.,,,即.,,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,,,,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.。
南充市二〇一八年初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=- B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=- 5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy yx xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos 5CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率. 20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标. 22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线.(2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F A B =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14.12 15. 2316. ②④ 三、解答题17.解:原式1122=-++=. 18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB ADBAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x =上, ∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==.又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=. (3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=.在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AMMF AFM===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC .①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+. 2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨-⎪=⎪⎩;223212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。
2018年四川省各市中考数学试题汇编(1)(含参考答案与试题解析)目录1.四川省成都市中考数学试题及参考答案与试题解析 (2)2.四川省绵阳市中考数学试题及参考答案与试题解析 (26)3.四川省南充市中考数学试题及参考答案与试题解析 (48)4.四川省自贡市中考数学试题及参考答案与试题解析 (69)5.四川省泸州市中考数学试题及参考答案与试题解析 (90)6.四川省宜宾市中考数学试题及参考答案与试题解析 (111)7.四川省眉山市中考数学试题及参考答案与试题解析 (133)8.四川省达州市中考数学试题及参考答案与试题解析 (155)2018年四川省成都市中考数学试题及参考答案与解析一、选择题(本大题共3小题,每小题3分,共30分)1.实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.如图所示的正六棱柱的主视图是()A.B.C.D.4.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃8.分式方程1112x x x ++=-的解是( ) A .x=1 B .x=﹣1 C .x=3D .x=﹣39.如图,在▱ABCD 中,∠B=60°,⊙C 的半径为3,则图中阴影部分的面积是( )A .πB .2πC .3πD .6π10.关于二次函数y=2x 2+4x ﹣1,下列说法正确的是( )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为﹣3 二、填空题(本大题共4小题,每小题4分,共16分)11.等腰三角形的一个底角为50°,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 . 13.已知654a b c==,且a+b ﹣2c=6,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .三、解答题(本大题共6小题,共54分)15.(本小题满分12分,每题6分)(1)222sin60|︒+; (2)化简:21111xx x ⎛⎫-÷ ⎪+-⎝⎭. 16.(本小题满分6分)若关于x 的一元二次方程x 2﹣(2a+1)x+a 2=0有两个不相等的实数根,求a 的取值范围.17.(本小题满分8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(本小题满分8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数kyx=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数kyx=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB 上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,B卷一、填空题(本大题共5小题,每小题4分,共20分)21.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.24.如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.25.设双曲线kyx=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线kyx=(k>0)的眸径为6时,k的值为.二、解答题(本大题共3小题,共30分)26.(本小题满分8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(本小题满分10分)在Rt△ABC中,∠ABC=90°,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(本小题满分12分)如图,在平面直角坐标系xOy中,以直线52x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若34 AFFB=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.参考答案与解析A卷一、选择题(本大题共3小题,每小题3分,共30分)1.实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【知识考点】实数大小比较;实数与数轴.【思路分析】根据实数的大小比较解答即可.【解答过程】解:由数轴可得:a<b<c<d,故选:D.【总结归纳】此题考查实数大小比较,关键是根据实数的大小比较解答.2.2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答过程】解:40万=4×105,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的正六棱柱的主视图是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看到的图象判定则可.【解答过程】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【总结归纳】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【知识考点】关于原点对称的点的坐标.【思路分析】根据关于原点对称的点的坐标特点解答.【解答过程】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【总结归纳】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x5【知识考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【思路分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.【解答过程】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【总结归纳】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【知识考点】全等三角形的判定与性质.【思路分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答过程】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA定理,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;故选:C.【总结归纳】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【知识考点】折线统计图;算术平均数;中位数;众数;极差.【思路分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答过程】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误,故选:B.【总结归纳】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.分式方程1112xx x++=-的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【知识考点】解分式方程.【思路分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答过程】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【总结归纳】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π【知识考点】扇形面积的计算;平行四边形的性质.【思路分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答过程】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【总结归纳】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【知识考点】二次函数的性质;二次函数的最值.【思路分析】根据题目中的函数解析式可以判断各个选项中的结论是否在成立,从而可以解答本题.【解答过程】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A 错误,该函数的对称轴是直线x=﹣1,故选项B 错误, 当x <﹣1时,y 随x 的增大而减小,故选项C 错误, 当x=﹣1时,y 取得最小值,此时y=﹣3,故选项D 正确, 故选:D .【总结归纳】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共4小题,每小题4分,共16分)11.等腰三角形的一个底角为50°,则它的顶角的度数为 . 【知识考点】等腰三角形的性质;三角形内角和定理.【思路分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答过程】解:∵等腰三角形底角相等, ∴180°﹣50°×2=80°, ∴顶角为80°. 故填80.【总结归纳】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 . 【知识考点】概率公式.【思路分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答过程】解:∵装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6. 故答案为:6.【总结归纳】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键. 13.已知654a b c==,且a+b ﹣2c=6,则a 的值为 . 【知识考点】比例的性质.【思路分析】直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b ﹣2c=6,得出答案. 【解答过程】解:∵==,∴设a=6x ,b=5x ,c=4x , ∵a+b ﹣2c=6, ∴6x+5x ﹣8x=6, 解得:x=2,故a=12. 故答案为:12.【总结归纳】此题主要考查了比例的性质,正确表示出各数是解题关键.14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .【知识考点】作图—基本作图;线段垂直平分线的性质;矩形的性质.【思路分析】连接AE ,如图,利用基本作图得到MN 垂直平分AC ,则EA=EC=3,然后利用勾股定理先计算出AD ,再计算出AC . 【解答过程】解:连接AE ,如图,由作法得MN 垂直平分AC , ∴EA=EC=3, 在Rt △ADE 中,AD==, 在Rt △ADC 中,AC==.故答案为.【总结归纳】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线). 三、解答题(本大题共6小题,共54分)15.(本小题满分12分,每题6分)(1)222sin60|︒+; (2)化简:21111xx x ⎛⎫-÷ ⎪+-⎝⎭.【知识考点】分式的混合运算;实数的运算;特殊角的三角函数值.【思路分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答过程】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【总结归纳】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(本小题满分6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a 的取值范围.【知识考点】根的判别式.【思路分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答过程】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【总结归纳】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(本小题满分8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.【知识考点】条形统计图;用样本估计总体;加权平均数.【思路分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答过程】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为120.45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980人游客的肯定.【总结归纳】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(本小题满分8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.【解答过程】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数kyx=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数kyx=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答过程】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【总结归纳】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB 上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.。
题型四 几何图形综合题类型一 动态探究型★1.如图①,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图①中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图②的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.第1题图解:(1)PM =PN ,PM ⊥PN ;【解法提示】∵AB =AC ,AD =AE ,∴BD =CE ; ∵点M ,P ,N 分别为DE ,DC ,BC 的中点,∴PM ∥21CE 且PM =21CE ,PN ∥21BD 且PN ∥21BD ; ∴PM=PN ,∠DPM =∠DCE ,∠CNP =∠B , ∴∠DPN =∠PNC +∠PCN =∠B +∠PCN. ∵∠A =90°, ∴∠B +∠ACB =90°,∴∠MPN =∠MPD +∠DPN =∠DCE +∠PCN +∠B =90°,∴PM ⊥PN.(2)△PMN 为等腰直角三角形.理由如下: 由题可知:△ABC 和△ADE 均为等腰直角三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°, ∴∠BAD +∠DAC =∠DAC +∠CAE , ∴∠BAD =∠EAC ,∴△BAD ≌△CAE (SAS ), ∴∠ABD =∠ACE ,BD =CE .又∵点M ,P ,N 分别为DE ,DC ,BC 的中点, ∴PM 是△CDE 的中位线, ∴PM ∥21CE 且PM =21CE . 同理:PN ∥21BD 且PN=21BD .∴PM=PN ,∠MPD =∠ECD ,∠PNC =∠DBC.∴∠MPD =∠ECD =∠ACD +∠ACE =∠ACD +∠ABD ,∠DPN =∠PNC +∠PCN =∠DBC +∠PCN , ∴∠MPN =∠MPD +∠DPN =∠ACD +∠ABD +∠DBC +∠PCN =∠ABC +∠ACB =90°, ∴△PMN 为等腰直角三角形;. 【解法提示】∵△PMN 为等腰直角三角形,∴S △PMN =21PM 2,要使△PMN 的面积最大,即PM 最大.第1题解图由(2)得,PM =21CE ,即当CE 最大时,PM 最大.如解图所示,当点C 、E 在点A 异侧,且在同一直线上时,CE 最大,此时CE =AE +AC =14,则PM 最大值为7,故△PMN 最大面积为S △PMN =21×7×7=249. ★2.如图,BD 是正方形ABCD 的对角线,BC =2,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,同时动点Q 从点C 出发,以相同的速度沿射线BC 运动,当点P 出发后,过点Q 作QE ⊥BD ,交直线BD 于点E ,连接AP 、AE 、PE 、QE ,设运动时间为t (秒). (1)请直接写出动点P 运动过程中,四边形APQD 是什么四边形? (2)请判断AE ,PE 之间的数量关系和位置关系,并加以证明; (3)设△EPB 的面积为y ,求y 与t 之间的函数关系式; (4)直接写出△EPQ 的面积是△EDQ 面积的2倍时t 的值.第2题图解:(1)四边形APQD 是平行四边形; 理由如下:∵四边形ABCD 是正方形,P 、Q 速度相同, ∴∠ABE =∠EBQ =45°,AD //BQ ,AD =BC =2,BP =CQ , ∴BC =AD =PQ ,∴四边形APQD 是平行四边形; (2)AE =PE ,AE ⊥PE ; 理由如下: ∵QE ⊥BD ,∴∠PQE =90°-45°=45°, ∴∠ABE =∠EBQ =∠PQE =45°,∴BE =QE ,在△AEB 和△PEQ 中,⎪⎩⎪⎨⎧=∠=∠=QE BE PQE ABE PQ AB , ∴△AEB ≌△PEQ (SAS ), ∴AE =PE ,∠AEB =∠PEQ , ∴∠AEP =∠EBQ =90°, ∴AE ⊥PE ;(3)如解图①,过点E 作EF ⊥BC 于点F ,第2题解图①∵BC =2,CQ =t , ∴BQ =t +2,∵EF ⊥BC ,且∠EBC =∠EQB =45°, ∴EF =BF =BQ ,∴EF =21BQ =22+t , 又∵BP =QC=t ,∴y =21EF ×BP =21×22+t ×t , 即y =41t 2+21t ;(4)分两种情况:①当点P 在BC 的延长线上时,如解图②,作PM ⊥QE 于点M ,第2题解图②∵PQ =2,∠BQE =45°,∴PM =22PQ =2,BE =QE =22BQ =22(t +2), ∴DE =BE -BD =22(t +2)-22=22t -2,∵△EPQ 的面积是△EDQ 面积的2倍, ∴21×22(t +2)×2=2×21(22t -2)×22(t +2),解得:t =3或t =-2(舍去), ∴t =3;②当P 在BC 边上时,解法同①,此时DE =2-22t , ∵△EPQ 的面积是△EDQ 面积的2倍, ∴21×22(t +2)×2=2×21(2-22t )×22(t +2),解得:t =1或t =-2(舍去), ∴t =1;综上所述,△EPQ 的面积是△EDQ 面积的2倍时,t 的值为1或3.★3.已知:如图,在Rt △ABC 中,AB =4,AC =3,点O 为BC 的中点,点P 从点A 出发,沿折线AC -CO 以每秒1个单位长度的速度向终点O 运动,当点P 与点A 不重合时,过点P 作PQ ⊥AB 于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与Rt △ABC 重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒). (1)当点N 落在BC 上时,求t 的值;(2)当点O 在正方形PQMN 内部时,求t 的取值范围;(3)当点P 在折线AC -CO 上运动时,求S 和t 之间的函数关系式;(4)设正方形PQMN 对角线的交点为E ,当直线CE 平分△ABC 面积时,直接写出t 的值.第3题图解:(1)如解图①,当点N 落在BC 上时,∵四边形PQMN 是正方形, ∴PN //QM ,PN =PQ =t ,∴△CPN ∽△CQB . 第3题解图① ∴QBPNCQ CP =, ∵PN =PQ =AP =t ,CP =3-t ,QB =AB =4,∴43-3tt =, ∴t =712;(2)①如解图②, 则有QM =QP =t ,MB =4-t ,∵四边形PQMN 是正方形,∴MN //CQ , 第3题解图② ∵点O 是CB 的中点,MN //AC , ∴OM 是△ABC 的中位线, ∴QM =BM , ∴t =4-t , ∴t =2;②在Rt △ABC 中,AB =4,AC =3, ∴CB =5,∵点O 是CB 的中点, ∴CO =25,∴1×t =AC +CO =3+25, ∴t =211,∴当点O 在正方形PQMN 内部时,t 的范围是2<t <211; (3)①当0<t ≤712时,如解图③,S =S 正方形PQMN =PQ 2=P A 2=t 2,第3题解图③ 第3题解图④②当712<t ≤3时,如解图④, ∵tan ∠ACB =CAABCP PG =, ∴34-3=t PG , ∴PG =4-34t ,∴GN =PN -PG =37t -4,∴34=NF GN , ∴NF =43GN =47t -3,∴S =S 正方形PQMN -S △GNF =t 2-21×(37t -4)×(47t -3)=-2425t 2+7t -6,③当3<t ≤211时,如解图⑤,第3题解图⑤∵四边形PQMN 是正方形, ∴∠PQM =∠CAB =90°, ∴PQ //AC , ∴△BQP ∽△BAC , ∴ACPQBA BQ BC BP ==, ∵BP =8-t ,BC =5,BA =4,AC =3,∴345-8PQBQ t ==, ∴BQ =5-84)(t ,PQ =5-83)(t ,∴QM =PQ =5-83)(t ,∴BM =BQ -QM =5-8t,∵tan ∠ABC =43==AB AC BM FM , ∴FM =43BM =20-83)(t ,∴S =S 四边形PQMF =21(PQ +FM )×QM =21×[3×(5-8t +20-83)(t )×5-83)(t ]=572518-4092+t t ;(4)如解图⑥,第3题解图⑥∵直线CE 平分△ABC 的面积,∴点E 在△ABC 的∠A 的平分线上,作EH //AB , ∴ACHCAG HE =, ∵点G 是AB 的中点, ∴AG =21AB =2,由题意得,AP =t ,AH =PH =HE =21t ,HC =AC -AP +PH =3-t +21t =3-21t ,∴321-3221t t =, ∴t =512.类型二 类比探究型★1.已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B 、C 重合),以AD 为边作菱形ADEF (A 、D 、E 、F 按逆时针排列),使∠DAF =60°,连接CF .(1)如图①,当点D 在边BC 上时,求证:①BD =CF ;②AC =CF +CD ;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,结论AC =CF +CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系.第1题图(1)证明:①∵四边形AFED 为菱形, ∴AF =AD ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠BAC =60°=∠DAF , ∴∠BAC -∠DAC =∠DAF -∠DAC , 即∠BAD =∠CAF , 在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ), ∴BD =CF ,∴CF +CD =BD +CD =BC =AC ;(2)解:不成立,AC 、CF 、CD 之间存在的数量关系是AC =CF -CD . 理由如下:由(1)知:AB =AC =BC ,∠BAC =∠DAF =60°,∴∠BAC +∠DAC =∠DAF +∠DAC , 即∠BAD =∠CAF , 在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ), ∴BD =CF ,∴CF -CD =BD -CD =BC =AC , 即AC =CF -CD .(3)解:补全图形如解图,AC =CD -CF.第1题解图【解法提示】∵∠BAC =∠DAF =60°, ∴∠DAB =∠CAF , 在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ), ∴BD =CF ,∴CD -CF =CD -BD =BC =AC , 即AC =CD -CF .★2.已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的上边作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为: ;②BC、CD、CF之间的数量关系为: ;(2)数学思考:如图②,当点D在线段CB的延长线上时,以上①②关系是否成立,请在后面的横线上写出正确的结论.①BC与CF的位置关系为: ;②BC、CD、CF之间的数量关系为: ;(3)如图③,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GD,若已知1BC,请求出DG的长(写出求解过程).AB=22,CD=4第2题图解:(1)①BC⊥CF;【解法提示】∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD =45°,∴∠ACF +∠ACB =90°,∴∠BCF =90°,∴BC ⊥CF ;②CF =BC -CD ;【解法提示】由①知△BAD ≌△CAF ,∴BD =CF ,∵BD =BC -CD ,∴CF =BC -CD ;(2)①BC ⊥CF ;【解法提示】∵∠BAC =90°,AB =AC ,∴∠ABC =∠ACB =45°,∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∵∠BAC =∠BAF +∠F AC =90°,∠DAF =∠BAF +∠DAB =90°,∴∠BAD =∠CAF ,在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB ,∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD =180°-45°=135°,∴∠ACB +∠FCB =135°,∴∠FCB =90°,∴BC ⊥CF ;②CF =CD-BC ;【解法提示】由(2)①知△BAD ≌△CAF ,∴BD =CF ,∵BD =CD-BC ,∴CF =CD-BC ;(3)由题意得:∠BAC =∠F AD =90°,∴∠BAD =∠CAF ,在△BAD 和△CAF 中,⎪⎩⎪⎨⎧=∠=∠=AF AD CAF BAD AC AB , ∴△BAD ≌△CAF (SAS ),∴∠ACF =∠ABD =45°,∴∠FCB =∠ACF+∠ACB =45°+45°=90°,∴CF ⊥BC ,在Rt △ABC 中,∵AC =AB =22,∴BC =4,∴CD =41BC =41×4=1,在Rt △AGC 中,∵∠ACF =45°,∴CG =2AC =2×22=4,∴在Rt △DCG 中,DG =17142222=+=+CD CG .★3.如图,△ABC 中,∠BAC 为钝角,∠B =45°,点P 是边BC 延长线上一点,以点C 为顶点,CP 为边,在射线BP 下方作∠PCF =∠B .(1)在射线CF 上取点E ,连接AE 交线段BC 于点D .①如图①,若AD =DE ,请直接写出线段AB 与CE 的数量关系和位置关系;②如图②,若AD =2DE ,判断线段AB 与CE 的数量关系和位置关系并说明理由;(2)如图③,反向延长射线CF ,交射线BA 于点C',将∠PCF 沿CC'方向平移,使顶点C 落在点C'处,记平移后的∠PCF 为∠P'C'F',将∠P'C'F'绕点C'顺时针旋转角α(0°<α<45°),C'F'交线段BC 于点M ,C'P'交射线BP 于点N ,请直接写出线段BM ,MN 与CN 之间的数量关系.图① 图② 图③第3题图解:(1)①AB =CE ,AB ⊥CE .【解法提示】①如解图①,过点A 作AG // CE 交BC 于点G ,第3题解图①∴∠DAG =∠DEC ,∠DGA =∠DCE ,∵AD =DE ,∴△ADG ≌△EDC (AAS ),∴AG =CE ,∵∠PCF =45°,∴∠AGD =∠ECD =135°,∴∠AGB =180°-∠AGD =45°=∠B ,∴AB =AG ,∠BAG =90°,即AB =CE 且AB ⊥CE ;②AB =2CE ,AB ⊥CE .理由:过点E 作EG //AB 交BP 于点G ,延长BA 、EC 交于点H ,第3题解图②∵∠B =45°,EG //AB ,∴∠EGD =∠B =45°,∵∠ADB =∠EDG ,∴△ABD ∽△EGD , ∴DEAD EG AB =, ∵AD =2DE , ∴22==DEDE EG AB , ∴AB =2EG ,∵∠PCF =∠B =45°,∴∠PCF =∠EGD ,∴EG =CE ,∴AB =2CE ,∵∠HCB =∠PCF =45°,∴AB⊥CE;(2)MN2=BM2+CN2.【解法提示】∵∠BCC'=∠PCF=45°=∠C'BC,∴∠BC'C=90°,BC'=C'C,∠C'CN=135°,如解图③,将△CC'N绕点C顺时针旋转90°,得到△C'BQ,连接QM,第3题解图③则BQ=CN,∠BC'Q=∠NC'C,C'Q=C'N,∵∠MC'N=∠NC'C+∠MC'C=45°,∴∠BC'Q+∠MC'C=45°,∴∠QC'M=45°=∠NC'M,∵C'M=C'M,C'Q=C'P,∴△C'QM≌△C'NM(SAS),∴QM=NM,∵∠C'BQ=135°,∠C'BM=45°,∴∠QBM=90°,∴BQ2+BM2=QM2,即BM2+CN2=MN2.。