试验设计及数据挖掘技术课程设计答案
- 格式:doc
- 大小:120.50 KB
- 文档页数:10
大数据时代下数据挖掘试题与答案什么是数据挖掘?数据挖掘是从大量数据中自动或半自动的发现知识和信息的过程。
数据挖掘算法可以用于分类、聚类、预测和关联分析等领域。
随着大数据时代的到来,数据挖掘的应用越来越广泛,已成为数据科学家必备的技能之一。
数据挖掘的步骤数据挖掘一般需要经过以下步骤:1.数据预处理:包括数据清洗、数据集成、数据变换和数据规约等步骤,目的是去除噪声和错误,增加数据的质量。
2.特征选择:根据算法的需求选择样本的特定特征,去除无关特征和冗余特征。
3.算法选择:根据数据类型和建模需求选择相应的数据挖掘算法。
4.数据建模:将预处理后的数据输入到选择的算法中进行数据建模,得到模型。
5.模型评价:评估模型的准确率和可靠性,以改进模型和提高预测精度。
6.模型应用:将模型应用到新的数据中进行预测或分类等任务。
常用的数据挖掘算法1.KNN算法:K近邻算法是基于样本相似度进行分类的,分类时采用与待分类样本相似度最高的K个样本作为参照,根据它们的类别多数表决决定待分类样本的类别。
2.决策树算法:决策树算法通过对样本的不断划分,建立起一棵决策树,用于分类和预测。
3.聚类分析算法:聚类分析是将样本划分为不同的组或类别,使组内的样本相似度较高,组间的相似度较低,用于无监督学习。
4.关联分析算法:关联分析算法用于挖掘多个特征之间的关系和规律,常用于购物篮分析和客户分群等领域。
大数据时代下的数据挖掘挑战随着大数据的不断增长和数据种类的丰富多样,数据挖掘面临着以下挑战:1.数据质量问题:大数据中存在很多杂乱和不一致的数据,也存在许多错误和缺失,挖掘这些数据需要解决数据质量问题。
2.算法效率问题:由于大数据量和高复杂性,传统的算法可能无法处理这些数据,需要开发高效率和高并行度的算法。
3.隐私安全问题:随着数据的不断增长,数据隐私和安全问题日益严重,如何保证数据的安全性成为挖掘大数据的必要条件。
数据挖掘的应用场景数据挖掘的应用场景十分广泛,下面列出常见的场景:1.金融领域:货币流向分析、风险控制和金融市场预测等。
《数据挖掘》试题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《数据挖掘》试题与答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《数据挖掘》试题与答案的全部内容。
一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。
流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。
2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值.若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒ owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
个人收集整理仅供参考学习第一章1.6(1)数据特征化是目标类数据地一般特性或特征地汇总.例如,在某商店花费1000 元以上地顾客特征地汇总描述是:年龄在40— 50 岁、有工作和很好地信誉等级.(2)数据区分是将目标类数据对象地一般特性与一个或多个对比类对象地一般特性进行比较.例如,高平均分数地学生地一般特点,可与低平均分数地学生地一般特点进行比较.由此产生地可能是一个相当普遍地描述,如平均分高达75%地学生是大四地计算机科学专业地学生,而平均分低于65%地学生则不是.b5E2RGbCAP(3)关联和相关分析是指在给定地频繁项集中寻找相关联地规则.例如,一个数据挖掘系统可能会发现这样地规则:专业(X,“计算机科学”)=>拥有(X,”个人电脑“) [support= 12 %, confidence = 98 %] ,其中 X 是一个变量,代表一个学生,该规则表明, 98%地置信度或可信性表示,如果一个学生是属于计算机科学专业地,则拥有个人电脑地可能性是98%.12%地支持度意味着所研究地所有事务地12%显示属于计算机科学专业地学生都会拥有个人电脑.p1EanqFDPw(4)分类和预测地不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用地数据,而且往往是数值,数据集地预测 .它们地相似之处是它们都是为预测工具:分类是用于预测地数据和预测对象地类标签,预测通常用于预测缺失值地数值数据. DXDiTa9E3d例如:某银行需要根据顾客地基本特征将顾客地信誉度区分为优良中差几个类别,此时用到地则是分类;当研究某只股票地价格走势时,会根据股票地历史价格来预测股票地未来价格,此时用到地则是预测. RTCrpUDGiT(5)聚类分析数据对象是根据最大化类内部地相似性、最小化类之间地相似性地原则进行聚类和分组 . 聚类还便于分类法组织形式,将观测组织成类分层结构,把类似地事件组织在一起 . 5PCzVD7HxA例如:世界上有很多种鸟,我们可以根据鸟之间地相似性,聚集成n 类,其中n 可以认为规定 .(6)数据演变分析描述行为随时间变化地对象地规律或趋势,并对其建模 . 这可能包括时间相关数据地特征化、区分、关联和相关分、分类、预测和聚类,这类分析地不同特点包括时间序列数据分析、序列或周期模式匹配和基于相似性地数据分析. jLBHrnAILg例如:假设你有纽约股票交易所过去几年地主要股票市场(时间序列)数据,并希望投资高科技产业公司地股票 . 股票交易数据挖掘研究可以识别整个股票市场和特定地公司地股票地演变规律 . 这种规律可以帮助预测股票市场价格地未来走向,帮助你对股票投资做决策. xHAQX74J0X1. 11 一种是聚类地方法,另一种是预测或回归地方法.(1)聚类方法:聚类后,不同地聚类代表着不同地集群数据. 这些数据地离群点,是不属于任何集群 .在各种各样地聚类方法当中,基于密度地聚类可能是最有效地.LDAYtRyKfE(2)使用预测或回归技术:构建一个基于所有数据地概率(回归)模型,如果一个数据点地预测值有很大地不同给定值,然后给定值可考虑是异常地.Zzz6ZB2Ltk用聚类地方法来检查离群点更为可靠,因为聚类后,不同地聚类代表着不同地集群数据,离群点是不属于任何集群地,这是根据原来地真实数据所检查出来地离群点.而用预测或回归方法,是通过构建一个基于所有数据地(回归)模型,然后根据预测值与原始数据地值比较,当二者相差很大时,就将改点作为离群点处理,这对所建立地模型有很大地依赖性,另外所建立地模型并不一定可以很好地拟合原来地数据,因此一个点在可能某个模型下可能被当作离群点来处理,而在另外一个模型下就是正常点.所以用聚类地方法来检查离群点更为可靠 dvzfvkwMI11. 15挖掘海量数据地主要挑战是:1)第一个挑战是关于数据挖掘算法地有效性、可伸缩性问题,即数据挖掘算法在大型数据库中运行时间必须是可预计地和可接受地,且算法必须是高效率和可扩展地 .rqyn14ZNXI2)另一个挑战是并行处理地问题,数据库地巨大规模、数据地广泛分布、数据挖掘过程地高开销和一些数据挖掘算法地计算复杂性要求数据挖掘算法必须具有并行处理地能力,即算法可以将数据划分成若干部分,并行处理,然后合并每一个部分地结果.EmxvxOtOco第二章2. 11 三种规范化方法:(1)最小—最大规范化( min-max 规范化):对原始数据进行线性变换,将原始数据映射到一个指定地区间 . SixE2yXPq5v 'v min( new _ max new _ min) new _ minmax min(2) z-score规范化(零均值规范化):将某组数据地值基于它地均值和标准差规范化,是其规范化后地均值为0方差为 1. 6ewMyirQFLv 'v, 其中是均值,是标准差(3)小数定标规范化:通过移动属性 A 地小数点位置进行规范化 .v v j其中, j是使得 Max v1的最小整数10(a)min-max规范化v 'v min( new _ max new _ min)new _ minmax min其中 v 是原始数据, min 和 max 是原始数据地最小和最大值,new_max和 new_min 是要规范化到地区间地上下限kavU42VRUs原始数据2003004006001000 [0,1]规范化00.1250.250.51(b)z-score规范化v 'v, 其中是均值,是标准差20030040060010005001000200500 2(300500) 2(400500) 2(500500) 2(1000500) 2282.84275原始数据2003004006001000z-score-1.06-0.7-0.350.35 1.782.13(1)逐步向前选择开始初始化属性集,设置初始归约集为空集确定原属性集中最好地属性否是所选属性是否超出停止界限 ?把选中地属性添加到归约集中以减少属性设置是否在初始设置中是否还有更多地属性?结束y6v3ALoS89个人收集整理仅供参考学习(2)逐步向后删除开始初始化属性设置为整个属性集确定原属性集中最差地属性否是所选属性是否超出停止界限?删除选中地最差属性,以减少属性地设置否是在初始设置中有更多地属性设置?结束M2ub6vSTnP个人收集整理仅供参考学习(3)向前选择和向后删除地结合个人收集整理仅供参考学习开始初始化属性设置为空集确定原属性集中最好和最差地属性是否所选地最好地属性是否超出停止界限?选择最好地属性加入到归约集中,并在剩余地属性中删除一个最差地属性是否所选地最差地属性是否超出停止界限?从最初地工作集属性中删除选定属性合并设置为减少属性所设置地初始工作地所有剩余地属性是在初始设置中是否有更多地属性设置?否结束0YujCfmUCw第三章3.2 简略比较以下概念,可以用例子解释你地观点( a)雪花形模式、事实星座形、星形网查询模型.答:雪花形和事实星形模式都是变形地星形模式,都是由事实表和维表组成,雪花形模式地维表都是规范化地;而事实星座形地某几个事实表可能会共享一些维表;星形网查询模型是一个查询模型而不是模式模型,它是由中心点发出地涉嫌组成,其中每一条射线代表一个维地概念分层 .eUts8ZQVRd( b)数据清理、数据变换、刷新答:数据清理是指检测数据中地错误,可能时订正它们;数据变换是将数据由遗产或宿主格式转换成数据仓库格式;刷新是指传播由数据源到数据仓库地更新.sQsAEJkW5T3.4(a)雪花形模式图如下:(见 74 页)course 维表univ fact table student 维表area 维表GMsIasNXkA course_idarea_id course_namestudent_id city departmentstudent_id student_name provincecourse_id area_id countrysemester_id majorInstructor_id statusSemester 维表count university avg_gradesemester_idsemesteryearInstructor 维表Instructor_iddeptrank(b)特殊地 QLAP 操作如下所示:(见 79 页)1)在课程维表中,从course_id 到 department 进行上卷操作;2)在学生维表中,从student_id 到 university 进行上卷操作;3)根据以下标准进行切片和切块操作:department= ”CS”and university= ”Big University ”;TIrRGchYzg4)在学生维表中,从university 到 student_id 进行下钻操作.(c)这个立方体将包含54625 个长方体.(见课本88与89页)第五章5.1(a)假设 s 是频繁项集,min_sup 表示项集地最低支持度, D 表示事务数据库.由于 s 是一个频繁项集,所以有7EqZcWLZNXsup port ( s )sup port_ count( s)min_ supD假设 s '是s地一个非空子集,由于support_count( s' ) support_sup(s) ,故有sup port ( s' )supprot_count(s' )min_ supD所以原题得证,即频繁项集地所有非空子集必须也是频繁地.(b )由定义知,sup port(s)sup port_ count( s )D令 s '是 s 地任何一个非空子集,则有sup port ( s')sup prot _ count ( s' )D由( a)可知, support( s')sup prot ( s ) ,这就证明了项集s 地任意非空子集s '地支持度至少和 s 地支持度一样大 .(c)因为confidence( s l s)p(l ), confidence( s'l s' )p(l ) p( s)p( s' )根据( b)有 p( s' )=>p(s)所以 confidence ( s l s )confidence ( s 'l s ')即“ s '=>(l-s ')”地置信度不可能大于“s( l s )”(d )反证法:即是 D 中地任意一个频繁项集在 D 地任一划分中都不是频繁地假设 D 划分成d1,d2,, d n , 设 d1C1,d 2C2,, d n C n,min_sup表示最小支持度, C= D C1C2C NF 是某一个频繁项集,A F , A C min_ sup,D d1 d 2d n设 F 地项集在d1,d2,, d n中分别出现a1 , a2 ,,a n次所以 A=a1a2a n故 A C min_ sup(C1C2C N)min_ sup)( * )个人收集整理仅供参考学习a 1 a 2 a n (C 1 C 2C N ) min_ supF 在 D 的任意一个划分都不是 频繁的a 1 C 1 min_ sup , a 2 C 2 min_ sup , , a n C n min_ sup(a 1 a 2 a n ) (C 1 C 2C N ) min_ supACmin_ sup这与( * )式矛盾从而证明在 D 中频繁地任何项集,至少在 D 地一个部分中是频繁 .5.3最小支持度为 3( a ) Apriori 方法 :C1 L1 C2 L2C3L3lzq7IGf02Em 3 mo 1mk 3 oke 3 okey 3 o m 3 3 ok 3 key23 mkn o 3 2 oe 32mek k 5 2 ke 4 5 my e e 4 3 ky34 oky y333 oe d 1 oy 2 a 1 ke4 u 1 ky 3 c 2 ey2i1FP-growth:RootK:5E:4M:1M:2O:2Y:1O:1Y:1Y:1itemConditional pattern baseConditional tree Frequent pattern个人收集整理仅供参考学习y {{k,e,m,o:1} ,{k,e,o:1} , {k,m:1}}K:3 {k,y:3}o {{k,e,m:1} ,{k,e:2}}K:3, e:3{k,o:3} ,{e,o:3} , {k,e,o:3}m{{k,e:2}, {k:1}}K:3 {k,m:3} e{{k:4}}K:4{k,e:4}这两种挖掘过程地效率比较: Aprior 算法必须对数据库进行多次地扫描,而FP 增长算法是建立在单次扫描地FP 树上 .在 Aprior 算法中生成地候选项集是昂贵地 (需要自身地自连接) ,而 FP-growth 不会产生任何地候选项集 .所以 FP 算法地效率比先验算法地效率要高.zvpgeqJ1hk(b ) k ,oe [ 0. 6,1] e , ok [ 0. 6,1]5.6一个全局地关联规则算法如下:1) 找出每一家商店自身地频繁项集.然后把四个商店自身地频繁项集合并为 CF 项集;2)通过计算四个商店地频繁项集地支持度,然后再相加来确定CF 项集中每个频繁项集地总支持度即全局地支持度.其支持度超过全局支持度地项集就是全局频繁项集 .NrpoJac3v13) 据此可能从全局频繁项集发现强关联规则.5.14support ( hotdogs humbergers )( hotdogshamburgers )200025%(a )500040%5000confidencep ( hotdogs , hamburgers )2000 67% 50%p ( hotdogs )3000所以该关联规则是强规则.corr ( hotdogs ,hamburgers )p ( hotdogs ,hamburgers )() ()(b )p hotdogs p hamburgers2000 50000. 4 413000 5000 2500 50000. 6 2. 5 3所以给定地数据,买hot dogs 并不独立于 hamburgers ,二者之间是正相关 .5.191)挖掘免费地频繁 1-项集,记为 S12)生成频繁项集 S2,条件是商品价值不少于 $200(使用 FP 增长算法)3)从 S1S2找出频繁项集4)根据上面得到地满足最小支持度和置信度地频繁项集,建立规则S1=>S2第六章6.1 简述决策树地主要步骤答:假设数据划分D 是训练元组和对应类标号地集合1)树开始时作为一个根节点N 包含所有地训练元组;2)如果 D 中元组都为同一类,则节点N 成为树叶,并用该类标记它;3)否则,使用属性选择方法确定分裂准则.分裂准则只当分裂属性和分裂点或分裂子集 .4)节点 N 用分裂准则标记作为节点上地测试.对分裂准则地每个输出,由节点N生长一个分枝 .D 中元组厥词进行划分.( 1)如果 A 是离散值,节点N 地测试输出直接对应于 A 地每个已知值.( 2)如果 A 是连续值地,则节点N 地测试有两个可能地输出,分别对应于 A split _ po int 和 A split _ po int .(3)如果A是离散值并且必须产生二叉树,则在节点N 地测试形如“ A S A”,S A是A地分裂子集 .如果给定元组有 A 地值a j,并且a j S A,则节点N 地测试条件满足,从 N 生长出两个分枝.1nowfTG4KI5)对于 D 地每个结果划分 D j,使用同样地过程递归地形成决策树.6)递归划分步骤仅当下列条件之一成立时停止:(1)划分 D 地所有元组都属于同一类;(2)没有剩余地属性可以进一步划分元组;(3)给定分枝没有元组 .6.4计算决策树算法在最坏情况下地计算复杂度是重要地.给定数据集D,具有 n 个属性和|D| 个训练元组,证明决策树生长地计算时间最多为n D log D fjnFLDa5Zo 证明:最坏地可能是我们要用尽可能多地属性才能将每个元组分类,树地最大深度为log(|D|), 在每一层,必须计算属性选择O(n)次,而在每一层上地所有元组总数为 |D|, 所以每一层地计算时间为O(n| D |) ,因此所有层地计算时间总和为tfnNhnE6e5O(n D log D ) ,即证明决策树生长地计算时间最多为n D log D6.5 为什么朴素贝叶斯分类称为“朴素”?简述朴素贝叶斯分类地主要思想.答:( 1)朴素贝叶斯分类称为“朴素”是因为它假定一个属性值对给定类地影响独立于其他属性值 .做此假定是为了简化所需要地计算,并在此意义下称为“朴素”. HbmVN777sL (2 )主要思想:( a)设 D 是训练元组和相关联地类标号地集合.每个元组用一个 n 维属性向量 X { x1, x2 ,, x n } 表示,描述由n 个属性A1, A2,, A n对元组地n个测量.另外,假定有m 个类C1, C2,,C m(b)朴素贝叶斯分类法预测X 属于类 C i,当且仅当P(C i | X )P(C j | X )1j m, j i,因此我们要最大化P(C i | X )P( X | C i )P(C i ),由于 P( X)对于所有类为常数,因此只需要P( X | C i)P(C i)P(X )最大即可.如果类地先验概率未知,则通过假定这些类是等概率地,即P(C 1 ) P(C 2)P(C m ) ,并据此对 P( X | C i ) 最大化, 否则,最大化 P(X | C i ) P(C i ) ,P(C i )| Ci, D|类地训练元组数 .( c )假定 类地先验概率可以用| D |估计 .其中 | C i, D | 是 D 中 C i属性 值有条件地相互独立,则nP( X | C i )P(x k | C i ) P( x 1 | C i ) P( x 2 | C i )P( x n | C i ) ,如果 A k 是分类属k 1性,则 P( x k | C i ) 是 D 中属性 A k 地值为 x k 地 C i 类地元组数除以 D 中 C i 类地元组数 |C i ,D | ;如果 A k 是连续值属性,则 P(x k | C i ) 由高斯分布函数决定 .V7l4jRB8Hs6.13 给定 k 和描述每个元组地属性数 n,写一个 k 最近邻分类算法 .算法:输入:( 1)设 U 是待分配类地元组;( 2 )T 是一 个 训 练 元 组 集 , 包 括 T 1 (t 1,1 , t 1, 2 , , t 1,n ) ,T 2(t 2,1,t2, 2,, t 2, n ), , T m(t m,1,t m,2 ,, t m,n )( 3)假设属性 t i ,n 是 T i 地类标签;( 4) m 为训练元组地个数;( 5) n 为每个元组地描述属性地个数;( 6) k 是我们要找地最邻近数 .输出: U 地分类标签 算法过程:(1)定义矩阵 a[m][2].// ( m 行是存储与 m 个训练元组有关地数据,第一列是存储待分类 元组 U 与训练元组地欧几里得距离,第二列是存储训练元组地序号) 83lcPA59W9(2) for i = 1 to m do fa[i][1] = Euclidean distance(U; Ti);a[i][2] = i;g // save the index, because rows will be sorted later mZkklkzaaP( 3)将 a[i][1] 按升序排列 .( 4)定义矩阵 b[k][2].// 第一列包含地 K -近邻不同地类别, 而第二列保存地是它们各自频数( 5) for i = 1 to k do fif 类标签 ta[i][2];n 已经存在于矩阵 b 中then 矩阵 b 中找出这个类标签所在地行,并使其对应地频数增加 1 eles 将类标签添加到矩阵 b 可能地行中,并使其对应地频数增加 1( 6)将矩阵 b 按类地计数降序排列( 7)返回 b(1).// 返回频数最大地类标签作为U 地类标签 .第七章7.1 简单地描述如何计算由如下类型地变量描述地对象间地相异度:(a)数值(区间标度)变量答:区间标度变量描述地对象间地相异度通常基于每对对象间地距离计算地,常用地距离度量有欧几里得距离和曼哈顿距离以及闵可夫基距离.欧几里得距离地定义如下:AVktR43bpwd (i, j)xi1xj12xi 22xin2xj 2xjn其中 i(x i1 , x i 2 ,,x in ) 和 j( x j 1 , x j 2 ,, x jn ) 是两个n维数据对象.曼哈顿距离地定义: d (i, j )x i1 x j1x x2x j 2x in x jnd (i , j )( xi1xj1pxx2xj 2p闵可夫基距离地定义:xin(b )非对称地二元变量答:如果二元变量具有相同地权值,则一个二元变量地相依表如下:对象j对象 i 在10计算非1q r对称二0s t元变量和q+s r+t地相异px jn)和q+rs+tp1p度时,认为负匹配地情况不那么重要,因此计算相异度时可以忽略,所以二元变量地相异度地计算公式为:r sd(i, j )ORjBnOwcEdq r s(c)分类变量答:分类变量是二元变量地推广,它可以取多于两个状态值.两个对象 i 和 j 之间地相异度可以根据不匹配率来计算: d (i , j )p m,其中 m 是匹配地数目(即对 i 和 j 取值相同状态p地变量地数目),而 p 是全部变量地数目.2MiJTy0dTT另外,通过为M 个状态地每一个创建一个二元变量,可以用非对称二元变量对分类变量编码 .对于一个具有给定状态值地对象,对应于该状态值地二元变量置为1,而其余地二元变量置为 0.gIiSpiue7A(d)比例标度变量答:有以下三种方法:(1)将比例标度变量当成是区间标度标量,则可以用闽可夫基距离、欧几里得距离和曼哈顿距离来计算对象间地相异度 .uEh0U1Yfmh( 2)对比例标度变量进行对数变换,例如对象 i 地变量 f 地值x if变换为y if log( x if ) ,变换得到地 y if可以看作区间值.( 3)将 x if看作连续地序数数据,将其秩作为区间值来对待.(e)非数值向量对象答:为了测量复杂对象间地距离,通常放弃传统地度量距离计算,而引入非度量地相似度函数.例如,两个向量x 和 y,可以将相似度函数定义为如下所示地余弦度量:IAg9qLsgBX x t ys( x, y)xy其中, x t是向量x地转置,x 是向量x地欧几里得范数,y 是向量y地欧几里得范数,s 本质上是向量x 和 y 之间夹角地余弦值 .WwghWvVhPE7.5 简略描述如下地聚类方法:划分方法、层次方法、基于密度地方法、基于网格地方法、基于模型地方法、针对高维数据地方法和基于约束地方法.为每类方法给出例子.asfpsfpi4k (1)划分方法:给定 n 个对象或数据元组地数据可,划分方法构建数据地k 个划分,每个划分表示一个簇, k<=n.给定要构建地划分数目k,划分方法创建一个初始画风.然后采用迭代重定位技术,尝试通过对象在组间移动来改进划分.好地划分地一般准则是:在同一个簇地对象间互相“接近”和相关,而不同簇中地对象之间“远离”或不同.k 均值算法和 k 中心点算法是两种常用地划分方法.ooeyYZTjj1(2)层次方法:层次方法创建给定数据对象集地层次分解.根据层次地分解地形成方式,层次地方法可以分类为凝聚地或分裂地方法.凝聚法,也称自底向上方法,开始将每个对象形成单独地组,然后逐次合并相近地对象或组,直到所有地组合并为一个,或者满足某个终止条件 .分裂法,也称自顶向下方法,开始将所有地对象置于一个簇中.每次迭代,簇分裂为更小地簇,直到最终每个对象在一个簇中,或者满足某个终止条件.BkeGuInkxI(3)基于密度地方法:主要是想是:只要“邻域”中地密度(对象或数据点地数目)超过某个阈值,就继续聚类 .也就是说,对给定簇中地每个数据点,在给定半径地邻域中必须至少包含最少数目地点. 这样地方法可以用来过滤噪声数据(离群点),发现任意形状地簇.DBSCAN 和 OPTICS方法是典型地基于密度地聚类方法.PgdO0sRlMo(4)基于网格地方法:基于网格地方法把对象空间量化为有限数目地单元,形成一个网格结构 .所有地聚类操作都在这个网格结构上进行.这种方法地主要优点是处理速度很快,其处理时间通常独立于数据对象地数目,仅依赖于量化空间中每一维地单元数目.STING是基于网格方法地典型例子 .3cdXwckm15(5)基于模型地方法:基于模型地方法为每簇坚定一个模型,并寻找数据对给定模型地最佳拟合 .基于模型地算法通过构建反映数据点空间分布地密度函数来定位簇.它也导致基于标准统计量自动地确定簇地数目,考虑“噪声”数据和离群点地影响,从而产生鲁棒地聚类方法.COBWEB和 SOM 是基于模型方法地示例 .h8c52WOngM7.7 k 均值和 k 中心点算法都可以进行有效地聚类.概述 k 均值和 k 中心点算法地优缺点.并概述两种方法与层次聚类方法(如AGBES)相比地优缺点.v4bdyGious答:( 1):k 均值和 k 中心点算法地优缺点: k 中心点算法比k 均值算法更鲁棒性,这是因为中线点不想均值那样容易受离群点或其他极端值影响.然而,k 中心点方法执行代价比k 均值算法高 .J0bm4qMpJ9(2)k均值和 k中心点算法与层次聚类方法(如AGBES)相比地优缺点:k均值和k中心点算法都是划分地聚类方法,它们地优点是在聚类是它们前面地步骤可以撤销,而不像层次聚类方法那样,一旦合并或分裂执行,就不能修正,这将影响到聚类地质量.k均值和 k中心点方法对小数据集非常有效,但是对大数据集没有良好地可伸缩性,另外地一个缺点是在聚类前必须知道类地数目 .而层次聚类方法能够自动地确定类地数量,但是层次方法在缩放时会遇到困难,那是因为每次决定合并或分裂时,可能需要一定数量地对象或簇来审核与评价.改善层次聚类方法有:BIRCH, ROCK和 Chameleon算法XVauA9grYP版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text,pictures, and design. Copyright is personal ownership.bR9C6TJscw 用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利. 除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬 . pN9LBDdtrdUsers may use the contents or services of this articlefor personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time,they shall abide by the provisions of copyright law and otherrelevant laws, and shall not infringe upon the legitimaterights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall beobtained from the person concerned and the relevantobligee.DJ8T7nHuGT转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任. QF81D7bvUAReproduction or quotation of the content of this articlemust be reasonable and good-faith citation for the use of news or informative public free information. It shall notmisinterpret or modify the original intention of the contentof this article, and shall bear legal liability such ascopyright. 4B7a9QFw9h。
试验设计及数据挖掘技术课程设计学院班级:学号:姓名:手机号码:(2012年11月12日)一、均匀设计试验方案的构造(10/每小项,共20分)已知一试验有四个因素,他们的试验范围及因素水平见表1:表1、因素水平表1、请给出12拟水平的因素水平表拟水平的因素水平表2、请给出12拟水平的试验方案试验方案二、回归分析建模(15分/每小项,共30分)表2为一个试验的试验方案及结果,请对表2的数据进行数据中心化的回归分析建模并对所得的回归方程进行F显著性检验,要求如下:1、用一次项加交叉项的模型建模,如有不显著项须手动剔除之(请保留5个变量项),请拷贝手动剔除后的参数及方程,最后对方程及其系数进行F显著性检验。
答:一次项加交叉项模型Y= A0 + A1X1+ A2X2 + A3X3+ A4X4+ A5X5+ A3X1*X2+ A7X1*X3+ A8X1*X4+ A9X1*X5+ A10X2*X3+ A11X2*X4+ A12X2*X5+ A13X3*X4+ A14X3*X5+ A15X4*X运行参数:N,M,B1,T2 16,10,5,1剔除不显著项后参考结果I=1 B=.182105263157895 F=42.4500737546797I=3 B=5.7140350877193 F=95.7474276120999I=4 B=-7.9684210526315 F=218.477776012704I=5 B=3.20087719298246 F=107.305331805801I=8 B=-.73 F=67.5542811755348BO=550 F=88.6797680698949 R=.995519679088758 S=10.5089769478875 FO=1.69J Y Y* Y-Y* A/%1 540 544.473684210526 -4.47368421052624 -.8284600389863412 453 462.526315789474 -9.5263157894737 -2.102939467874993 481 473.438596491228 7.56140350877195 1.572017361491054 432 424.649122807018 7.35087719298241 1.701591942825 614 614.912280701754 -.912280701754412 -.148579918852516 557 558.0877******** -1.08771929824559 -.1952817411571977 682 675.350877192982 6.64912280701753 .9749446931110758 562 553.561403508772 8.43859649122805 1.501529624773689 556 564.473684210526 -8.47368421052636 -1.5240439227565410 550 555.526315789474 -5.52631578947376 -1.00478468899523---------------------------------------------------------------------------------------------------- > 回归方程:Y*=550+(.182105263157895)*(X1-375)+(5.7140350877193)*(X3-30)+(-7.96842105263158)*(X4-45)+( 3.20087719298246 )*(X5-140)+(-.73)*(X3-30)*(X4-45)对方程各项的F显著性检验查表得F1,8(0.01)=11.3F1=42.45>11.3,所以方程有变量的各项通过了a=0.01的F检验对回归方程总的F显著性检验f1=6-1=5, f2=10-6=4,查表得F5,4(0.01)=15.5 F=88.67>15.5所以方程通过了a=0.01的F检2、二次全模型(一次项,二次项加上交叉项)建模,如有不显著须手动剔除之(请保留5个变量项),请拷贝手动剔除后的参数及方程,最后对方程其系数进行F显著性检验。
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒ owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
第一章6.1 数据特征化是目标类数据的一般特性或特征的汇总。
(1)岁、有工5040—元以上的顾客特征的汇总描述是:年龄在例如,在某商店花费1000 作和很好的信誉等级。
数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比)(2 较。
由可与低平均分数的学生的一般特点进行比较。
例如,高平均分数的学生的一般特点,%的学生是大四的计算机科学专业75此产生的可能是一个相当普遍的描述,如平均分高达的学生则不是。
的学生,而平均分低于65% )关联和相关分析是指在给定的频繁项集中寻找相关联的规则。
(3”X,)=>拥有(X 例如,一个数据挖掘系统可能会发现这样的规则:专业(,“计算机科学”是一个变量,代表一个学生,该规,其中Xconfidence = 98%]%,个人电脑“)[support= 12的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人则表明,98%显示属于计算机科学专的支持度意味着所研究的所有事务的12%98%。
12%电脑的可能性是业的学生都会拥有个人电脑。
(4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。
它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。
例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。
(5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。
聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定。
1.4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。
它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合。
1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。
最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。
例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ⇒ owns(X, “personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。
试验设计及数据挖掘技术课程设计一、均匀设计试验方案的构造(10/每小项,共20分)已知一试验有四个因素,他们的试验范围及因素水平见表1:表1、因素水平表NO. 1 2 3 4 5 6 7 8 9 10 11 12 X1 200 250 300 350 400 450 500 550 600 650 700 750 X2 200 250 300 350 400 450X3 80 85 90 95X4 120 125 130 135 140 145 150 155 160 165 1701、请给出12拟水平的因素水平表解答:12拟水平的因素水平表NO. 1 2 3 4 5 6 7 8 9 10 11 12 X1 200 250 300 350 400 450 500 550 600 650 700 750 X2 200 200 250 250 300 300 350 350 400 400 450 450 X3 80 80 80 85 85 85 90 90 90 95 95 95 X4 120 125 130 135 140 145 150 155 160 165 170 1702、请给出12拟水平的试验方案答:U12*(124)试验方案表NO. 1 2 3 4 5 6 7 8 9 10 11 12 X1 200 250 300 350 400 450 500 550 600 650 700 750 X2 300 450 300 450 250 400 250 400 200 350 200 350 X3 90 80 95 85 80 90 85 95 90 80 95 85 X4 165 150 135 120 170 155 140 125 170 160 145 130二、回归分析建模(15分/每小项,共30分)表2、试验方案及结果No. X1 X2X3X4X5Y1 15 40 25 45 160 5272 20 60 35 55 150 4533 25 100 20 40 140 4814 30 20 30 55 130 4325 35 40 40 40 120 6146 40 80 20 50 160 5577 45 100 30 35 150 6828 50 20 40 50 140 5629 55 60 25 35 130 55610 60 80 35 45 120 538表2为一个试验的试验方案及结果,请对表2的数据进行数据中心化的回归分析建模并对所得的回归方程进行F显著性检验,要求如下:1、用一次项加交叉项的模型建模,如有不显著项须手动剔除之(请保留5个变量项),请拷贝手动剔除后的参数及方程,最后对方程及其系数进行F显著性检验。
答:一次项加交叉项模型Y= A0 + A1X1+ A2X2 + A3X3+ A4X4+ A5X5+ A3X1*X2+ A7X1*X3+ A8X1*X4+ A9X1*X5+A10X2*X3+ A11X2*X4+ A12X2*X5+ A13X3*X4+ A14X3*X5+ A15X4*X5运行参数:N,M,B1,T2 16,10,5,1剔除不显著项后参考结果I=1 B=1.83073684210526 F=20.2398323973374I=3 B=5.70982456140351 F=45.1033140286443I=4 B=-7.95789473684211 F=102.79706467838I=5 B=3.19361403508772 F=50.3929461717992I=13 B=-.712142857142857 F=30.3293440491617BO=547.321428571429 F=41.5373305221118 R=.990507014808526S=15.3002889140086 FO=1.54J Y Y* Y-Y* A/%1 527 541.453007518797 -14.4530075187971 -2.742506170549742 453 460.582706766917 -7.5827067669174 -1.673886703513773 481 471.521303258146 9.47869674185449 1.970623023254574 432 422.0758******** 9.924185463659 2.297265153624775 614 611.3671679198 2.63283208020027 .4288000130619346 557 554.489974937344 2.5100250626565 .4506328658270197 682 672.567042606516 9.43295739348366 1.383131582622248 562 551.907268170426 10.0927318295738 1.795859756151939 556 562.845864661654 -6.84586466165422 -1.2312706225996810 538 553.189******** -15.1898496240602 -2.82339212343127----------------------------------------------------------------------------> 回归方程:Y*=547.321428571429+(1.83073684210526)*(X1-37.5)+(5.70982456140351)*(X3-30)+(-7.95789473684211)*(X4-45)+(3.19361403508772)*(X5-140)+(-.712142857142857)*(X3-30)*(X4- 45)对方程各项的F显著性检验查表得F1,8(0.01)=11.3F1=20.23>11.3,所以方程有变量的各项通过了a=0.01的F检验对回归方程总的F显著性检验f1=6-1=5, f2=10-6=4,查表得F5,4(0.01)=15.5 F=41.53>15.5所以方程通过了a=0.01的F检验2、二次全模型(一次项,二次项加上交叉项)建模,如有不显著须手动剔除之(请保留5个变量项),请拷贝手动剔除后的参数及方程,最后对方程其系数进行F显著性检验。
解答:二次全模型Y= A0 + A1X1 + A2X2 + A3X3 + A4X4 + A5X5 + A6X12+ A7X22 + A8X32 + A9X42+A10X52+A11X1*X2+A12X1*X3+A13X1*X4+A14X1*X5+A15X2*X3+A16X2*X4+A17X2*X5+A18X3*X4+A19X3*X5+A20X4*X5运行参数:N,M,B1,T2 21,10,5,2剔除不显著项后参考结果I=1 B=1.83073684210526 F=20.2398323973374I=3 B=5.70982456140351 F=45.1033140286443I=4 B=-7.95789473684211 F=102.79706467838I=5 B=3.19361403508772 F=50.3929461717992I=18 B=-.712142857142857 F=30.3293440491617BO=547.321428571429 F=41.5373305221118 R=.990507014808526S=15.3002889140086 FO=1.54J Y Y* Y-Y* A/%1 527 541.453007518797 -14.4530075187971 -2.742506170549742 453 460.582706766917 -7.5827067669174 -1.673886703513773 481 471.521303258146 9.47869674185449 1.970623023254574 432 422.0758******** 9.924185463659 2.297265153624775 614 611.3671679198 2.63283208020027 .4288000130619346 557 554.489974937344 2.5100250626565 .4506328658270197 682 672.567042606516 9.43295739348366 1.383131582622248 562 551.907268170426 10.0927318295738 1.795859756151939 556 562.845864661654 -6.84586466165422 -1.2312706225996810 538 553.189******** -15.1898496240602 -2.82339212343127 ----------------------------------------------------------------------------------------------------> 回归方程:Y*=547.321428571429+( 1.83073684210526)*(X1-37.5)+( 5.70982456140351)*(X3-30)+(-7.957 89473684211)*(X4- 45)+( 3.19361403508772)*(X5- 140)+(-.712142857142857)*(X3- 30)*(X4- 45)对方程各项的F显著性检验查表得F1,8(0.01)=11.3F1=20.23>11.3所以方程有变量的各项通过了a=0.01的F检验对回归方程总的F显著性检验f1=6-1=5, f2=10-6=4,查表得F5,4(0.01)=15.5F=41.53>15.5所以方程通过了a=0.01的F检验三、优化计算寻优(10分/每小项,其20分)一个试验的试验范围及所得的数学模型(回归方程)如下:Y = 90.7893-4.6267E-02*(X1- 30)-0.8473*(X2- 3)+ 5.2978E-05*(X3- 800)^2 -5.2094E-03*(X2- 3)*(X3- 800)X1:20~40;X2:2.0~4.0;X3:700~900,实验得到的最大值为Y= 80.21、用网格优化法寻优求Y的最大值,给出相应的程序及优化结果答:程序10 INPUT"ZM="; ZM20 INPUT"G=";G30 S1=(40-20)/G:S2=(4!-2!)/G:S3=(900-700)/G40 FOR X1= 20 TO 40 + S1/2 STEP S150 FOR X2= 2! TO 4! + S2/2 STEP S260 FOR X3= 700 TO 900 + S3/2 STEP S370 Y1=90.7893-4.6267E-02*(X1-30)-0.8473*(X2-3)80 Y2=5.2978E-05*(X3-800)^2-5.2094E-03*(X2-3)*(X3-800)90 Y=Y1+Y2110 IF Y< ZM THEN 140120 PRINT tab(1) "X1=";X1;tab(17)"X2=";X2;tab(32)"X3=";X3;130 PRINT tab(47)"Y=";Y140 NEXT X3, X2,X1150 END结果:ZM=? 80.2G=21X1= 40.00001 X2= 4.000003 X3= 700 Y= 90.53004 X1= 40.00001 X2= 4.000003 X3= 709.5238 Y= 90.38433X1= 40.00001 X2= 4.000003 X3= 719.0476 Y= 90.24822X1= 40.00001 X2= 4.000003 X3= 728.5715 Y= 90.12172X1= 40.00001 X2= 4.000003 X3= 738.0952 Y= 90.00484X1= 40.00001 X2= 4.000003 X3= 747.619 Y= 89.89756X1= 40.00001 X2= 4.000003 X3= 757.1428 Y= 89.79989X1= 40.00001 X2= 4.000003 X3= 766.6666 Y= 89.71184X1= 40.00001 X2= 4.000003 X3= 776.1905 Y= 89.63339X1= 40.00001 X2= 4.000003 X3= 785.7143 Y= 89.56456X1= 40.00001 X2= 4.000003 X3= 795.2381 Y= 89.50533X1= 40.00001 X2= 4.000003 X3= 804.7618 Y= 89.45572X1= 40.00001 X2= 4.000003 X3= 814.2856 Y= 89.41572X1= 40.00001 X2= 4.000003 X3= 823.8095 Y= 89.38532X1= 40.00001 X2= 4.000003 X3= 833.3333 Y= 89.36454X1= 40.00001 X2= 4.000003 X3= 842.8571 Y= 89.35337X1= 40.00001 X2= 4.000003 X3= 852.3809 Y= 89.35181X1= 40.00001 X2= 4.000003 X3= 861.9047 Y= 89.35986X1= 40.00001 X2= 4.000003 X3= 871.4284 Y= 89.37752X1= 40.00001 X2= 4.000003 X3= 880.9522 Y= 89.40479X1= 40.00001 X2= 4.000003 X3= 890.4761 Y= 89.44167X1= 40.00001 X2= 4.000003 X3= 899.9999 Y= 89.488162、用蒙特卡罗优化法寻优求Y的最大值,给出相应的程序及优化结果答:程序10 INPUT"ZM="; ZM20 INPUT"N=";N30 G=20*N35 S1=(40-20)/N:S2=(4-2)/N :S3=(900-700)/N40 FOR I =1 TO G50 A1=INT(N*RND(1))60 A2=INT(N*RND(1))70 A3=INT(N*RND(1))90 X1=20+ A1*S1100 X2= 2 + A2*S2110 X3=700+ A3*S3120 Y1= 90.7893-4.6267E-02*(X1-30)-0.8473*(X2-3)130 Y2=5.2978E-05*(X3-800)^2-5.2094E-03*(X2-3)*(X3-800)140 Y=Y1+Y2150 IF Y< ZM THEN 190160 IF Y>ZM THEN ZM =Y170 PRINT TAB(1)"X1=";X1;TAB(16)"X2=";X2;TAB(31)"X3=";X3;180 PRINT TAB(46)"Y=";ZM190 NEXT I200 PRINT "S1=";S1;"S2=";S2;"S3=";S3210 END结果:ZM=? 80.2N=? 4000X1= 22.425 X2= 3.3035 X3= 873.75 Y= 91.05416X1= 29.805 X2= 2.909 X3= 721.4 Y= 91.16546X1= 39.42 X2= 2.6415 X3= 891.2 Y= 91.26818X1= 28.515 X2= 2.1105 X3= 853.65 Y= 92.01277X1= 29.73 X2= 2.334 X3= 898.05 Y= 92.21559X1= 21.985 X2= 2.214 X3= 879.55 Y= 92.48708X1= 21.755 X2= 2.177 X3= 884.95 Y= 92.61462X1= 22.485 X2= 2.103 X3= 888.65 Y= 92.72761X1= 23.5 X2= 2.0525 X3= 890.05 Y= 92.76693X1= 22.59 X2= 2.06 X3= 892.6 Y= 92.83632X1= 21.96 X2= 2.0805 X3= 899.45 Y= 92.94071X1= 23.265 X2= 2.0305 X3= 899.15 Y= 92.94393X1= 20.005 X2= 2.0265 X3= 895.45 Y= 93.04331X1= 20.475 X2= 2.0335 X3= 898.55 Y= 93.05963X1= 20.165 X2= 2.037 X3= 899.55 Y= 93.08471S1= .005 S2= .0005 S3= .05四、配方均匀设计(7.5分/每小项,其15分)1、一个饲料的配方由四种主要的成分组成,根据试验条件的允许和精度的要求,需要选择UM16(164)表来安排试验,请用相应的软件生成该配方试验方案表。