高中数学人教A版必修三课时习题:第2章 统计 2.2 习题课含答案
- 格式:doc
- 大小:261.50 KB
- 文档页数:7
2.1.2 系统抽样课时目标1.掌握系统抽样的概念和操作步骤.2.会用系统抽样法进行抽样.识记强化1.系统抽样的概念将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分中抽取一些个体,得到所需要的样本,这样的抽样方法叫做系统抽样.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.课时作业一、选择题1.系统抽样适用的总体应是( )A.容量较少的总体B.总体容量较多C.个体数较多但均衡无差异的总体D.任何总体答案:C解析:系统抽样的适用范围应是总体中的个体数目较多且无差异,故选C.2.在对101个人进行一次抽样时,先采用抽签法从中剔除一个人,再在剩余的100中随机抽取10人,那么下列说法正确的是( )A.这种抽样方法对于被剔除的个体是不公平的,因为他们失去了被抽到的机会B.每个人在整个抽样过程中被抽到的机会均等,因为每个人被剔除的可能性相等,那么,不被剔除的机会也是均等的C.由于采用了两步进行抽样,所以无法判断每个人被抽到的可能性是多少D.每个人被抽到的可能性不相等答案:B解析:由于第一次剔除时采用抽签法,对每个人来说可能性相等,然后随机抽取10人对每个人的机会也是均等的,所以总的来说每个人的机会都是均等的,被抽到的可能性都是相等的.3.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( )A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,47答案:D4.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为( ) A.24 B.25C.26 D.28答案:B解析:5008=200×25+8,所以每组的容量为25.5.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )A.5 B.7C.11 D.1310,20,30,…,490,得到各组中应抽出的号签,组成一个容量为50的样本.11.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按15的比例抽取样本,用系统抽样的方法进行抽取,并写出过程.解:按照15的比例抽取样本,则样本容量为15×295=59.步骤如下: (1)编号:按现有的号码.(2)确定分段间隔k =5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生.(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l (1≤l ≤5).(4)那么抽取的学生编号为l +5k (k =0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本编号为3,8,13,…,288,293.能力提升12.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9答案:B解析:本题主要考查系统抽样的意义.依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k 组抽中的号码是3+12(k -1).令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17.结合各选项知,选B. 13.为了解参加数学竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么样的抽样方法比较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为000,001,002, (999)(2)将总体按编号顺序分成50部分,每部分包括20个个体;(3)在第一部分的个体编号000,001,002,…,019中,用简单随机抽样抽取一个号码,比如017;(4)以017为起始号,每隔20抽取一个号码,这样得到一个容量为50的样本,017,037,047,…,977,997.。
章末复习课课时目标.巩固本章主干知识点.提高知识的综合应用能力..某质检人员从编号为~这件产品中,依次抽出号码为,…,的产品进行检验,则这样的抽样方法是().简单随机抽样.系统抽样.分层抽样.以上都不对.某单位有职工人,其中青年职工人,中年职工人,老年职工人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为人,则样本容量为().....若某校高一年级个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()和.和.和.和.某人次上班途中所花的时间(单位:分钟)分别为,.已知这组数据的平均数为,方差为,则-的值为().....如果数据,,…,的平均数为,方差为,则++,…,+的平均数和方差分别为()和.+和.+和.+和++.某棉纺厂为了了解一批棉花的质量,从中随机抽测了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[]中,其频率分布直方图如图所示,则在抽测的根中,有根棉花纤维的长度小于 .一、选择题.为了调查参加运动会的名运动员的身高情况,从中抽查了名运动员的身高,就这个问题来说,下列说法正确的是().名运动员是总体.每个运动员是个体.抽取的名运动员是样本.样本容量是.某高级中学高一年级有十六个班,人,高二年级有十二个班,人,高三年级有十个班,人,学校为加强民主化管理,现欲成立由人组成的学生代表会,你认为下列代表产生的办法中,最符合统计抽样原则的是().指定各班团支部书记、班长为代表.全校选举出人.高三选举出人,高二选举出人,高一选举出人.高三人,高二人,高一人均在各年级随机抽取.一个容量为的样本,分成若干组,已知某组的频数和频率分别为和,则的值是().....观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[ ]的频率为()。
2020年精品试题芳草香出品2.2.2 用样本的数字特征估计总体的数字特征第1课时众数、中位数、平均数课时目标理解中位数、众数、平均数的意义,了解样本平均数和总体平均数的关系,掌握平均数的计算公式,会用样本平均数估计总体平均数.识记强化1.众数、中位数、平均数,其定义分别是(1)在一组数据中出现次数最多的数据叫做这组数据的众数.(2)将一组数据按大小顺序依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:样本数据的算术平均数,即x=1n(x1+x2+…+x n)(n∈N*).2.众数、中位数、平均数与频率分布直方图的关系(1)众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标.(2)在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.(3)平均数是频率分布直方图的“重心”.等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.课时作业一、选择题1.给出下列数据:3,9,8,3,4,3,5,则众数与极差分别是( )A .3,9B .3,6C .5,1D .9,9答案:B解析:根据众数与极差的定义,容易得出选B.2.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92答案:A解析:数据从小到大排列后可得其中位数,平均数是把所有数据求和除以数据的个数,数据从小到大排列后中位数为91+922=91.5, 平均数为87+89+90+91+92+93+94+968=91.5. 3.x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,则下列各式正确的是( )A.x =40a +60b 100B.x =60a +40b 100C.x =a +bD.x =a +b 2答案:A4.设矩形的长为a ,宽为b ,其比满足b a =5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )。
§习题课课时目标.从总体上把握三种抽样方法的区别和联系.学会根据数据的不同情况,选用适合的抽样方法进行抽样..为了了解所加工的一批零件的长度,抽取其中个零件并测量了其长度,在这个问题中,个零件的长度是().总体.个体.总体的一个样本.样本容量答案.某工厂质检员每隔分钟从传送带某一位置取一件产品进行检测,这种抽样方法是().分层抽样.简单随机抽样.系统抽样.以上都不对答案解析按照一定的规律进行抽取为系统抽样..某校高三年级有男生人,女生人,为了解该年级学生的健康情况,从男生中任意抽取人,从女生中任意抽取人进行调查,这种抽样方法是().简单随机抽样法.抽签法.随机数法.分层抽样法答案解析由分层抽样的定义可知,该抽样为按比例的抽样..对于简单随机抽样,下列说法中正确的命题为()①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性..①②③.①②④.①③④.①②③④答案.在学生人数比例为∶∶的,,三所学校中,用分层抽样的方法招募名志愿者,若在学校恰好选出了名志愿者,那么=.答案解析由题意,知×=,∴=..博才实验中学共有学生名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为的样本.已知样本容量中女生比男生少人,则该校的女生人数是人.答案解析设该校女生人数为,则男生人数为( -).由已知,×( -)-·=,解得=.故该校的女生人数是人.一、选择题.下列哪种工作不能使用抽样方法进行().测定一批炮弹的射程.测定海洋水域的某种微生物的含量.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度.检测某学校全体高三学生的身高和体重的情况答案.一个田径队,有男运动员人,女运动员人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为()....答案解析运动员共计人,抽取比例为=,因此男运动员人中抽取人..下列抽样实验中,最适宜用系统抽样的是().某市的个区共有名学生,且个区的学生人数之比为∶∶∶,从中抽取人入样.某厂生产的个电子元件中随机抽取个入样。
第二章 统 计2.1.1 简单随机抽样课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧ 抽签法随机数法 3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.一、选择题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )A .200个表示发芽天数的数值B .200个球根C .无数个球根发芽天数的数值集合D .无法确定答案 A2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A .40B .50C .120D .150答案 C解析 由于样本容量即样本的个数,抽取的样本的个数为40×3=120.3.抽签法中确保样本代表性的关键是( )A .制签B .搅拌均匀C .逐一抽取D .抽取不放回答案 B解析 由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B .4.下列抽样实验中,用抽签法方便的有( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验答案 B解析 A 总体容量较大,样本容量也较大不适宜用抽签法;B 总体容量较小,样本容量也较小可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100答案 D解析 此问题研究的是运动员的年龄情况,不是运动员,故A 、B 、C 错,故选D .6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ) A .110,110 B .310,15C .15,310D .310,310答案 A二、填空题7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.答案 简单随机抽样解析 由简单随机抽样的特点可知,该抽样方法是简单随机抽样.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案 抽签法9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案 ①③②三、解答题10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.解 利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解 (1)将元件的编号调整为010,011,012,…,099,100,…600;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.能力提升12.在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性大一些B .与第几次抽样无关,每次抽到的可能性相等C .与第几次抽样有关,最后一次抽到的可能性大些D .与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案 B解析 由简单随机抽样的特点知与第n 次抽样无关,每次抽到的可能性相等.13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.解 方法一 抽签法.(1)将50个轴进行编号01,02, (50)(2)把编号写在大小、形状相同的纸片上作为号签;(3)把纸片揉成团,放在箱子里,并搅拌均匀;(4)依次不放回抽取5个号签,并记下编号;(5)把号签对应的轴组成样本.方法二 随机数法(1)将50个轴进行编号为00,01, (49)(2)在随机数表中任意选定一个数并按向右方向读取;(3)每次读两位,并记下在00~49之间的5个数,不能重复;(4)把与读数相对应的编号相同的5个轴取出组成样本1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性如果四个特征有一个不满足就不是简单随机抽样.2.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.3.在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.。
课时目标掌握茎叶图的制做方法.D.62,乙的中位数为36,∴甲、乙比赛得分的中位数之和为64.A.4%与51 B.16%与15C.4%与15 D.28%与51答案:A6.如图所示茎叶图是甲乙两班各5名学生的数学竞赛成绩若甲的平均成绩不大于乙的平均成绩,且a2-b-28=)为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校名,调查他们上学期使用多媒体进行教学的次数,结果用茎叶图表示名教师中,使用多媒体进行教学的次数在20名教师使用多媒共有10人,∴该校200100..某校开展“爱我海南、爱我家乡”摄影比赛,9位评委为参赛作品茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为无法看清,若记分员计算无误,的x对应的分数为最高≈91.4≠91.,去掉最低分88,其平均分为91,+92+91=91,解得x=1..甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图所示.则甲、乙两班的最高成绩各是________,从图中看,________班的平均成绩较高.答案:96,92 乙三、解答题10.甲、乙两篮球运动员上赛季每场比赛的得分如下:甲:12,15,24,25,31,31,36,36,37,39,44,49,50.乙:8,13,14,16,23,26,28,33,38,39,51.试比较这两位运动员的得分水平.解:画出两人得分的茎叶图,为便于对比分析,可将茎放在中间共用,叶分列左、右两侧,如图所示从这个茎叶图可以看出,甲运动员的得分大致对称,平均得分、众数及中位数都是30多分.乙运动员的得分除一个51分外,也大致对称,平均得分、众数及中位数都是20多分.因此甲运动员发挥比较稳定,总体得分情况比乙好.11.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294295 301 303 303 307308 310 314 319 323 325 325 328331 334 337 352乙品种:284 292 295 304 306 307 312 313315 315 316 318 318320 322 322 324 327 329 331 333336 337 343 356由以上数据设计茎叶图,并根据茎叶图写出两个统计结论.解:茎叶图如图:统计结论如下(可从中选两个):1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度更大).3.甲品种棉花的纤维长度的中位数为307 mm,乙品种棉花的纤维长度的中位数为318 mm.4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.能力提升12.1901年扬基队外垒手马利斯打破了鲁斯的一个赛季打出60个全垒打的记录.如图是扬基队的历年比赛中的鲁斯和马利斯每年击出的全垒打的比较图,这个茎叶图可以表明________作为全垒打的总体优势.答案:鲁斯解析:由茎叶图性质可知鲁斯每年击出的全垒打的个数比马利斯多.13.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17;在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,哪一篇文章作为科普读物较好?解:(1)(2)因为电脑杂志每个句子字数较少所以把电脑杂志作为科普读物好.电脑杂志作为科普读物通俗易懂、简明.。
2.1.1 简单随机抽样
课时目标
1.掌握简单随机抽样的定义及其特点.
2.能准确地应用抽签法及随机数表法解决问题.
识记强化
1.从总体中抽出的若干个个体组成的集合叫做总体的一个样本,样本中个体的数量叫做样本容量.
2.简单随机抽样的定义
一般地,设一个总体有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
3.简单随机抽样的分类
简单随机抽样⎩⎪⎨⎪⎧
抽签法抓阄法随机数表法 4.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.
课时作业
一、选择题
1.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )。
2.2.2 用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1.众数、中位数、平均数 (1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数. (2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数. ②当数据个数为偶数时,中位数为排列的最中间的两个数的________. (3)平均数①平均数的定义:如果有n 个数x 1,x 2,…,x n ,那么x =____________,叫做这n 个数的平均数. ②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数. 样本平均数:________所有个体的平均数叫样本平均数. 2.标准差、方差 (1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =________________________________________________________________________. (2)方差的求法:标准差的平方s 2叫做方差.s 2=________________________________________________________________________.一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a ,中位数为b ,众数为c ,则有( ) A .a>b>c B .a>c>b C .c>a>b D .c>b>a3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定4.一组数据的方差为s 2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( ) A .13s 2 B .s 2 C .3s 2 D .9s 25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为() A.84,4.84 B.84,1.6C.85,1.6 D.85,0.46.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲、乙两人只能有9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:统计量组别平均成绩标准差第一组90 6第二组80 41.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2.2.2 用样本的数字特征估计总体的数字特征知识梳理1.(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x nn②总体中 样本中2.(1)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n-x )2] 作业设计1.B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2.D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3.B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4.D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n (x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5.C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6.B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7.91解析 由题意得8.甲 解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9.0.19解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19.10.解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x甲=110×(5+6×2+7×4+8×2+9)=7010=7(环),x乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.(2)①∵平均数相同,2S甲<2S乙,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11.解(1)平均工资即为该组数据的平均数x=17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410) =16×2 250=375(元). 这个平均工资能代表一般工作人员一周的收入水平. 12.解 设第一组20名学生的成绩为x i (i =1,2,…,20), 第二组20名学生的成绩为y i (i =1,2,…,20),依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20) =140(90×20+80×20)=85; 又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。
2. 1.3分层抽样课时目标1.理解分层抽样的观点、意义和合用范围,会用分层抽样方法从整体中抽取样本.2.能比较三种抽样方法的共同点,各自特色,互相联系以及合用的范围,能依据不一样的问题选择适合的抽样方法.识记加强1.分层抽样的观点在抽样时,将整体分红互不交错的层,而后依据必定的比率,从各层独立地抽取必定数目的个体,将各层拿出的个体合在一同作为样本,这类抽样方法是一种分层抽样.2.分层抽样的合用条件当整体是由差别显然的几部分构成时,常常采纳分层抽样的方法.课时作业一、选择题1.以下说法中不正确的有()A.简单随机抽样是从个数较少的整体中逐一抽取个体B.系统抽样是从个体许多的整体中,将整体均分,再进行抽取C.系统抽样是将个体差别显然的整体分红几部分,再进行抽取D.分层抽样是将由差别显然的几部分构成的整体分红几层,分层进行抽样答案: C分析:由系统抽样的观点知 C 不正确.2.某工厂生产A, B,C 三种不一样型号的产品,产品的数目之比挨次为3∶4∶7,此刻用分层抽样的方法抽出容量为n 的样本,样本中 A 型产品有15件,那么样本容量n 为() A.50 B .60C.70 D .80答案: C3分析: n×3+4+7=15,解得 n=70.3.已知某单位有员工120 人,男员工有90 人,现采纳分层抽样( 按男、女分层 ) 抽取一个样本,若已知样本中有27 名男员工,则样本容量为()A.30 B .36C. 40 D .没法确立答案: Bn27分析:设样本容量为n,则120=90,∴ n=364.某学校共有师生 2 400 名,现用分层抽样的方法,从全部师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数为() A. 100 B . 150C. 200 D . 250答案: B10分析:抽取教师人数为160- 150=10 人,所以学校教师人数为 2 400 ×160= 150 人.5.某高中在校学生2000 人,高一年级与高二年级人数同样并都比高三年级多 1 人.为了响应“阳光体育运动”呼吁,学校举行了“元旦”跑步和爬山竞赛活动.每人都参加并且只参加了此中一项竞赛,各年级参加竞赛人数状况以下表:高一年级高二年级高三年级跑步a b c爬山x y z2此中 a∶ b∶ c=2∶3∶5,全校参加爬山的人数占总人数的. 为了认识学生对本次活动5的满意程度,从中抽取一个200 人的样本进行检查,则高二年级参加跑步的学生中应抽取()A.36 人 B .60 人C.24 人 D .30 人答案: A23分析: 爬山的占总数的 5,故跑步的占总数的5,3 3又跑步中高二年级占 2+ 3+5= 10.3 39∴高二年级跑步的占总人数的×10= .5 509x由 50= 200得 x =36,应选 A.6.简单随机抽样、系统抽样、分层抽样的共同点是 ( )A .都是从整体中逐一抽取B .将整体分红几部分,按预先的规定在右部分抽取C .抽样过程中每个个体被抽到的可能性相等D .将整体分红若干层,而后按比率抽取答案: C二、填空题7.课题组进行城市空气质量检查,按地区把24 个城市分红甲、乙、丙三组,对应的城市数分别为 4,12,8 ,若用分层抽样抽取6 个城市,则丙组中应抽取的城市数为________.答案: 261分析: 由已知得抽样比为 24= 4,1∴丙组中应抽取的城市数为8× 4= 2.8.某学校三个社团的人员散布以下表( 每名同学只参加一个社团) :合唱社粤曲社书法社高一45 30高二151020学校要对这三个社团的活动成效进行抽样检查,按分层抽样的方法从社团成员中抽取30 人,结果合唱社被抽出12 人,则这三个社团人数共有 ________.答案: 150分析: 设这三个社团人数共有x 人,由分层抽样即按比率抽样,得12=30,解得 x45+ 15x=150.9.防疫站对学生进行身体健康检查.红星中学共有学生1 600 名,采纳分层抽样法抽取一个容量为 200 的样本.已知女生比男生少抽了10 人,则该校的女生人数应是 ________.答案: 760分析: 设该校的女生人数是x ,则男生人数是 1 600 -x,200 1抽样比是1 600=8,1 1则 x=(1 600- x)-10,解得 x=760.88三、解答题10.某市的三所学校共有高中学生20 000 人,且三所学校学生人数之比为2:3:5,现要用分层抽样方法从学生中抽取一个容量为200 的样本,这三所学校应分别抽取多少人?解:因为三所学校人数之比为2:3:5,所以各学校抽取人数应分别为2200×10= 40,200×3= 60,105200×10= 100.11.某公司共有3200 名员工,此中中、青、老年员工的比率为5∶3∶2,从全部员工中抽取一个容量为400 的样本,应采纳哪一种抽样方法更合理?中、青、老年员工应分别抽取多少人?解:因为中、青、老年员工有显然的差别,采纳分层抽样更合理.依据比率抽取中、青、老年员工的人数分别为:53210×400= 200,10×400= 120,10×400= 80,所以应抽取的中、青、老年员工分别为200 人、 120 人、 80 人.能力提高12.经问卷检查,某班学生对拍照分别执“喜爱”“不喜爱”和“一般”三种态度,其中执“一般”态度的比“不喜爱”态度的多12 人,按分层抽样方法从全班选出部分学生座谈拍照,假如选出 5 位“喜爱”拍照的同学、 1 位“不喜爱”拍照的同学和 3 位执“一般”态度的同学,那么全班学生中“喜爱”拍照的比全班人数的一半还多________人.答案: 3分析:设对拍照“喜爱”的有x 人,“不喜爱”的有y 人,则“一般”的有( y+12) 人.则有 x:y:(y+12)=5:1:3,解得x=30,y=6,全班人数为30+ 6+ 18= 54,所54以全班学生中“喜爱”拍照的比全班人数的一半还多30-2=3(人).13.某单位近来组织了一次健身活动,活动分为爬山组和游泳组,且每个员工至多参加此中的一组.在参加活动的员工中,青年人占42.5%,中年人占 47.5%,老年人占 10%,登1,且该组中,青年人占50%,中年人占 40%,老年人占 10%.山组的员工占参加活动总人数的4为了认识各组不一样年纪层次的员工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体员工中抽取一个容量为200 的样本.(1)在游泳组中,试确立青年人、中年人、老年人分别所占的比率;(2)在游泳组中,试确立青年人、中年人、老年人分别应抽取的人数.解: (1) 设爬山组人数为x,在游泳组中,青年人、中年人、老年人各占比率分别为a、b、 c,则有x×40%+3xb=47.5%,4xx×10%+3xc=10%,4x解得 b=50%, c=10%.故 a=100%-50%-10%=40%,即在游泳组中,青年人、中年人、老年人各占比率分别为 40%、 50%、 10%.(2)在游泳组中,抽取的青年人人数为3200×4×40%= 60( 人 ) ;抽取的中年人人数为3200× ×50%= 75( 人 ) ;抽取的老年人人数为3200× ×10%= 15( 人 ) .。
2.2.2 用样本的数字特征估计总体的数字特征第2课时方差、标准差课时目标1.理解方差、标准差的意义,会计算一组数据的方差和标准差,掌握用样本方差或标准差去估计总体方差或总体标准差的方法.2.会用平均数和方差对数据进行处理与比较.识记强化标准差及方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.标准差的平方s2叫做方差,也为测量样本数据分散程度的工具.若样本数据是x1,x2,…,x n,x表示这组数据的平均数,则s=1n[x1-x2+x2-x2+…+x n-x2];s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].课时作业一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大C .2x -+3和s 2D .2x -+3和4s 2+12s +9 答案:B解析:由平均数、方差的求法可得.6.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定 答案:B解析:方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.二、填空题7.已知样本9、10、11、x 、y 的平均数是10,方差是2,则xy =________. 答案:96解析:由平均数得9+10+11+x +y =50,∴x +y =20,又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,xy =96.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案:6.8解析:x =15(8+9+10+13+15)=11,s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.9.若k 1,k 2,…,k 8的方差为3,则2(k 1-3),2(k 2-3),…,2(k 8-3)的方差为________. 答案:12解析:设k 1,k 2,…,k 8的平均数为k ,则18[(k 1-k )2+(k 2-k )2+…+(k 8-k )2]=3,而2(k 1-3),2(k 2-3),…,2(k 8-3)的平均数为2(k -3),解析:x 9=x 8+19(x 9-x 8)=5+19×(4-5)=449,s 29=89[s 28+19(x 9-x 8)2]=89[22+19(4-5)2]=29681. 13.下图为我国10座名山的“身高”统计图,请根据图中信息回答下列问题。
2.2 用样本估计总体
习题课用样本估计总体
课时目标
1.巩固加深用样本的频率分布与数字特征估计总体的方法.
2.能运用上述方法解决一些实际问题.
课时作业
一、选择题
1.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60]元的同学有30人,则n的值为( )
A.90 B.100
C.900 D.1 000
答案:B
解析:n×0.030×10=30.n=100.
2.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h 的汽车数量为( )
A .65辆
B .76辆
C .88辆
D .95辆 答案:B
解析:设时速不低于60km/h 的汽车数量为n , 则
n
200
=(0.028+0.010)×10=0.38,所以n =0.38×200=76. 3.如图是某篮球运动员在一个赛季的30场比赛中得分的茎叶图,则得分的中位数与众数分别为( )
A .3与3
B .23与3
C .3与23
D .23与23 答案:D
解析:由茎叶图知,该运动员在30场比赛中所得分数由小到大的排列如下: 8,9,11,12,13,14,16,17,18,19,20,21,21,23,23,23,25,27,28,28,30,31,32,32,33,34,38,39,40,41可得中位数为23,由众数概念知其众数为23.
4.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,
x ,已知这组数据的平均数为6,则这组数据的方差为( )
A .6 B. 6 C .66 D .6.5 答案:A
解析:∵x -=1
11(2+4+4+5+5+6+7+8+9+11+x )=111(61+x )=6,
∴x =5. 方差数为:
s 2=
42+22+22+12+12+02+12+22+32+52+12
11=66
11
=6.
5.从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是( )
A .甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐
B .甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐
C .乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐
D .乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐 答案:D
解析:根据茎叶图计算得甲种树苗的平均高度为27,而乙种树苗的平均高度为30,但乙种树苗的高度分布不如甲种树苗的高度分布集中,即甲种树苗比乙种树苗长得整齐.
6.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x A 和x B ,样本标准差分别为s A 和s B ,则( )
A.x A >x B ,s A >s B
B.x A <x B ,s A >s B
C.x A >x B ,s A <s B
D.x A <x B ,s A <s B 答案:B
解析:x A =2.5+10+5+7.5+2.5+106=37.5
6
,
x B =
15+10+12.5+10+12.5+106=70
6
,
显然x A <x B ,s 是标准差,反映的是数据的波动程度,可以看出A 图中数据的波动较大,而B 图则较为有规律,而且改变多为一格,所以B 的稳定性好,稳定性好的标准差小,选B.
二、填空题
7.青年歌手大奖赛共有10名选手参赛,并请了7名评委,如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,去掉一个最高分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为________.
答案:84.2 85
解析:甲=78+84+85+86+88
5=84.2
乙=
84+84+84+86+87
5
=85.
8.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.
答案:600
解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这 3 000名学生在该次数学考试中成绩小于60分的学生数是 3 000×0.2=600.
9.甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中的环数如下: 甲:6,8,9,9,8; 乙:10,7,7,7,9.
则两人的射击成绩较稳定的是________. 答案:甲
解析:解得x -甲=x -乙=8,s 2甲=1.2,s 2乙=1.6,s 2甲<s 2
乙,∴甲稳定. 三、解答题
10.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下: 甲:95,81,75,91,86,89,71,65,76,88,94,110,107; 乙:83,86,93,99,88,103,98,114,98,79,78,106,101.
画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.
解:甲、乙两人数学成绩的茎叶图如图所示.
从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中位数是98;甲同学的得分情况;也大致对称,中位数是88.乙同学的成绩比较稳定,总体情况比甲同学好.
11.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
[50,60)40.08
[60,70)0.16
[70,80)10
[80,90)160.32
[90,100]
合计50
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频率分布直方图;
(3)若成绩在[70,90)分的学生为二等奖,问获得二等奖的学生约为多少人?
解:(1)
分组频数频率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]120.24
合计50 1.00
(2)频率分布直方图如图所示:
(3)∵成绩在[70,80)间的学生频率为0.20;
成绩在[80,90)间的学生频率为0.32.
∴在[70,90)之间的频率为0.20+0.32=0.52.
又∵900名学生参加竞赛,
∴该校获二等奖的学生为900×0.52=468(人).
能力提升
12.若a1,a2,…,a20这20个数据的平均数为x
-
,方差为0.21,则a1,a2,…,a20,x
-这21个数据的方差为________.
答案:0.2
解析:0.21=
1
20
(a21+a22+…+a220-20x
-2
);
S2=
1
21
(a21+a22+…+a220+x
-2
-21x
-2
)=
1
21
(a21+a22+…+a220-20x
-2
)=
0.21×20
21
=0.2.
13.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:
天数
151~
180
181
~
210
211
~
240
241
~
270
271
~
300
301
~
330
33
1
~
36
36
1
~
39。