2011年全国中学生联赛试题B卷答案
- 格式:doc
- 大小:83.50 KB
- 文档页数:1
2011年全国初中数学竞赛试题参考答案及解析一、选择题 1.A 解:因为1a =,1a += 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2. B3. D 4.C解:由已知得2310x x ++=, 于是 2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-5.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得(x y ,)=(1,0).6.D解:由 25325x y z x y z +-=⎧⎨--=-⎩,,可得 312.x z y z =-⎧⎨=+⎩,于是 22221125x y z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411.7.C解:由题设可知1y y x -=,于是341yy x yxx-==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.8.C解:两式相加,得2358t t +=,解得1t =,或83t =-(舍去).当1t =时,4530A B =︒=︒,满足等式,故1t =. 所以,实数t 的所有可能值的和为1. 9.C解:如图,连接D E ,设1D E F S S ∆'=,则1423S S EF S BFS '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.10.A解:当2 3 2011k = ,,,,因为 ()()()32111112111kk k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦,所以 333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭ , 于是有445S <<,故4S 的整数部分等于4.二、填空题 11.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m=.显然1242x x +=>,所以122x x -<, 164m∆=-≥0,即2,164m∆=-≥0,所以2, 164m∆=-≥0,解之得 3<m ≤4.12.19解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.13.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2B D A C =,于是22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.14.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.15.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以F E A F C BA C=,即1212b a b-=,故12()a b ab +=. ②由①②得2222122524a b a b a b a b+=++=++()(), 解得a +b =49(另一个解-25舍去),所以493584a b c ++=+=.三、解答题16.解:设方程20x a x b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=, 所以 2123αβ+=⎧⎨+=⎩,;或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,;或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.17.证明:如图,延长A P 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为A B 为⊙1O 的直径, 所以∠A D B =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以A H ∥CQ ,A C ∥HQ ,四边形ACQH 为平行四边形.所以点P 为C H 的中点.18.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由 223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Qx x t=-,即 23P Q t x x =-.于是222323P P Q Q x t y tBCBD y tx t++==++22222()333.222()333P P Q P P Q P QQ P QQ Q P x x x x x x x x x x x x x x --===---又因为P Qx PC Q Dx =-,所以BC PC BDQD=.因为∠B C P =∠90BDQ =︒,所以△B C P ∽△BDQ , 故∠A B P =∠ABQ .(2)解法一 设P C a =,DQ b =,不妨设a ≥b >0,由(1)可知∠A B P =∠30ABQ =︒,B C,B D,所以 A C=2-,A D=2-.因为P C ∥DQ ,所以△AC P ∽△ADQ . 于是PC AC D QAD=,即a b=所以a b +=.由(1)中32P Qx x t=-,即32ab -=-,所以322ab a b =+=,于是可求得2a b ==将2b =代入223y x=,得到点Q 2,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解析式为13y =-+.根据对称性知,所求直线PQ 的函数解析式为13y =-+,或13y x =+.解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(1)可知,∠A B P =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Qy x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1)得3322P Q x x t =-=-,32PQ x x k+=.若2Q x =代入上式得 P x = 从而 2()33P Q k x x =+=.同理,若Q x = 可得2P x =-从而 2()33P Q k x x =+=.所以,直线PQ 的函数解析式为13y =-+,或13y x =+.19.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP .由于2A B A C =,所以相似比为2. 于是224A Q A P B Q C P ====.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是3PQ ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()28AB PQ AP BQ =++=+.故 213s i n 60282ABC S AB AC AB ∆=⋅︒==.不同见解,敬请海涵。
2011年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.已知2=+b a ,4)1()1(22-=-+-ab b a ,则ab 的值为 ( B ) A .1. B .1-. C .21-. D .21. 2.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为 ( B )A .5.B .6.C .7.D .8.3.方程)2)(324(|1|2+-=-x x 的解的个数为 ( C )A .1个B .2个C .3个D .4个.4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有 ( C ) A .5组. B .7组. C .9组. D .11组. 5.如图,菱形ABCD 中,3=AB ,1=DF ,︒=∠60DAB ,︒=∠15EFG ,BC FG ⊥,则=AE ( D )A .21+.B .6.C .132-.D .31+. 6.已知2111=++z y x ,3111=++x z y ,4111=++y x z ,则zy x 432++的值为 ( C ) A .1. B .23. C .2. D .25. 二、填空题:(本题满分28分,每小题7分)1.在△ABC 中,已知A B ∠=∠2,322,2+==AB BC ,则=∠A 15︒.2.二次函数c bx x y ++=2的图象的顶点为D ,与x 轴正方向从左至右依次交于A ,B 两点,与y 轴正方向交于C 点,若△ABD 和△OBC 均为等腰直角三角形(O 为坐标原点),则=+c b 2 2 .3.能使2562+n是完全平方数的正整数n 的值为 11 . 4.如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果CE DE 43=,58=AC ,D 为EF 的中点,则AB = 24 .CEFBA第二试 (A )一、(本题满分20分)已知三个不同的实数c b a ,,满足3=+-c b a ,方程012=++ax x 和02=++c bx x 有一个相同的实根,方程2x +0x a +=和02=++b cx x 也有一个相同的实根.求c b a ,,的值.解 依次将题设中所给的四个方程编号为①,②,③,④.设1x 是方程①和方程②的一个相同的实根,则⎩⎨⎧=++=++,0,01121121c bx x ax x 两式相减,可解得b a c x --=11.设2x 是方程③和方程④的一个相同的实根,则⎩⎨⎧=++=++,0,0222222b cx x a x x 两式相减,可解得12--=c ba x 。
2011年全国初中数学联合竞赛试题参考答案2011年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知2=+b a ,4)1()1(22-=-+-ab b a ,则ab 的值为( )A .1.B .1-.C .21-. D .21. 【答】B. 由4)1()1(22-=-+-ab b a 可得abb b a a 4)1()1(22-=-+-,即04)(2)(3322=++++-+ab b a b a b a ,即222222()2()40ab a ab b ab -++-++=,即2240ab ab -+=,所以1-=ab .2.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为( )A .5.B .6.C .7.D .8. 【答】B.设△ABC 的面积为S ,所求的第三条高线的长为h ,则三边长分别为hS S S 2,202,52.显然20252S S >,于是由三边关系,得⎪⎩⎪⎨⎧>+>+,252202,522202h S S S Sh S S 解得3204<<h . 所以h 的最大整数值为6,即第三条高线的长的最大值为6. 3.方程)2)(324(|1|2+-=-x x 的解的个数为( )A .1个B .2个C .3个D .4个 【答】C. 当1||≥x 时,方程为)2)(324(12+-=-x x ,即349)324(2=+---x x,解得1x =24x=-,均满足1||≥x . 当1||<x 时,方程为)2)(324(12+-=-x x ,即347)324(2=-+-+x x,解得32x=,满足1||<x .综上,原方程有3个解..4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有 ( )A .5组.B .7组.C .9组.D .11组. 【答】C.显然用这些线段去拼接成正方形,至少要7条.当用7条线段去拼接成正方形时,有3条边每边都用2条线段连接,而另一条边只用1条线段,其长度恰好等于其它3条边中每两条线段的长度之和.当用8条线段去拼接成正方形时,则每边用两条线段相接,其长度和相等.又因为45921=+++Λ,所以正方形的边长不大于45[]114=.由于 4352617+=+=+=; 5362718+=+=+=;546372819+=+=+=+=;64738291+=+=+=+;65748392+=+=+=+.所以,组成边长为7、8、10、11的正方形,各有一种方法;组成边长为9的正方形,有5种方法。
12011年全国初中数学联合竞赛试题参考答案及评分标准第一试一、选择题:(本题满分42分,每小题7分)1.已知2a b +=,()()22114a b ba--+=-,则ab 的值为( )A .1B .-1C .12-D .12【解析】 B由22(1)(1)4a b b a--+=-可得22(1)(1)4a a b b ab -+-=-,即()2233()240a b a b a b ab +-++++=,即()()222222240a b a ab b ab -++-++=,即2240ab ab -+=,所以1ab =-.2.已知ABC △的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为A .5B .6C .7D .8【解析】 B设ABC △的面积为S ,所求的第三条高线的长为h ,则三边长分别为222520S S Sh,,.显然222520S S >,于是由三边关系,得222205222205S S Sh S S S h ⎧+>⎪⎪⎨⎪+>⎪⎩,,解得2043h <<. 所以h 的最大整数值为6,即第三条高线的长的最大值为6.3.方程()21423(2)x x -=-+的解的个数为( )A .1个B .2个C .3个D .4个【解析】 C如图,利用函数图像,发现主要是讨论在11x -≤≤时的交点情况,可用判别式判断(21423(2)x x -=--有两个相同的实数根,所以函数图象上中间部分应该是相切的,所以共有三个交点.4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有()A .5组B .7组C .9组D .11组【解析】 C显然用这些线段去拼接成正方形,至少要7条,当用7条线段去拼接成正方形时,有3条边每边都用2条线段连接,而另一条边只用1条线段,其长度恰好等于其它3条边中每两条线段的长度之和.当用8条线段去拼接成正方形时,则每边用两条线段相接,其长度和相等.yxOy=4-23((x +2)y=x 2-13又因为12945+++=L ,所以正方形的边长不大于45114⎡⎤=⎢⎥⎣⎦.由于7=1+了=2+5=3+4; 8=1+7=2+6=3+5; 9=1+8=2+7=3+6=4+5;1+9=2+8=3+7=4+6 2+9=3+8=4+7=5+6.所以,组成边长为7、8、10、11的正方形,各有一种方法;组成边长为9的正方形,有5种方法.故满足条件的“线段组”的组数为1459⨯+=.5.如图,菱形ABCD 中,3AB =,1DF =,60DAB ∠=︒,15EFG ∠=︒,FG BC ⊥,则AE =( )A .12+B 6C .231D .13【解析】 D过F 作AB 的垂线,垂足为H .60DAB ∠=︒Q ,2AF AD FD =-=,30EFG ∴∠=︒,1AH =,3FH =,又15EFG ∠=︒Q90301545EFH AFG AFH EFG ∴∠=∠-∠-∠=︒-︒-︒=︒,从而FHE △是等腰直角三角形,所以3HE FH ==DCABE HFG413AE AH HE ∴=+=.6.已知111111111234x y z y z x z x y +=+=+=+++,,,则234x y z++的值为( )A .1B .32C .2D .52【解析】 C111122x x x y z y z +=∴+=++,,即22x y z x y zy z x x y z+++=∴=+++, 同理可得:34x z x yy x y z z x y z++==++++, 则()22342x y z x y z x y z++++==++ 二、填空题:(本题满分28分,每小题7分)1.在ABC △中,已知2B A ∠=∠,223BC AB ==+,,则A ∠=______________.【解析】 15︒方法一:延长AB 到D ,使BD BC =,连线段CD ,则12D BCD ABC A ∠=∠=∠=∠,所以CA Cd =.作CD AB ⊥于点E ,则E 为AD 的中点,故()()111223223222AE DE AD AB BD ===+=+=+,((223233BE AB AE =-=+-.在Rt BCE △中,3cos EB EBC BC ∠==,所以30EBC ∠=︒,故1152A ABC ∠=∠=︒. CD5方法二:过点C 点AB 的平行线交B ∠的角平分线与D 点,分别过C 点和D 点作AB 的垂线,垂足分别为E 、F ,易知梯形ABCD 为等腰梯形易知22CD CB EF ==∴=,3Rt AF BE BCE ∴==∴中,3cos EBC ∠=,30CBE ∴∠=︒ 15A ∴∠=︒2.二次函2y x bx c =++的图象的顶点为D ,与x 轴正方向从左至右依次交于A B ,两点,与y 轴正方向交于C 点,若ABD △和OBC △均为等腰直角三角形(O 为坐标原点),则2b c +=____________.【解析】 2.方法一:由已知,得24(0)0b b c C c A ⎫---⎪⎪⎝⎭,,,240b b c B ⎫-+-⎪⎪⎝⎭,2424b b c D ⎛⎫--- ⎪⎝⎭,.过D 作DE AB ⊥于点E ,则2DE AB =,即224244b c b c -⨯-22424b c b c -=-240b c -242b c -.又240b c ->242b c -=.又OC OB =,即24b b cc -+-=,得2242b c b c +-=.方法二:OBC △为等腰直角三角形,OB OC ∴=,B ∴点坐标为()0c ,20c bc c ∴++=,又0c ≠,10c b ∴++=,24AB b c -D 点纵坐标为24b c -,BE F A CD6ABD △为等腰直角三角形,221442b c b c ∴-=-22424b c b c ∴-=-240b c -≠,所以244b c -=2444b c b ∴=+=-,0b ≠,4b ∴=-,3c ∴=3.能使2''256+是完全平方数的正整数n 的值为______________.【解析】 11.当8n <时,()82''2562''12n -+=+,若它是完全平方数,则n 必为偶数.若2n =,则2''2562652+=⨯;若4n =,则42''256217+=⨯;若6n =,则62''25625+=⨯;若8n =,则82''25622+=⨯,所以,当8n ≤时,2''256+都不是完全平方数.当8n >时,()882''256221n -+=+,若它是完全平方数,则821n -+为一奇数的平方.设()282121n k -+=+(k 为自然数),则10(1)n n k k -=+.由于k 和1k +一奇一偶,所以1k =,于是1022n -=,故11n =.4.如图,已知AB 是O e 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F ,如果34DE CE =,85AC =,D 为EF 的中点,则AB =______________.【解析】 24.设4CE x AE y ==,,则36DF DE x EF x ===,连AD BC ,.因为AB 为O e 的直径,AF 为O e 的切线,所以90EAF ∠=︒,ACD DAF ∠=∠.7又因为D 为Rt AEF △的斜边EF 的中点,DA DE DF DAF AFD ∴==∴∠=∠,,85ACD AFD AF AC ∴∠=∠∴==,在Rt AEF △中,由勾股定理得222EF AE AF =+,即2236320x y =+.设BE z =,由相交弦定理得CE DE AE BE =g g ,即24312yz x x x ==g, 23203y yz ∴+= ①又AD DE =Q ,DAE AED ∴∠=∠.又DAE BCE ∠=∠,AED BEC ∠=∠,BCE BEC ∴∠=∠,从而BC BE z ==.在Rt ACB △中,由勾股定理得222AB AC BC =+,即22()320y z z +=+,22320y yz ∴+=. ②联立①②,解得816y z ==,.所以24AB AE BE =+=.第二试(A )一、(本题满分20分)已知三个不同的实数a b c ,,满足3a b c -+=,方程210x ax ++=和20x bx c ++=有一个相同的实根,方程20x x a ++=和20x cx b ++=也有一个相同的实根.求a b c,,的值.解 依次将题设中所给的四个方程编号为①,②,③,④.CAE OFDB8设1x 是方程①和方程②的一个相同的实根,则221211100x ax x bx c ⎧++=⎪⎨++=⎪⎩,,两式相减,可解得11c x a b -=-.设1x 是方程③和方程④的一个相同的实根,则22211200x x a x cx b ⎧++=⎪⎨++=⎪⎩,,两式相减,可解得21a b x c -=-.所以121x x =.2011年全国初中数学联合竞赛试题参考答案及评分标准又方程①的两根之积等于1,于是2x 也是方程①的根,则22210x ax ++=. 又2220x x a ++=,两式相减,得2(1)1a x a -=-. 若1a =,则方程①无实根,所以1a ≠,故21x =.于是21a b c =-+=-,.又3a b c -+=,解得32b c =-=,.二、(本题满分25分)如图,在四边形ABCD 中,已知60BAD ∠=︒,90ABC ∠=︒,120BCD ∠=︒,对角线AC BD ,交于点S ,且2DS SB =,P 为AC 的中点.求证:(1)30PBD ∠=︒;(2)AD DC =.直径,P 为该圆的圆心.作PM BD ⊥于点M ,知M 为BD 的中点,所以1602BPM BPD A ∠=∠=∠=︒,从而30PBM ∠=︒.(2)作SN BP ⊥于点N ,则12SN SB =.又122DS SB DM MB BD ===,,DAPM SNB C931222MS DS DM SB SB SB SN ∴=-=-==,Rt PMS Rt PNS ∴≅△△,30MPS NPS ∴∠=∠=︒,又PA PB =,所以1152PAB NPS ∠=∠=︒,故45DAC DCA ∠=︒=∠,所以AD DC =.三、(本题满分25分)已知m n p ,,为正整数,m n <.设(0)A m -,,(0)B n ,,(0)C p ,,O 为坐标原点.若90ACB ∠=︒,且2223()OA OB OC OA OB OC ++=++.⑴证明:3m n p +=+;⑵求图象经过A B C ,,三点的二次函数的解析式.解 ⑴因为90ACB ∠=︒,OC ab ⊥,所以2OA OB OC ⋅=,即2mn p =.由2223()OA OB OC OA OB OC ++=++,得2223()m n p m n p ++=++.又222222()2()()2()m n p m n p mn np mp m n p p np mp ++=++-++=++-++=2()2()()()m n p p m n p m n p m n p ++-++=+++-,从而有3m n p +-=,即3m n p +=+.(2)由2mn p =,3m n p +=+知m n ,是关于x 的一元二次方程22(3)0x p x p -++= ①的两个不相等的正整数根,从而[]22(3)40p p =-+->△,解得13p -<<.又p 为正整数,故1p =或2p =.10当1p =时,方程①为2410x x -+=,没有整数解.当2p =时,方程①为2540x x -+=,两根为14m n ==,.综合知:142m n p ===,,.设图象经过A B C ,,三点的二次函数的解析式为(1)(4)y k x x =+-,将点(02)C ,的坐标代入得21(4)k =⨯⨯-,解得12k =-.所以,图象经过.A B C ,,三点的二次函数的解析式为2113(1)(4)2222y x x x x =-+-=++.第二试(B )一、(本题满分20分)题目和解答与(A )卷第一题相同.二、(本题满分25分)如图,在四边形ABCD 中,已知60BAD ∠=︒,90ABC ∠=︒,120BCD ∠=︒,对角线AC BD ,交于点S ,且2DS SB =.求证:AD DC =.证明 由已知得90ADC ∠=︒,从而A B C D ,,,四点共圆,AC 为直径.设P 为AC 的中点,则P 为四边形ABCD 的外接圆的圆心.作PM BD ⊥于点M ,则M 为BD 的中点,所以1602BPM BPD A ∠=∠=∠=︒,从而30PBM ∠=︒作SN BP ⊥于点N ,则12SN SB =.又122DS SB DM MB BD ===,,CBNSM PAD11∴31222MS DS DM SB SB SB SN =-=-==,∴Rt PMS Rt PNS ≅△△,∴30MPS NPS ∠=∠=︒,又PA PB =,所以1152PAB NPS ∠=∠=︒,所以45DAC DCA ∠=︒=∠,所以AD DC =.三、(本题满分25分)已知m n p ,,为正整数,m n <.设(0)A m -,,(0)B n ,,(0)C p ,,O 为坐标原点.若90ACB ∠=︒,且2223()OA OB OC OA OB OC ++=++.求图象经过A B C ,,三点的二次函数的解析式.解 因为90ACB ∠=︒,OC AB ⊥,所以2OA OB OC ⋅=,即2mn p =.由2223()OA OB OC OA OB OC ++=++,得2223()m n p m n p ++=++.又222222()2()()2()m n p m n p mn np mp m n p p np mp ++=++-++=++-++=222()2()()2()m n p p m n p m n p p np mp ++-++=++-++,从而有3m n p +-=,即3m n p +=+.又2mn p =,故m n ,是关于x 的一元二次方程22(3)0x p x p -++= ①的两个不相等的正整数根,从而()22340p p =-+->⎡⎤⎣⎦△,解得13p -<<.又p 为正整数,故1p =或2p =.12当1p =时,方程①为2410x x -+=,没有整数解.当2p =时,方程①为2540x x -+=,两根为14m n ==,.综合知:142m n p ===,,.试图象经过A B C ,,三点的二次涵数的解析式为(1)(4)y k x x =+-,将点(02)C ,的坐标代入得21(4)k =⨯⨯-,解得12k =. 所以,图象经过A B C ,,三点的二次函数的解析式为2113(1)(4)2222y x x x x =-+-=-++.第二试(C )一、(本题满分20分)题目和解答与(A )卷第一题相同.二、(本题满分25分)如图,已知P 为锐角ABC △内一点,过P 分别作BC AC AB ,,的垂线,垂足分别为D E F ,,,BM 为ABC ∠的平分线,MP 的延长线交AB 于点N ,如果PD PE PF =+,求证:CN 是ACB ∠的平分线.证明 如图1,作1MM BC ⊥于点1M ,2MM AB ⊥于点2M ,1MN BC ⊥于点1N ,2MN AC ⊥于点2N .MAB CD EPF M 1N 1M 2N 2NP NDHMN 1M 1H 1设NP NM λ=⊥,∵11NN PD MM ∥∥,∴111N D N M λ=.13若11NN MM <,如图2,作1NH MM ⊥,分别交1MM ,于点1H H ,,则1NPH NMH :△△,∴1PH NPMH NMλ==,∴1PH MH λ=, ∴()()111111111PD PH H H MH NN MM NN NN MM NN λλλλ=+=+=-+=+-.若11NN MM =,则()11111PD NN MM MM NN λλ===+-.若11NN MM >,同理可证11(1)PD MM NN λλ=+-.∵2PE NN ∥,∴21PE PMNN NMλ==-,∴2(1)PE NN λ=-. ∵2PF MM ∥,∴2PF NPMM NMλ==,∴2PE MM λ=. 又PD PE PF =+,∴1122(1)(1)MM NN MM NN λλλλ+-=+-.又因为BM 是ABC ∠的平分线,所以12MM MM =,∴()()1211NN NN λλ-=-.显然1λ≠,即10λ-≠,∴12NN NN =,∴CN 是ACB ∠的平分线.三、(本题满分25分)题目和解答与(B )卷第三题相同.。
2011年全国高中数学联赛一 试一、填空题(每小题8分,共64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于A,B 两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题(本大题共3小题,共56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.解 答1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)-∞+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f . 设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式 )cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形: (1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6. 提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM .由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMNOD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x . 因为︒=∠90ACB ,所以0=⋅CB CA ,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .A BC DOP MN故所求点C 的坐标为)2,1(-或)6,9(-. 8.15. 提示:=n a C65400320020023n n n --⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a , 所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去).把31-=b 代入1)2)(1(=++b a 解得52-=a .所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n nn n n n t a t a t a a t a . 记n n n b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有 221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)n t n t a a n n n n )1(21)1(211--+-=-++ [])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k PB PA . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==PB PA k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 60211)1)277249PAB S PA PB ∆=⋅⋅⋅︒-=⋅⋅⋅=. 加 试1. (40分)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.2. (40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.3.(50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk i j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.4.(50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值.解 答1. 延长线段DP 与圆交于另一点E ,则BPA DPA CPE ∠=∠=∠,又P 是线段AC 的中点,故⋂⋂=CE AB ,从而BDA CDP ∠=∠.又PCD ABD ∠=∠,所以△ABD ∽△PCD ,于是CDPCBD AB =,即 BD PC CD AB ⋅=⋅ .从而有BQ AC BD AC BD AC CD AB ⋅=⋅=⋅=⋅)21(21, 即CDBQAC AB =. 又ACD ABQ ∠=∠,所以△ABQ ∽△ACD ,所以DAC QAB ∠=∠. 延长线段AQ 与圆交于另一点F ,则DAF CAB ∠=∠,故⋂⋂=DF BC . 又因为Q 为BD 的中点,所以DQF CQB ∠=∠.又DQF AQB ∠=∠,所以CQB AQB ∠=∠.2. 令 2)()2)(1()(++++=n x x x x f , ① 将①的右边展开即知)(x f 是一个首项系数为1的正整数系数的n 次多项式.下面证明)(x f 满足性质(2).对任意整数t ,由于4≥n ,故连续的n 个整数n t t t +++,,2,1 中必有一个为4的倍数,从而由①知)4(mod 2)(≡t f . 因此,对任意)2(≥k k 个正整数k r r r ,,,21 ,有)4(mod 02)()()(21≡≡k k r f r f r f .但对任意正整数m ,有)4(mod 2)(≡m f ,故)4)(mod ()()()(21k r f r f r f m f ≡/,从而)()()()(21k r f r f r f m f ≠.所以)(x f 符合题设要求. 3.对给定的)1(n j j <<,满足n k j i ≤<<≤1,且r a a a a jk i j =-- ①的三元数组),,(k j i 的个数记为)(r g j .注意到,若j i ,固定,则显然至多有一个k 使得①成立.因j i <,即i 有1-j 种选法,故1)(-≤j r g j .同样地,若k j ,固定,则至多有一个i 使得①成立.因j k >,即k 有j n -种选法,故j n r g j -≤)(.从而},1min{)(j n j r g j --≤.因此,当n 为偶数时,设m n 2=,则有∑∑∑-=-=-=+==121212)()()()(m mj jm j j n j j n r gr g r g r f2)1(2)1()2()1(1212-+-=-+-≤∑∑-+==m m m m j m j m m j m j 4222n m m m =<-=.当n 为奇数时,设12+=m n ,则有∑∑∑+==-=+==mm j jmj j n j j n r gr g r g r f 21212)()()()(∑∑+==-++-≤mm j mj j m j 212)12()1(422n m <=.4. 首先证明A 中“坏格”不多于25个.用反证法.假设结论不成立,则方格表A 中至多有1个小方格不是“坏格”.由表格的对称性,不妨假设此时第1行都是“坏格”.设方格表A 第i 列从上到下填的数依次为9,,2,1,,, =i c b a i i i .记9,,2,1,0,)(,11=+==∑∑==k c bT a S ki i ikk i ik ,这里000==T S .我们证明:三组数910,,,S S S ;910,,,T T T 及991100,,,T S T S T S +++ 都是模10的完全剩余系.事实上,假如存在90,,≤<≤n m n m ,使)10(mod n m S S ≡,则)10(mod 01≡-=∑+=m n nm i iS S a,即第1行的第1+m 至第n 列组成一个“好矩形”,与第1行都是“坏格”矛盾.又假如存在90,,≤<≤n m n m ,使)10(mod n m T T ≡,则)10(mod 0)(1≡-=+∑+=m n nm i i iT T c b,即第2行至第3行、第1+m 列至第n 列组成一个“好矩形”,从而至少有2个小方格不是“坏格”,矛盾.类似地,也不存在90,,≤<≤n m n m ,使)10(mod n n m m T S T S +≡+.因此上述断言得证.故)10(mod 59210)(99090≡++++≡+≡≡∑∑∑=== k k kk kk kT ST S ,所以)10(mod 055)(9909≡+≡+≡+∑∑∑===k kk kk k kTS T S,矛盾!故假设不成立,即“坏格”不可能多于25个.另一方面,构造如下一个93⨯的方格表,可验证每个不填10的小方格都是“坏格”,此时有25个“坏格”.综上所述,“坏格”个数的最大值是25.。
2011年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知2=+b a ,4)1()1(22-=-+-ab b a ,则ab 的值为 ( ) A .1. B .1-. C .21-. D .21. 【答】B. 由4)1()1(22-=-+-ab b a 可得ab b b a a 4)1()1(22-=-+-, 即04)(2)(3322=++++-+ab b a b a b a ,即222222()2()40a b a ab b ab -++-++=,即2240ab ab -+=,所以1-=ab .2.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为( )A .5.B .6.C .7.D .8.【答】B.设△ABC 的面积为S ,所求的第三条高线的长为h ,则三边长分别为h S S S 2,202,52.显然20252S S >,于是由三边关系,得 ⎪⎩⎪⎨⎧>+>+,252202,522202h S S S S h S S 解得3204<<h . 所以h 的最大整数值为6,即第三条高线的长的最大值为6.3.方程)2)(324(|1|2+-=-x x 的解的个数为 ( )A .1个B .2个C .3个D .4个 【答】C.当1||≥x 时,方程为)2)(324(12+-=-x x ,即0349)324(2=+---x x ,解得1x =24x =-,均满足1||≥x .当1||<x 时,方程为)2)(324(12+-=-x x ,即0347)324(2=-+-+x x ,解得32x =,满足1||<x .综上,原方程有3个解..4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有 ( )A .5组. B .7组. C .9组. D .11组.【答】C. 显然用这些线段去拼接成正方形,至少要7条.当用7条线段去拼接成正方形时,有3条边每边都用2条线段连接,而另一条边只用1条线段,其长度恰好等于其它3条边中每两条线段的长度之和.当用8条线段去拼接成正方形时,则每边用两条线段相接,其长度和相等.又因为45921=+++ ,所以正方形的边长不大于45[]114=.由于 4352617+=+=+=5362718+=+=+=; 546372819+=+=+=+=64738291+=+=+=+; 65748392+=+=+=+.所以,组成边长为7、8、10、11的正方形,各有一种方法;组成边长为9的正方形,有5种方法。
2011年全国高中数学联赛一 试一、填空题(每小题8分,共64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于A,B 两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题(本大题共3小题,共56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.解 答1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)2-∞-+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式 )cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形: (1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6. 提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得32sin ,31cos ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM .由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMNOD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x . 因为︒=∠90ACB ,所以0=⋅CB CA ,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .A BC DOP MN故所求点C 的坐标为)2,1(-或)6,9(-. 8.15. 提示:=n a C65400320020023n n n --⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数. 因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a , 所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去).把31-=b 代入1)2)(1(=++b a 解得52-=a .所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n nn n n n t a t a t a a t a . 记n n n b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有 221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)n t n t a a n n n n )1(21)1(211--+-=-++ [])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k PB PA . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==PB PA k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 60211)1)2772PAB S PA PB ∆=⋅⋅⋅︒=⋅⋅⋅=. 加 试1. (40分)如图,Q P ,分别是圆内接四边形ABCD 的对角线BD AC ,的中点.若DPA BPA ∠=∠,证明:CQB AQB ∠=∠.2. (40分)证明:对任意整数4≥n ,存在一个n 次多项式0111)(a x a x a x x f n n n ++++=--具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.3.(50分)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a jk i j ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.4.(50分)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值.解 答1. 延长线段DP 与圆交于另一点E ,则BPA DPA CPE ∠=∠=∠,又P 是线段AC 的中点,故⋂⋂=CE AB ,从而BDA CDP ∠=∠.又PCD ABD ∠=∠,所以△ABD ∽△PCD ,于是CDPCBD AB =,即 BD PC CD AB ⋅=⋅ .从而有BQ AC BD AC BD AC CD AB ⋅=⋅=⋅=⋅)21(21, 即CDBQAC AB =. 又ACD ABQ ∠=∠,所以△ABQ ∽△ACD ,所以DAC QAB ∠=∠. 延长线段AQ 与圆交于另一点F ,则DAF CAB ∠=∠,故⋂⋂=DF BC . 又因为Q 为BD 的中点,所以DQF CQB ∠=∠.又DQF AQB ∠=∠,所以CQB AQB ∠=∠.2. 令 2)()2)(1()(++++=n x x x x f , ① 将①的右边展开即知)(x f 是一个首项系数为1的正整数系数的n 次多项式.下面证明)(x f 满足性质(2).对任意整数t ,由于4≥n ,故连续的n 个整数n t t t +++,,2,1 中必有一个为4的倍数,从而由①知)4(mod 2)(≡t f . 因此,对任意)2(≥k k 个正整数k r r r ,,,21 ,有)4(mod 02)()()(21≡≡k k r f r f r f .但对任意正整数m ,有)4(mod 2)(≡m f ,故)4)(mod ()()()(21k r f r f r f m f ≡/,从而)()()()(21k r f r f r f m f ≠.所以)(x f 符合题设要求. 3.对给定的)1(n j j <<,满足n k j i ≤<<≤1,且r a a a a jk i j =-- ①的三元数组),,(k j i 的个数记为)(r g j .注意到,若j i ,固定,则显然至多有一个k 使得①成立.因j i <,即i 有1-j 种选法,故1)(-≤j r g j .同样地,若k j ,固定,则至多有一个i 使得①成立.因j k >,即k 有j n -种选法,故j n r g j -≤)(.从而},1min{)(j n j r g j --≤.因此,当n 为偶数时,设m n 2=,则有∑∑∑-=-=-=+==121212)()()()(m mj jm j j n j j n r gr g r g r f2)1(2)1()2()1(1212-+-=-+-≤∑∑-+==m m m m j m j m m j m j 4222n m m m =<-=.当n 为奇数时,设12+=m n ,则有∑∑∑+==-=+==mm j jmj j n j j n r gr g r g r f 21212)()()()(∑∑+==-++-≤mm j mj j m j 212)12()1(422n m <=.4. 首先证明A 中“坏格”不多于25个.用反证法.假设结论不成立,则方格表A 中至多有1个小方格不是“坏格”.由表格的对称性,不妨假设此时第1行都是“坏格”.设方格表A 第i 列从上到下填的数依次为9,,2,1,,, =i c b a i i i .记9,,2,1,0,)(,11=+==∑∑==k c bT a S ki i ikk i ik ,这里000==T S .我们证明:三组数910,,,S S S ;910,,,T T T 及991100,,,T S T S T S +++ 都是模10的完全剩余系.事实上,假如存在90,,≤<≤n m n m ,使)10(mod n m S S ≡,则)10(mod 01≡-=∑+=m n nm i iS S a,即第1行的第1+m 至第n 列组成一个“好矩形”,与第1行都是“坏格”矛盾.又假如存在90,,≤<≤n m n m ,使)10(mod n m T T ≡,则)10(mod 0)(1≡-=+∑+=m n nm i i iT T c b,即第2行至第3行、第1+m 列至第n 列组成一个“好矩形”,从而至少有2个小方格不是“坏格”,矛盾.类似地,也不存在90,,≤<≤n m n m ,使)10(mod n n m m T S T S +≡+.因此上述断言得证.故)10(mod 59210)(9909≡++++≡+≡≡∑∑∑=== k k kk k k kT ST S,所以)10(mod 055)(9909≡+≡+≡+∑∑∑===k kk kk k kTS T S,矛盾!故假设不成立,即“坏格”不可能多于25个.另一方面,构造如下一个93⨯的方格表,可验证每个不填10的小方格都是“坏格”,此时有25个“坏格”.综上所述,“坏格”个数的最大值是25.。
2011年全国中学生生物学联赛试卷(B卷)注意事项:1.请用2B铅笔在机读卡上做答;2.试题按学科分类,单选和多选混排,每小题只标明分值,分值不代表是否为多选,是否多选可从题干中判断。
答案完全正确才可得分;.3.答题时间120分钟,全卷共l60分。
第一部分30道题(40分)1.很多细胞器上具有质子泵,以下不具有质子泵的细胞器为:(1分)A.内质网B.溶酶体C.线粒体D.叶绿体2.生物膜的流动性表现在:(1分)A.膜脂和膜蛋白都是流动的B.膜脂是流动的,膜蛋白不流动C.膜脂不流动,膜蛋白是流动的D.膜脂和膜蛋白都是不流动的,流动性由其它成分决定3.下列哪些物质跨膜运输方式属于主动运输:(2分)A.钠钾跨膜运输B.胞吞作用C.协同运输D.乙醇跨膜运输4.细胞分裂过程中形成的纺锤体其主要成分是:(1分)A.微丝B.中间纤维C.微管D.胶原纤维5.下列有关细胞凋亡的描述中不正确的是:(1分)A.受到基因调控B.还可称为细胞程序性死亡C.DNA会发生断裂D.细胞质膜快速破裂6.下列关于叶绿体和线粒体的描述,哪些是正确的? (2分)A.都含有蛋白质,B.都含有可结合H+的辅酶C.都含有钾离子D.都缺少DNA E.都能产生ATP7.核仁的主要功能是:(1分)A.DNA的复制B.核糖体的生物发生C.物质的核质交换D.染色体的包装8.减数分裂过程中观察同源染色体的四分体最好的时期是:(1分)A.细线期B.偶线期C.粗线期D.双线期9.模板DNA的碱基序列如下:5'-TGCAGT-3’,其转录出来的RNA分子碱基排列序列是:(1分) A.5’-ACGTCA-3’B.5’-ACGUCA-3’C.5’-ACUGCA-3’D.5’-ACTGCA-3’1 0.对正常组织和癌组织进行原代培养,下列关于这两种细胞培养前景的描述中正确的是:(1分) A.正常组织中的细胞已经分化,培养的细胞只能存活,不能分裂,而癌细胞则可以分裂B.正常组织中的细胞都可以像癌细胞一样分裂产生子细胞,进行传代C.除神经细胞、肌肉细胞等少数种类的细胞不能分裂外,其它细胞都可以像癌细胞一样进行分裂,可像癌细胞一样进行细胞传代培养D.只有干细胞能够像癌细胞一样培养传代E.大部分正常组织的细胞可以进行分裂、传代,但传代次数有限11.三羧酸循环是物质代谢的枢纽,是糖、脂和蛋白质相互转化的共同通路。