光学与原子物理二3
- 格式:ppt
- 大小:175.50 KB
- 文档页数:18
《原子物理学》教学大纲课程性质:专业基础课程先修课程:力学、电磁学、光学总学时:60 学分:3.5理论学时:60 实验学时:实验纳入《近代物理实验》课程开课学院:物电学院适用专业:物理学大纲执笔人:凤尔银大纲编写时间:2007年元月教研室主任审核:凤尔银教学院长审定:一、说明1、课程的性质、地位和任务原子物理学为物理学专业的必修课,是物理学专业的一门重要基础课。
本课程的主要目标和任务是:以原子结构为中心,以实验事实为线索,了解原子和原子核层次的物质结构及运动和变化规律,揭示宏观现象与规律的本质。
介绍有关问题所需要的量子力学基本概念,阐述物质微观结构三个层次的物理过程、研究方法,培养创新思维。
使学生对物质世界有更深入的认识,获得在本课程领域内分析和处理一些最基本问题的初步能力。
2、课程教学的基本要求通过本课程的学习,力图使学生初步建立描述微观世界的物理图像,理解适应微观世界的新概念,掌握处理微观世界物理问题的新方法,为后续《量子力学》课程的学习打下一定的基础;本课程涉及知识面较广,讲授时要针对实际情况,对内容加以选择,尽量做到详略得当,让学生既能较全面,又能较深刻地理解和掌握。
课程教学中,要结合有关内容,适当将一些背景材料和物理学史引入教学,以利于加深对新知识的理解和把握。
同时,通过介绍二十世纪初物理学家,在解决经典物理学应用于微观粒子体系遇到困难时的大胆探索、勇于出新的思想脉络,使学生受到创新意识和创新精神方面的熏陶和教育,提高学生分析问题和解决问题的能力。
使学生了解物理学家对物质结构的实践——理论——再实践的认识过程,引导学生养成严谨、活跃、创新的思维方式和学习方法。
3、本课程的重点与难点重点:培养学生初步建立微观世界的物理图像,掌握描述原子结构的基本概念、基本原理和方法;掌握认识原子世界的基本规律,以便从思想和方法上做好准备,为今后学习量子力学打下基础。
难点:由于原子物理学课程是学生第一次系统的接触到的近代物理学的理论体系,它的许多概念、观点与学生长期形成的观念不相符合。
大学原子物理知识点整理(二)引言概述:原子物理是研究原子和原子核结构以及它们之间的相互作用的领域。
在大学物理学课程中,学生将学习有关原子物理的基本知识和概念。
本文将整理大学原子物理的知识点,帮助读者加深对这一领域的理解。
正文:一、原子的基本结构1. 原子的组成: 电子、质子和中子2. 布尔模型与量子力学模型的对比3. 原子的核外能级和核内能级4. 电子的波粒二象性和不确定性原理5. 原子的量子态和波函数描述二、能级和谱线1. 原子的能级和跃迁1.1 电子的能级和能级图1.2 能级跃迁的条件与选择定则2. 谱线的产生机制2.1 吸收谱线和发射谱线2.2 碰撞激发和辐射激发3. 原子的光谱和谱线的分类3.1 连续光谱、线状光谱和带状光谱3.2 原子谱、分子谱和固体谱4. 原子光谱的应用4.1 能级分析和元素识别4.2 光谱学在天文学和化学中的应用三、放射性和核衰变1. 放射性的定义和特性2. 放射性衰变的方式2.1 α衰变、β衰变和γ衰变2.2 波尔模型下的放射性衰变2.3 放射性衰变的速率和半衰期3. 放射性排放和辐射剂量3.1 放射性元素的排放方式3.2 辐射剂量和辐射安全4. 应用于医学和工业的放射性同位素 4.1 放射性同位素的检测和成像4.2 放射性同位素的治疗和工业应用四、原子核结构和核反应1. 原子核的组成和性质1.1 原子核的质量和电荷1.2 原子核的尺寸和稳定性2. 核反应和核能的产生2.1 反应堆和核武器的原理2.2 核聚变和核裂变的区别3. 核反应的速率和截面3.1 核反应截面的定义和测定3.2 反应速率方程和反应速率常数4. 放射性同位素的衰变4.1 α衰变、β衰变和γ衰变4.2 放射性同位素的半衰期和活度五、原子物理的前沿研究1. 量子力学和粒子物理学的交叉研究2. 原子和分子的控制和操控3. 高能粒子对物质的作用和产生的效应4. 新型材料和器件的研究和开发5. 双原子分子的电子结构和光谱研究总结:本文梳理了大学原子物理的知识点,包括原子的基本结构、能级和谱线、放射性和核衰变、原子核结构和核反应以及原子物理的前沿研究。
高一物理必修二知识点归纳总结1500字高一物理必修二知识点总结如下:
第一章机械振动与波动
1. 机械振动的基本概念及基本特征
2. 单摆的运动规律
3. 弹簧振子的运动规律
4. 机械波与介质的传播
5. 简谐波的特征及其数学表达
6. 简谐振动的特征及其数学表达
第二章光学
1. 光的直线传播和反射
2. 光的折射及其数学表达
3. 总反射及其条件
4. 光的色散和光的干涉现象
5. 杨氏干涉和薄膜干涉
6. 衍射现象及其数学表达
第三章电磁感应
1. 磁感线和磁感应强度
2. 安培定律及其数学表达
3. 磁通量和法拉第电磁感应定律
4. 感应电动势及其数学表达
5. 自感和互感
第四章电磁场
1. 电场的基本概念和电场强度的定义
2. 电荷与电场的相互作用
3. 电荷分布所建立的电场
4. 电容器的基本概念和电容的定义
5. 电容与电压关系及能量的储存和释放
6. 平行板电容器和球形电容器的电场
7. 电磁感应中的电荷运动
第五章原子物理与半导体物理
1. 原子的组成和结构
2. 原子核的结构和放射性
3. 半导体物理的基本概念和PN结的形成
4. 半导体的导电机制和P型、N型半导体的特性
5. 半导体二极管和晶体管的基本原理和应用
6. 半导体材料的特性和技术应用
以上是高一物理必修二的主要知识点总结,每个知识点包括基本概念、基本规律和数学表达等。
此外,还可以根据教材中的具体内容进行细化整理,以便更好地理解和掌握这些知识点。
光电效应,光子
1.光电效应:在光的照射下(可见光或不可见光),物体发射电子的现象,发射出的电子叫光电子。
2.光电效应的规律
a.极限频率:任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能发生光电效应。
b.最大初动能:光电子的最大初动能,与入射光的强度无关,只随入射光的频率增大而增大。
c.瞬时性:光电效应的产生几乎是瞬时的,一般不超过10-9s
d.光电流强度:当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比
3.爱因斯坦的光子说
光是一份一份地不连续传播的,每一份叫做一个光子,光子的能量与它的频率成正比: E=h υ, K光谱朗克常数=6.63×10-34J·S
(hυ=E
k +W=E
k
+ hυ
) υ
:极限频率
注意:光的强度是指光束的能量; 若单位时间内射到金属表面单位面积上的频率为υ,光子数为n,则光强为nhυ。
4.光的波粒二象性
*大量的光子运动规律表现出波动性,个别光子运动表现出粒子性;
*光的波长越长,波动性越明显,越容易观察到光的干涉和衍射,光频率越高,粒子性越明显,贯穿本领越强;
*光速v,频率υ,波长λ的关系v=λυ光子能量 E=hυ=hc/λ
=hv/λ
*光从真空射入介质中,频率不变,故光的颜色和光子能量不变,但波长和光速发生变化。
原子物理公式总结归纳本文对原子物理领域中常见的公式进行总结归纳,通过对这些公式的理解和应用,可以更好地理解和描述原子的结构、性质和相互作用。
以下是一些重要的原子物理公式:1. 波长和频率公式波长(λ)和频率(ν)之间的关系可以由以下公式表示:c = λν其中,c是光速,约等于3×10^8米/秒。
这个公式说明了电磁辐射的波长和频率之间的相互关系。
2. 波粒二象性公式根据量子力学的理论,物质不仅可以表现出粒子性,还可以表现出波动性。
波长(λ)和动量(p)之间的关系由德布罗意波动方程给出:λ = h / p其中,h是普朗克常量,约等于6.626×10^-34焦秒。
这个公式表明了物质粒子的波长和其动量之间的关系。
3. 能量和频率公式能量(E)和频率(ν)之间的关系由普朗克-爱因斯坦关系给出:E = hν这个公式说明了能量和频率之间的相互关系,其中h是普朗克常量。
4. 不确定性原理根据海森堡的不确定性原理,位置(Δx)和动量(Δp)之间存在一种不确定性关系:ΔxΔp ≥ h/ (4π)这个公式表明了在测量粒子位置和动量时,存在一个不确定性的限制。
5. 玻尔模型的能级公式根据玻尔模型,原子的电子只能处于特定的能级上。
原子的能级与电子的主量子数(n)有关,能级(E)与主量子数之间的关系由以下公式给出:E = -13.6eV / n^2其中,-13.6eV是氢原子的电离能。
6. 玻尔半径公式玻尔半径(r)是描述电子轨道半径的物理量,它与氢原子的电离能(E)和光速(c)之间的关系由以下公式给出:r = h / (2πm_e c)其中,m_e是电子的质量。
7. 缝隙能和晶格常数的关系在固体物理中,缝隙能(E_g)与晶格常数(a)之间的关系由以下公式给出:E_g = h^2 / (8ma^2)其中,m是电子的有效质量。
8. 微扰理论的能量修正公式微扰理论是处理原子和分子量子态的重要方法。
根据微扰理论,能量的修正可以通过下面的公式给出:ΔE = ∑ |C_n|^2E_n其中,C_n是波函数在扰动态上的展开系数,E_n是未扰动态的能量。
教科版物理必修三教科版物理必修三是中国教育出版社出版的一本高中物理教材,主要面向高中三年级学生。
该教材内容丰富,涵盖了力学、热学、光学、电学和现代物理等多个物理学科的知识。
下面是教科版物理必修三的详细章节内容:第一章:机械振动与波动1. 机械振动:包括简谐振动、阻尼振动和受迫振动等内容。
2. 机械波动:包括机械波的传播、波的叠加、波的干涉和波的衍射等内容。
第二章:热学1. 热量与温度:包括热量的传递、温度的测量和热平衡等内容。
2. 热力学第一定律:包括内能、热机效率和热力学循环等内容。
3. 热力学第二定律:包括热力学不可逆过程、熵的概念和熵增定律等内容。
第三章:光学1. 光的反射与折射:包括光的反射定律、折射定律和光的全反射等内容。
2. 光的波动性:包括光的干涉、衍射和偏振等内容。
3. 光的粒子性:包括光电效应和康普顿散射等内容。
第四章:电学1. 电场与电势:包括电场的概念、电势的概念和电势能等内容。
2. 电流与电阻:包括电流的概念、欧姆定律和电阻的概念等内容。
3. 电路与电源:包括串联电路、并联电路和电源的概念等内容。
第五章:现代物理1. 原子物理学:包括玻尔原子模型、量子力学和波粒二象性等内容。
2. 核物理学:包括放射性衰变、核反应和核能等内容。
3. 固体物理学:包括晶体结构、导电性和磁性等内容。
教科版物理必修三的内容丰富,旨在帮助学生全面了解物理学的基础知识和基本原理,并培养学生的物理思维和实验能力。
通过学习该教材,学生将能够掌握物理学的基本概念、原理和应用,为进一步学习物理学打下坚实的基础。
2023年部编本高中物理新版教材课文目
录
第一单元:力学
1. 课文一:运动与相对性
2. 课文二:牛顿第一定律
3. 课文三:牛顿第二定律
4. 课文四:牛顿第三定律
第二单元:热学
1. 课文一:热力学基础概念
2. 课文二:热传递与热平衡
3. 课文三:理想气体的状态方程
4. 课文四:热机原理
第三单元:光学
1. 课文一:光的反射与折射
2. 课文二:光的波动性与粒子性
3. 课文三:几何光学
4. 课文四:光的衍射与干涉
第四单元:电磁学
1. 课文一:电荷与电场
2. 课文二:电势与电势能
3. 课文三:电流与电路
4. 课文四:电磁感应与电磁波
第五单元:原子物理与核物理
1. 课文一:原子结构与原子模型
2. 课文二:放射性衰变与半衰期
3. 课文三:核能与核反应
4. 课文四:粒子物理学与宇宙学
以上是2023年部编本高中物理新版教材的课文目录。
每个单元都包含了若干课文,涵盖了力学、热学、光学、电磁学以及原子
物理与核物理等相关内容。
通过学习这些课文,学生将能够全面了解物理学的基础知识和核心概念,并培养科学思维和实验技能。
物理选修二归纳总结物理选修二是高中阶段的一门重要课程,主要涵盖了电磁学、光学和原子物理等内容。
本文将对物理选修二的知识点进行归纳总结,以助于同学们更好地掌握和复习这门课程。
一、电磁学1. 静电场与电场静电场描述了电荷在没有运动的情况下的相互作用,电场是静电作用的载体。
电场强度与电场线、电势的概念密切相关。
2. 电势差与电势能电势差描述了电荷在电场中移动时的能量变化情况,电势能是电荷在电场中具有的能量。
电势差与电势能之间满足关系:电势差等于单位电荷所具有的电势能。
3. 电容与电容器电容是储存电荷的能力,电容器则是储存电荷的设备。
常见的电容器有平行板电容器和球形电容器。
4. 电流与电路电流是电荷在单位时间内通过导体截面的量度,电路则是电流的载体。
常见的电路有串联电路和并联电路。
二、光学1. 光的直线传播与反射定律光的直线传播是指光在线性介质中呈直线传播的现象,反射定律则是描述光在平面界面上反射的规律。
2. 光的折射与折射定律光的折射是指光从一种介质传播到另一种介质中改变传播方向的现象,折射定律描述了光在介质之间折射时的规律。
3. 薄透镜与成像规律薄透镜是一种能够使光线经过折射而聚焦的光学器件,成像规律描述了薄透镜成像的基本规律。
4. 光的色散与衍射光的色散是指白光经过介质后,不同频率的光发生不同程度的折射现象,衍射则是指光通过物体的边缘时发生弯曲和扩散的现象。
三、原子物理1. 原子结构与元素周期表原子结构由原子核和电子壳层组成,元素周期表则是对不同元素的原子结构进行分类和展示的工具。
2. 原子核的稳定性与放射性原子核的稳定性与质子和中子的比例有关,放射性是某些核素放射出射线的性质。
3. 核反应与核能核反应指的是原子核发生变化的过程,核能则是核反应释放出的能量。
4. 半导体与电子器件半导体是指电导率介于导体和绝缘体之间的材料,常见的电子器件有二极管和晶体管等。
总之,物理选修二是一门涉及电磁学、光学和原子物理等内容的综合性课程。
物理专业大一到大四课程安排摘要:一、大一课程安排二、大二课程安排三、大三课程安排四、大四课程安排五、总结与建议正文:作为一名物理专业的学生,从大一到大四,课程安排紧密相连,为学生提供了丰富的知识体系和实践机会。
下面将分别介绍每个阶段的课程安排,并对整个物理专业的学习提出一些建议。
一、大一课程安排大一主要为学生打下坚实的物理基础,课程包括:1.高等数学2.大学物理3.线性代数4.概率论与数理统计5.物理实验二、大二课程安排大二课程侧重于理论物理的学习,课程包括:1.电磁学2.热力学与统计物理3.光学4.量子力学5.原子物理6.物理实验三、大三课程安排大三课程深入研究各分支物理领域,课程包括:1.固体物理2.现代物理导论3.光学与光通信4.量子信息与量子计算5.核物理与粒子物理6.物理实验四、大四课程安排大四主要进行实践与研究,课程包括:1.研究生入学考试辅导2.物理研究方法与实践3.学术论文写作与发表4.物理实验五、总结与建议物理专业从大一到大四的课程安排,系统地涵盖了理论物理、实验物理和应用物理等多个领域。
对于学生来说,不仅要注重理论知识的学习,还要积极参加实验,提高动手能力。
此外,建议学生在大二、大三阶段选择一些相关领域的课程进行深入学习,为今后的科研和就业打下基础。
最后,培养良好的学术素养,掌握科研方法,不断提升自己的综合素质。
以上就是物理专业大一到大四的课程安排及其相关建议,希望对大家有所帮助。
第二章 原子的能级和辐射试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。
解:电子在第一玻尔轨道上即年n=1。
根据量子化条件,πφ2h nmvr p ==可得:频率 21211222ma hma nh a v πππν===赫兹151058.6⨯=速度:61110188.2/2⨯===ma h a vνπ米/秒加速度:222122/10046.9//秒米⨯===a v r v w试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
解:电离能为1E E E i -=∞,把氢原子的能级公式2/n Rhc E n -=代入,得:Rhc hc R E H i =∞-=)111(2=电子伏特。
电离电势:60.13==eE V ii 伏特 第一激发能:20.1060.134343)2111(22=⨯==-=Rhc hc R E H i 电子伏特 第一激发电势:20.1011==eE V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:)111(22nhcR E H -= 其中6.13=H hcR 电子伏特2.10)211(6.1321=-⨯=E 电子伏特1.12)311(6.1322=-⨯=E 电子伏特8.12)411(6.1323=-⨯=E 电子伏特其中21E E 和小于电子伏特,3E 大于电子伏特。
可见,具有电子伏特能量的电子不足以把基态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。
跃迁时可能发出的光谱线的波长为:οοολλλλλλAR R A R R A R R H H H H H H 102598)3111(1121543)2111(1656536/5)3121(1322322221221==-===-===-=试估算一次电离的氦离子+e H 、二次电离的锂离子+i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。
原子物理(二)目标一:能级,跃迁,波尔理论1.氢原子的能级结构、能级公式 (1)玻尔理论①定态:原子只能处于一系列不连续的能量状态(定态),在这些能量状态中原子是稳定的,电子虽然绕核变速运动,但并不向外辐 射能量.能量最低的定态叫基态(n=1),其他叫激发态(n³2)②跃迁: 电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即h n =hcl=E m -E n .(h 是普朗克常量,h =6.63×10-34 J·s) 电子从低能级轨道跃迁到高能级轨道,需要吸收能量:若吸收光子,光能量必须为两能级差。
若外来实物粒子,粒子能量大于两能级差就可以,多出来的能量转为外来食物粒子动能。
单原子一次跃迁只发出(吸收)一个光子,不可能是半个或者多个,故光子必为两能级差。
③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.(2)能级和半径公式:①能级公式:E n =1n2E 1(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=-13.6 eV .②半径公式:r n =n 2r 1(n =1,2,3,…),其中r 1为基态半径,又称玻尔半径,其数值为r 1=0.53×10-10m.(3)氢原子轨道变化(类比于天体模型):①轨道越大,总能量越大,势能越大,动能越小,符合越高越慢。
②跃迁与电离的区别:(卫星的变轨与逃逸)跃迁时电子从一个轨道变换到另一个轨道,没有脱离原子核;而电离后电子离开原子核;因此,跃迁所吸收的能必须是能级之差、而电离的能量只要大于等于它在当前轨道上的能级就行。
注意:使基态氢原子电离的电磁波波长为91.4nm,在紫外线范围内。
卫星由于轨道不是量子化的,故变故吸收能量可以任意,逃逸即脱离地球引力束缚速度为第二宇宙速度。