高二上学期8月月考--数学(理)
- 格式:doc
- 大小:342.82 KB
- 文档页数:11
重庆市巴蜀中学校2024-2025学年高二上学期第一次月考数学试题一、单选题1.直线:1l y +的倾斜角为( ) A .0︒B .30︒C .45︒D .60︒2.已知直线1:50l x y ++=,2:10l x y ++=,则1l 与2l 的距离为( )A .1B .2C D .3.已知(1,0)A -、(3,6)B ,则以AB 为直径的圆的一般方程为( ) A .222630x y x y +--+= B .222630x y x y +---= C .222630x y x y ++-+=D .222630x y x y ++--=4.已知直线1:10l ax y ++=,2:2(1)30l x a y +--=,若12l l ⊥,则实数a =( )A B C .-1 D .-2 5.已知动点P 在椭圆22:143y x C +=上,(0,1)F -,(3,3)D -,则D |P PF -的最小值为( )A .5BC .2D .16.已知直线1:12l y x =+与椭圆2222:1(0)x y C a b a b+=>>相交于A 、B ,且AB 的中点为11,2M ⎛⎫- ⎪⎝⎭,则椭圆C 的离心率为( )A B C D .127.已知点A 、B 在圆22:16O x y +=上,且AB 的中点M 在圆22:(2)1C x y -+=上,则弦长AB 的最小值为( )A .B .C .D .8.已知椭圆2222:1(0)x y a b a b Γ+=>>的焦距为2c ,若直线()380kx y k c -++=恒与椭圆Γ有两个不同的公共点,则椭圆Γ的离心率范围为( )A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、多选题9.已知ABC V 的三个顶点(2,1)A -,(2,7)B -,(2,1)C -,则下列描述正确的有( ) A .直线BC 的倾斜角不存在 B .直线AB 的斜率为-2C .边AB 上的高所在直线的方程为240x y -+=D .边AB 上的中线所在直线的方程为30x y -+=10.已知动点P 在直线:60l x y +-=上,动点Q 在圆22:(1)(1)4C x y -+-=上,过点P 作圆C 的两条切线,切点分别为A 、B ,则下列描述正确的有( )A .直线l 与圆C 相交B .PQ 的最小值为2C .四边形PACB 面积的最小值为4D .存在P 点,使得120APB ︒∠=11.已知椭圆222:1(20)4x y C b b+=>>的左、右焦点分别为1F 、2F ,上顶点为B ,动点P 在椭圆C 上,则下列描述正确的有( )A .若12PF F V 的周长为6,则b =B .若当12π3F PF ∠=时,12PF F V b =C .若存在P 点,使得12PF PF ⊥,则b ∈D .若PB 的最大值为2b ,则b ∈三、填空题12.焦点在x 轴的椭圆C ,长轴长为10,离心率为35,则椭圆C 的标准方程为.13.经过点()0,0O 作直线l ,若直线l 与连接()1,1A -,()2,2B 两点的线段总有公共点,则直线l 斜率的取值范围为.14.已知点()0,1A ,()0,1B -,()0,2C -,动点P 满足:||||10+=PA PB ,且||2||PC PA ≥,则点P 的轨迹长度为.四、解答题15.已知点()2,1P -,直线:220l x y ++=. (1)求点P 到直线l 的距离;(2)求点P 关于直线l 的对称点Q 的坐标.16.已知(1,2)A 、(3,6)B ,动点P 满足4PA PB ⋅=-u u u r u u u r,设动点P 的轨迹为曲线C . (1)求曲线C 的标准方程;(2)求过点(1,2)A 且与曲线C 相切的直线的方程. 17.已知直线2y kx =+与椭圆2213x y +=相交于不同的两点,P Q . (1)求实数k 的取值范围;(2)若OP OQ ⊥,其中O 为坐标原点,求实数k 的值.18.已知圆22:4x y Γ+=,点Q 在圆Γ上,过Q 作y 轴的垂线,垂足为Q ',动点P 满足23Q Q Q P ''=u u u u r u u u r ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)斜率存在且不过()0,2B 的直线l 与曲线C 相交于M 、N 两点,BM 与BN 的斜率之积为209. ①证明:直线l 过定点; ②求BMN V 面积的最大值.19.如图1,已知圆心C 在x 轴的圆C 经过点(3,0)D 和(E .过原点且不与x 铀重合的直线l 与圆C 交于A 、B 两点(A 在x 轴上方).(1)求圆C 的标准方程;(2)若ABD △l 的方程;(3)将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AOD )与y 轴负半轴和x轴所确定的半平面(平面BOD)互相垂宜,如图2,求折叠后AB的范围.。
2024-2025学年重庆八中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数z 满足z(2−i)=3+4i(i 为虚数单位),则|−z |的值为( )A. 1B. 5C. 5 53D. 5 52.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是( )A. 若α//β,l ⊂α,m ⊂β,则l//mB. 若α⊥β,l ⊂α,则l ⊥βC. 若l ⊥α,α⊥β,则l//βD. 若l//α,m ⊥α,则l ⊥m3.“直线ax−(a +6)y +8=0与3x−ay +a−5=0平行”是“a =6”的( )条件.A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要4.已知两个单位向量e 1,e 2的夹角为120°,则(e 1+2e 2)⋅(e 2−e 1)=( )A. 32B. 3C. 52D. 55.圆x 2+y 2+2mx +4my +6=0关于直线mx +y +3=0对称,则实数m =( )A. 1B. −3C. 1或−3D. −1或36.直线l :x + 3y− 3=0与圆C :(x +2)2+(y−1)2=2交于A ,B 两点,则直线AC 与直线BC 的倾斜角之和为( )A. 120°B. 145°C. 165°D. 210°7.已知tan2θ=43,θ∈(0,π4),若mcos(π4−θ)=cos(π4+θ),则实数m 的值为( )A. −13B. −12C. 13D. 128.已知圆C :(x−2)2+(y +1)2=5及直线l :(m +2)x +(m−1)y−m−8=0,下列说法正确的是( )A. 圆C 被x 轴截得的弦长为2B. 直线l 过定点(3,2)C. 直线l 被圆C 截得的弦长存在最大值,此时直线l 的方程为x +y−1=0D. 直线l 被圆C 截得的弦长存在最小值,此时直线l 的方程为x−y−5=0二、多选题:本题共3小题,共18分。
2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体2. 棱长为的正四面体的表面积为( )1B. C. D. 3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π35. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 11291409112314037. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AA P 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m⊥m αβ= l α∥l m∥10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF 的最小值为11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN 三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15.如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 16.如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.17.我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体【正确答案】B【分析】根据图形和棱锥的定义及结构特征,即可得出结论.【详解】三棱台中,沿平面截去三棱锥,A B C ABC '''-A BC 'A ABC '-剩余的部分是以为顶点,四边形为底面的四棱锥.A 'BCCB ''A BCC B '''-故选:B2. 棱长为的正四面体的表面积为( )1B. C. D. 【正确答案】A【分析】利用三角形的面积公式可得出正四面体的表面积.【详解】棱长为的正四面体的表面积为.1221141sin 604122S =⨯⨯⨯=⨯⨯= 故选:A.3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 【正确答案】C【分析】由正四棱台的结构特征,侧棱的延长线交于同一点,的延长线必过此点,,HE GF 可判断选项中的线线位置关系.【详解】延长,1111,,,AA BB CC DD 由正四棱台的性质可得侧棱的延长线交于同一点,设该交点为.1111,,,AA BB CC DD P分别为棱的中点,,,,E F G H 1111,,,A D B C BC AD 延长,则的延长线必过点,,HE GF ,HE GF P 则直线与直线相交于点;与直线相交于点;与直线相交于点HE GF P 1BB P 1CC P;与直线是异面直线.BF 故选:C.4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π3【正确答案】D【分析】先利用圆锥的侧面积公式求出母线长,进而求出高,再利用圆锥的体积公式求解.【详解】设圆锥的母线长为,高为,半径为, l h r 则且,故2ππS r ==底=π3πS r l ⨯⨯=侧1,3r l ==,h ∴===圆锥的体积为.∴21π13⨯⨯⨯=故选:D .5. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )【正确答案】D【分析】连接,,根据异面直线所成角的定义,转化为求(或其补角),1CD 1D E1D CE ∠然后在中用余弦定理即可解得.1D CE 【详解】连接,,如图:1CD 1D E因为为正方体可得,所以(或其补角)是异面直线1111ABCD A B C D -11//CDBA 1D CE ∠与 所成角,1BA CE 设正方体的棱长为,,a1CD===,1,CE D E ======在中,,1D CE 2221111cos 2CD CE DE D CE CD CE +-∠=⋅⋅==所以异面直线与 .1BA CE故选:D.6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 1129140911231403【正确答案】A【分析】作出截面,过点作,结合等腰梯形的性质得到高,再计算体积即可.1A 1A E AC ⊥【详解】过作出截面如图所示,过点作,垂足为,11,AC A C 1A 1A E AC ⊥E 易知为正四棱台的高,1A E 1111ABCD A B C D - 因为,1124,ABA B ==所以由勾股定理得,11AC A C==又,11CC AA ==则在等腰梯形中,,11ACCA AE =所以,143A E ===所以所求体积为.11111114112((1643339ABCD A B C D V S S A E =⨯++⋅=⨯++⨯=故选.A7. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺【正确答案】C【分析】根据题意知,圆柱的侧面展开图是矩形,且矩形的长为(尺),高为尺,则葛2120藤的最少长度为矩形的对角线长,利用勾股定理可求得结果.【详解】根据题意知,圆柱的侧面展开图是矩形,如下图所示,矩形的高(即圆木长)为尺,矩形的底边长为(尺),207321⨯=(尺).29=故选:C.8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AAP 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ【正确答案】C【分析】取的中点,的中点为,连接,可得四边形11A B H 1B B G 11,,,,GH C H C G EG HF 是平行四边形,可得∥,同理可得∥.可得面面平行,进而得出P 点11EGC D 1C G 1D E 1C H CF 的轨迹.【详解】如图所示,取的中点,的中点为,连接,11A B H 1B B G 11,,,,GH C H C G EG HF则∥,,且∥,,11A B EG 11A B EG =11A B 11C D 1111A B C D =可得∥,且,可知四边形是平行四边形,则∥,EG 11C D 11EG C D =11EGC D 1C G 1D E 且平面,平面,可得∥平面,1C G ⊄1CD EF 1D E ⊄1CD EF 1C G 1CD EF 同理可得:∥平面,1C H 1CD EF 且,平面,可知平面∥平面,111C H C G C = 11,C H C G ⊂1C GH 1C GH 1CD EF 又因为P 点是正方形内的动点,平面,11ABB A 1C P ∥1CD EF 所以点在线段上,M GH由题意可知:,可得,1111,22GH A B EF A B ==GH EF ==所以P 故选:C.二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m ⊥m αβ= l α∥l m∥【正确答案】BC【分析】根据空间中垂直关系的转化可判断ABC 的正误,根据线面平行定义可判断D 的正误.【详解】对于A ,若,,则或,故A 错误;αβ⊥l β⊥l α∥l α⊂对于B ,若,,则,而,故,故B 正确;m β⊥l m ∥l β⊥l α⊂αβ⊥对于C ,若,,则,而,故,故C 正确;αβ∥m α⊥m β⊥l β⊂l m ⊥对于D ,若,,则或异面,故D 错误,m αβ= l α∥l m ∥,l m 故选:BC10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF的最小值为【正确答案】ABD【分析】由棱柱的概述判断A ;由线面平行判定定理判断B ;计算可判断C ;利用基EFGH S 本不等式可判断D.【详解】由棱柱的定义知,选项A 正确;对于选项B ,由于,,所以,且不在水面所在平面11A D BC ∥BC FG ∥11A D FG ∥11A D 内,所以棱与水面所在平面平行,选项B 正确;11A D 对于选项C ,在图(1)中,,在图(2)中,4EFGH S FG EF BC AB =⋅=⋅=,选项C 错误;4EFGH S FG EF AB BC =⋅>⋅=对于选项D ,,所以.12212V BE BF BC =⨯⨯=⋅⋅⋅△4BE BF ⋅=,当且仅当时,等号成立,22228EF BE BF BE BF =+≥⋅=2BE BF ==所以EF 的最小值为,选项D正确.故选:ABD .11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN【正确答案】BD【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】对于A ,假设A 对,即平面,于是,BF ⊥EAB BF AB ⊥,但六边形为正六边形,,矛盾,90ABF ∠=︒ABFPQH 120ABF ∠=︒所以A 错误;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为,3112028111323-⋅⋅⋅⋅⋅=所以B 对;对于C ,取正方形对角线交点,ACPM O即为该二十四等边体外接球的球心,其半径为,其表面积为,所以C 错误;R =24π8πR =对于D ,因为在平面内射影为,PN EBFN NS 所以与平面所成角即为,PN EBFN PNS ∠其正弦值为,所以D 对.PS PN==故选:BD .三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.【正确答案】2【分析】画出原图形可得答案.【详解】由直观图画出原图,如图,可得是等腰三角形,且,ABC V 2,2BC OA ==所以三角形的面积.ABC 12222S =⨯⨯=故答案为:2.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π【正确答案】29π【分析】先利用侧面积求出圆柱的高,再求出球的半径可得表面积.【详解】设圆柱的高为,其外接球的半径为,h R 由圆柱的底面半径为1,侧面积为,得,解得,10π2π10πh =5h =由圆柱和球的对称性可知,球心位于圆柱上下底面中心连线的中点处,因此.R ==24π29πS R ==故29π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB【正确答案】)61π+【分析】首先求出,再根据扇形面积公式求出圆的半径,过点作交DOC ∠C CE AB ⊥于点,过点作交于点,即可求出,将扇AB E D DF AB ⊥AB F ,,,,,CE OE AE OF BF DF 形绕直线旋转一周形成的几何体为一个半径的球中上下截去两个球缺所剩余部DOC AB R 分再挖去两个圆锥,再根据所给公式分别求出表面积.【详解】因为,所以,设圆的半径为,ππ,63AOC BOD ∠∠==π2DOC ∠=R 又,解得(负值舍去),2COD 1ππ22S R =⨯⨯=扇形2R =过点作交于点,过点作交于点,C CE AB ⊥AB ED DF AB ⊥AB F 则,ππsin1,cos 66CE OC OE OC ====所以,同理可得,2AE R OE =-=-1DF OF ==将扇形绕直线旋转一周形成的几何体为一个半径的球中,上下截去两个球COD AB 2R =缺所剩余部分再挖去两个圆锥,其中上面球缺的高,上面圆锥的底面半径,高为,12h =-11r=1h ='下面球缺的高,下面圆锥的底面半径,21h =2r =21h ='则上面球冠的表面积,(112π2π228πs Rh ==⨯⨯-=-下面球冠的表面积,球的表面积,222π2π214πs Rh ==⨯⨯=24π16πS R ==球上面圆锥的侧面积,下面圆锥的侧面积111ππ122πS rl ==⨯⨯=',222ππ2S r l ==='所以几何体的表面积.())''121116π8π4π2π61πS S S S S S =--++=---++=+球故答案为.)61π+关键点点睛:本题关键是弄清楚经过旋转之后得到的几何体是如何组成,对于表面积要合理转化.四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15. 如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 【正确答案】(1)证明见解析(2)证明见解析【分析】(1)证明出,得到四点共面;//GH BC (2)先得到,,证明出线面平行,面面平行.1//A E BG //GH EF 【小问1详解】∵,分别是,的中点,G H 11A B 11A C ∴是的中位线,∴,GH 111A B C △11//GH B C又在三棱柱中,,∴,111ABC A B C -11//B C BC //GH BC ∴,,,四点共面.B C H G 【小问2详解】∵在三棱柱中,,,111ABC A B C -11//A B AB 11A B AB =∴,,1//A G EB 1111122A G A B AB EB ===∴四边形是平行四边形,∴,1A EBG 1//A E BG ∵平面,平面,∴平面.1A E ⊂1A EF BG ⊂/1A EF //BG 1A EF 又,是,的中点,所以,又.E F AB AC //EF BC //GH BC 所以,//GH EF ∵平面,平面,∴平面.EF ⊂1A EF GH ⊂/1A EF //GH 1A EF 又,平面,BG GH G = ,BG GH ⊂BCHG 所以平面平面.//BCHG 1A EF 16. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.【正确答案】(1)23(2)证明见解析 (3)证明见解析【分析】(1)先得到,根据Q 为PB 的中点,故1433P AMB AMB V S PA -=⋅= ;1223Q ABM P AMB V V --==(2)由线线垂直,得到线面垂直,即BM ⊥平面PAM .,故BM ⊥AN ,又AN ⊥PM ,从而得到线面垂直;(3)由(1)知AN ⊥平面PBM ,故AN ⊥PB ,又AQ ⊥PB ,故PB ⊥平面ANQ ,得到答案.【小问1详解】因为AB 为⊙O 的直径,所以⊥,AM BM 又,故,2AM BM ==122AMB S AM BM =⋅= 又PA 垂直于⊙O 所在的平面,,2PA =故,11422333P AMB AMB V S PA -=⋅=⨯⨯= 因为Q 为PB 的中点,所以.11422233Q ABM P AMB V V --==⨯=【小问2详解】∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,BM 平面ABM ,⊂∴PA ⊥BM .又∵,PA ,AM 平面PAM ,PA AM A = ⊂∴BM ⊥平面PAM .又AN 平面PAM ,∴BM ⊥AN .⊂又AN ⊥PM ,且,BM ,PM 平面PBM ,BM PM M = ⊂∴AN ⊥平面PBM .【小问3详解】由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,AN ,AQ ⊂平面ANQ ,∴PB ⊥平面ANQ .又NQ 平面ANQ ,⊂∴PB ⊥NQ .17. 我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD ⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 【正确答案】(1)证明见解析;(2)①证明见解析;②平行,证明见解析.【分析】(1)利用线面垂直的性质及判定定理即可求解;(2)①利用三角形的中位线定理及线面平行的判定定理即可求解;②利用①的结论及线面平行的性质定理即可求解.【小问1详解】∵,BC CD ⊥∴为直角三角形,BCD △∵平面,且平面,平面,平面,AB ⊥BCD BD ⊂BCD ⊂BC BCD CD ⊂BCD∴,,,AB BC ⊥AB BD ⊥AB CD ⊥∴和为直角三角形,ABC V ABD △∵,平面,平面,BC AB B ⋂=BC ⊂ABC AB ⊂ABC ∴平面,CD ⊥ABC 又∵平面,AC ⊂ABC ∴,CD AD ⊥∴为直角三角形,ACD ∴三棱锥为鳖曘.A BCD -【小问2详解】①连接,∵点分别为的中点,CE ,P Q ,BC BE ∴,//PQ CE 且平面,平面,PQ ⊄ACD CE ⊂ACD 所以直线平面,//PQ ACD ②平行,证明:平面,平面,平面平面=,//PQ ACD PQ ⊂DPQ DPQ ⋂ACD l 所以.//PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.【正确答案】(1)即为要画的线,理由见解析;,ED EB (2(3【分析】(1)要使截面与平行,考虑构造线线平行,取的中点,取的对SA S C E ABCD 称中心,连接,证明即得截面;O OE //SA OE BDE (2)分别计算的三边,再利用三角形面积公式计算即得;BDE (3)利用等体积求出点到平面的距离,再由线面所成角的定义即可求得.C BDE 【小问1详解】如图,取的中点,连接,则即为要画的线.S C E ,,ED EB ,ED EB理由如下:连接与交于点,连接.BD AC O OE 因四边形ABCD 为平行四边形,则点为的中点,故,O AC //SA OE 又因平面,平面,故有平面;SA ⊄BDE OE ⊂BDE SA ∥BDE 【小问2详解】如图中,过点作于点,连接,E EF DC ⊥FBF 因平面,平面,则,SD ⊥ABCD CD ⊂ABCD SD CD ⊥故,平面,,//EF SD ⊥EF ABCD 112EF SD ==12DE SC ===因,则,12,60,22CFDC DCB BC ==∠== 2BF =因平面,则,故,BF ⊂ABCD EF FB ⊥BE ==又由余弦定理,,故得.22224224cos6012BD =+-⨯⨯=BD =又,O 为BD 中点,则,DE DB =OE BD ⊥于是截面的面积为;12BDE S =⨯= 【小问3详解】过点作平面,交平面于点,连接,C CH ⊥BDE BDE H EH则即直线与截面所成的角.CEH ∠S C BDE 由可得,,E BCD C BED V V --=1133BCD BED S EF S CH ⨯=⨯即得:,则BCD BED S EF CH S ⨯===sin CH CEH EC ∠===即直线SC 与平面BDE 思路点睛:本题主要考查运用线面平行的判定方法解决实际问题和线面所成角的求法,属于较难题.解题的思路在于充分利用平行四边形对角线性质、等腰三角形三线合一,三角形中位线性质等方法寻找线线平行;对于线面所成角问题,除了定义法作图求解外,对于不易找到点在平面的射影时,可考虑运用等体积转化求解.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.【正确答案】(1)为等边三角形,理由见解析ABC V (2(3)证明见解析【分析】(1)根据线面垂直的性质可得,,即可根据曲率的定义求解,1AA AC ⊥1AA AB ⊥(2)利用等体积法,结合锥体体积公式即可求解,(3)根据则多面体的棱数,顶点数,以及内角之和,即可根据曲率的定义求解.【小问1详解】因为在直三棱柱中,111ABC A B C -平面,平面,1AA ⊥ABC ,AC AB ⊂ABC 所以,,1AA AC ⊥1AA AB ⊥所以点A 的曲率为,得,π2ππ2232BAC -⨯-∠=π3BAC ∠=因为,所以为等边三角形.AB AC =ABC V【小问2详解】取中点D ,连接、,BC AD AM 因为D 为的中点,所以,BC AD BC ⊥因为平面,平面,所以,1BB ⊥ABC AD ⊂ABC 1BB AD ⊥因为,平面,所以平面;1BB BC B = 1,AA AB ⊂11ABB A AD ⊥11BB C C 所以是三棱锥的高.AD 1A BB M -设点到平面的距离为,则有,即.B 1AB M h 11B AB M A BB M V V --=11AB M BB M S h S AD =⋅在中有,同理计算得,11Rt AA B△1AB ==1AM B M BM ===.AD =所以,,112AB M S =⨯=114242BB M S =⨯⨯=所以.h ==【小问3详解】证明:设多面体有M 个面,给组成多面体的多边形编号,分别为号,1,2,,M ⋅⋅⋅设第号多边形有条边,i ()1i M ≤≤i L 则多面体共有条棱,122ML L L L ++⋅⋅⋅+=由题意,多面体共有个顶点,12222ML L L D M L M ++⋅⋅⋅+=-+=-+号多边形的内角之和为,i π2πi L -所以所有多边形的内角之和为,()12π2πM L L L M ++⋅⋅⋅+-所以多面体的总曲率为()122ππ2πM D L L L M ⎡⎤-++⋅⋅⋅+-⎣⎦.()12122π2π2π4π2M M L L L M L L L M ++⋅⋅⋅+⎛⎫⎡⎤=-+-++⋅⋅⋅+-= ⎪⎣⎦⎝⎭所以简单多面体的总曲率为.4π。
2021-2022学年河南省驻马店市第二高级中学高二上学期第一次月考(文、理)数学试题一、单选题1.已知a ,b ∈R ,且a b >,则下列各式中一定成立的是( ) A .11a b <B .33a b >C .2ab b >D .22a b >【答案】B【分析】利用特殊值判断A 、C 、D ,根据幂函数的性质判断B ; 【详解】解:因为a ,b ∈R ,且a b >, 对于A :若1a =,1b,显然11a b>,故A 错误; 对于B :因为函数3y x =在定义域R 上单调递增,所以33a b >,故B 正确; 对于C :若0b =,则20ab b ==,故C 错误; 对于D :若1a =,1b ,则22a b =,故D 错误;故选:B2…,则 )项. A .6 B .7C .9D .11【答案】D【分析】根据前几项写出数列的通项公式,由此可判断.【详解】,…,由此可归纳数列的通项为:n a,所以11n =,所以11项, 故选:D.3.若数列{an }满足:a 1=19,an +1=an -3,则数列{an }的前n 项和数值最大时,n 的值为 A .6 B .7 C .8 D .9【答案】B【分析】先判断数列{an }为等差数列,写出通项公式,若前k 项和数值最大,利用10,0,k k a a +≥⎧⎨≤⎩,解出k .【详解】∵a 1=19,an +1-an =-3,∴数列{an }是以19为首项,-3为公差的等差数列, ∴an =19+(n -1)×(-3)=22-3n ,则an 是递减数列.设{an }的前k 项和数值最大,则有10,0,k k a a +≥⎧⎨≤⎩ 即()2230,22310,k k -≥⎧⎨-+≤⎩∴193≤k ≤223, ∵k ∈N *,∴k =7. ∴满足条件的n 的值为7. 故选:B【点睛】求等差数列前n 项的最大(小)的方法: (1)由2122n d d S n a n ⎛⎫=+- ⎪⎝⎭用二次函数的对称轴求得最值及取得最值时的n 的值; (2)利用an 的符号①当a 1>0,d <0时,数列前面有若干项为正,此时所有正项的和为Sn 的最大值,其n 的值由an ≥0且an+1≤0求得;②当a 1<0,d >0时,数列前面有若干项为负,此时所有负项的和为Sn 的最小值,其n 的值由an ≤0且an+1≥0求得.4.在等差数列{}n a 中,若38137a a a ++=,2111414a a a ++=,则8a 和9a 的等比中项为( ) A.BC.D【答案】A【解析】根据等差数列的性质计算出89,a a ,再根据等比中项的定义即可求出答案 【详解】由题意得:3813837a a a a ++==,所以873a =,211149314a a a a ++==,所以9143a =.89989a a ⋅=,所以8a 和9a的等比中项为故选A.【点睛】本题主要考查了等差数列的性质(若m n p q +=+则m n p q a a a a +=+),以及等比中项,属于基础题。
高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题一、单选题(本大题共8小题)1.在空间直角坐标系中,已知点,点则( )Oxyz ()1,3,5P ()1,3,5Q --A .点和点关于轴对称B .点和点关于轴对称P Q x P Q y C .点和点关于轴对称D .点和点关于原点中心对称P Q z P Q 2.向量,若,则( )()()2,1,3,1,2,9a x b y ==- a ∥b A .B .1x y ==11,22x y ==-C .D .13,62x y ==-12,63x y =-=3.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c +-r r ra b c -+r r rC .D .a b c -++ a b c -+- 4.下列可使非零向量构成空间的一组基底的条件是( ),,a b c A .两两垂直B .,,a b c b cλ= C .D .a mb nc =+a b c ++=5.已知,则直线恒过定点( )2b a c =+0ax by c ++=A .B .(1,2)-(1,2)C .D .(1,2)-(1,2)--6.已知:,:,则两圆的位1C 2222416160x y x y +++-=2C 22228840x y x y ++--=置关系为( )A .相切B .外离C .相交D .内含7.已知点为椭圆上任意一点,直线过的圆心且P 22:11612x y C +=l 22:430M x y x +-+= 与交于两点,则的取值范围是( )M ,A B PA PB ⋅A .B .C .D .[]3,35[]2,34[]2,36[]4,368.已知圆和圆交于两点,点在圆221:2470C x y x y +---=222:(3)(1)12C x y +++=P 上运动,点在圆上运动,则下列说法正确的是( )1C Q 2C A .圆和圆关于直线对称1C 2C 8650x y +-=B .圆和圆的公共弦长为1C 2CC .的取值范围为PQ0,5⎡+⎣D .若为直线上的动点,则的最小值为M 80-+=x y PM MQ+-二、多选题(本大题共3小题)9.已知向量,,则下列正确的是( )()1,2,0a =-()2,4,0b =-A .B .//a ba b⊥ C .D .在方向上的投影向量为2b a = a b ()1,2,0-10.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .B .点到直线的距离是122CQ AB AD AA =--+1C CQ C .D .异面直线与所成角的正切值为43CQ = CQ BD 11.已知实数满足方程,则下列说法正确的是( ),x y 22410x y x +-+=A .的最大值为B .的最大值为y x -2-22x y +7+C .的最大值为D .的最小值为y x x y+2三、填空题(本大题共3小题)12.O 为空间任意一点,若,若ABCP 四点共面,则3148OP OA OB tOC=++ t =.13.已知点和点,是动点,且直线与的斜率之积等于,则()2,0A -()2,0B P AP BP 34-动点的轨迹方程为.P 14.已知点为圆上位于第一象限内的点,过点作圆P 221:(5)4C x y -+=P 的两条切线,切点分别为,直线222:2C x y ax +-220(25)a a a +-+=<<,PM PN M N 、分别交轴于两点,则 , .,PM PN x (1,0),(4,0)A B ||||PA PB =||MN =四、解答题(本大题共5小题)15.分别求满足下列各条件的椭圆的标准方程.(1)已知椭圆的离心率为,短轴长为23e =(2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.C 2212x y +=31,2M ⎛⎫⎪⎝⎭C 16.已知圆心为的圆经过点,且圆心在直线上.C ()()1,4,3,6A B C 340x y -=(1)求圆的方程;C (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.l ()1,1l C l 17.如图,四边形与四边形均为等腰梯形,ABCD ADEF,,,,,平面,//BC AD //EF AD 4=AD AB =2BC EF ==AF =FB ⊥ABCD 为上一点,且,连接、、M AD FM AD ⊥BD BE BM(1)证明:平面;⊥BC BFM (2)求平面与平面的夹角的余弦值.ABF DBE18.已知圆与圆内切.()222:0O x y r r +=>22:220E x y x y +--=(1)求的值.r (2)直线与圆交于两点,若,求的值;:1l y kx =+O ,M N 7OM ON ⋅=-k (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若E O AB CD ,求实数的最大值.AB CDλ=λ19.已知两个非零向量,,在空间任取一点,作,,则叫a bO OA a = OB b = AOB ∠做向量,的夹角,记作.定义与的“向量积”为:是一个向量,它与向a b ,a ba b a b ⨯ 量,都垂直,它的模.如图,在四棱锥中,底面a b sin ,a b a b a b ⨯=⋅ P ABCD -为矩形,底面,,为上一点,.ABCD PD ⊥ABCD 4DP DA ==E AD AD BP ⨯=(1)求的长;AB (2)若为的中点,求二面角的余弦值;E AD P EB A --(3)若为上一点,且满足,求.M PB AD BP EM λ⨯=λ答案1.【正确答案】B【详解】由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,P Q 所以点和点关于轴对称,P Q y 故选:B.2.【正确答案】C【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.,x y ,x y 【详解】因为,所以,由题意可得,a b ∥a b λ=()()()2,1,31,2,9,2,9x y y λλλλ=-=-所以则.2,12,39,x y λλλ=⎧⎪=-⎨⎪=⎩131632x y λ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩故选C.【思路导引】根据题目条件列出关于的方程组,解方程组即可得到答案.a∥b ,x y 3.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .4.【正确答案】A【详解】由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.,,a b c对于A ,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一,,a b c ,,a b c 组基底,故A 正确;对于B ,,则共线,由向量特性可知空间中任意两个向量是共面的,所以b c λ=,b c 与共面,故B 错误;a,b c 对于C ,由共面定理可知非零向量共面,故C 错误;,,a b c 对于D ,即,故由共面定理可知非零向量共面,故D 错误.0a b c ++= a b c =--,,a b c 故选:A.5.【正确答案】A【分析】由题意可得,可得定点坐标.(1)(2)0a x b y -++=【详解】因为,所以,2b a c =+2c b a =-由,可得,所以,0ax by c ++=(2)0ax by b a ++-=(1)(2)0a x b y -++=当时,所以对为任意实数均成立,1,2x y ==-(11)(22)0a b -+-+=,a b 故直线过定点.(1,2)-故选A.6.【正确答案】C 【详解】因为可化为22221:22416160,2880C x y x y x y x y +++-=+++-= ,则,半径,()()221425x y +++=()11,4C --15r =因为可化为,22222:228840,4420C x y x y x y x y ++--=++--= ()()222210x y ++-=则,半径()22,2C -2r =则,因为.1C =122155r r r r -=<<+=+故选:C.7.【正确答案】A【详解】,即,22:430M x y x +-+= ()2221x y -+=则圆心,半径为.(2,0)M 1椭圆方程,,22:11612x y C +=2216,12a b ==则,22216124,2c a b c =-=-==则圆心为椭圆的焦点,(2,0)M 由题意的圆的直径,且AB 2AB = 如图,连接,由题意知为中点,则,PM M AB MA MB =-可得()()()()PA PB PM MA PM MB PM MB PM MB ⋅=+⋅+=-+ .2221PM MB PM =-=- 点为椭圆上任意一点,P 22:11612x y C +=则,,min 2PM a c =-= max 6PM a c =+= 由,26PM ≤≤ 得.21PA PB PM ⋅=- []3,35∈故选:A.8.【正确答案】D【详解】对于A ,和圆,221:2470C x y x y +---=222:(3)(1)12C x y +++=圆心和半径分别是,()()12121,2,3,1,C C R R --==则两圆心中点为,11,2⎛⎫- ⎪⎝⎭若圆和圆关于直线对称,则直线是的中垂线,1C 2C 8650x y +-=12C C 但两圆心中点不在直线上,故A 错误;11,2⎛⎫- ⎪⎝⎭8650x y +-=对于B ,到直线的距离,1C 8650x y ++=81255102d ++==故公共弦长为,B错误;=对于C ,圆心距为,当点和重合时,的值最小,5=P QPQ当四点共线时,的值最大为12,,,P Q C CPQ 5+故的取值范围为,C 错误;PQ0,5⎡+⎣对于D ,如图,设关于直线对称点为,1C 80-+=x y (),A m n则解得即关于直线对称点为,21,11280,22n mm n -⎧=-⎪⎪-⎨++⎪-+=⎪⎩6,9,m n =-⎧⎨=⎩1C 80-+=x y ()6,9A -连接交直线于点,此时最小,2AC M PM MQ +122PM MQ MC MC C A +≥+-=-==即的最小值为,D 正确.PM MQ+故选:D.9.【正确答案】ACD【详解】ABC 选项,由题意得,故且,AC 正确,B 错误;2b a= //a b2b a= D 选项,在,Da b ()01,2,=-正确.故选:ACD10.【正确答案】ABC 【详解】依题意得,12CQ CB BQ AD BA =+=-+()11222AD AA AB AB AD AA =-+-=--+ 故A 正确;如图,以为坐标原点,建立空间直角坐标系,1A 111(0,1,0),(1,1,0),(1,0,0),(0,1,1),(1,1,1),(1,1,1),B C D Q C E -------,(1,1,1),(0,1,1),(1,0,1)G B D -----对于BC ,,1(1,2,1),(1,2,2)QC CQ =--=-所以,设,3CQ==173QC CQ m CQ ⋅==- 则点到直线的距离BC 正确;1C CQd ==对于D ,因为,(1,2,2),(1,1,0)CQ BD ---==所以cos ,CQ BD 〈〉==tan ,CQ BD 〈〉= 所以异面直线与所成角的正切值为D 错误.CQ BD 故选:ABC .11.【正确答案】ABD【详解】根据题意,方程,即,22410x y x +-+=22(2)3x y -+=表示圆心为,半径为(2,0)对于A ,设,即,y x z -=0x y z -+=直线与圆有公共点,0x y z -+=22(2)3x y -+=所以≤22z ≤≤则的最大值为,故A 正确;z y x =-2-对于B ,设,其几何意义为圆上的点到原点的距离,t =22(2)3x y -+=所以的最大值为,t 2故的最大值为B 正确;22x y +22(27t ==+对于C ,设,则,直线与圆有公共点,yk x =0kx y -=0kx y -=22(2)3x y -+=则,解得的最大值为C 错误;≤k ≤≤yx 对于D ,设,作出图象为正方形,作出圆,如图,m x y=+22(2)3x y -+=由图象可知,正方形与圆有公共点A 时,有最小值m 2即的最小值为,故D 正确;x y+2故选:ABD12.【正确答案】/0.12518【详解】空间向量共面的基本定理的推论:,且、、不共OP xOA yOB zOC =++ A B C 线,若、、、四点共面,则,A B C P 1x y z ++=因为为空间任意一点,若,且、、、四点共面,O 3148OP OA OB tOC=++ A B C P所以,,解得.31148t ++=18t =故答案为.1813.【正确答案】221(2)43x y x +=≠±【详解】设动点的坐标为,又,,P (,)x y ()2,0A -()2,0B 所以的斜率,的斜率,AP (2)2AP y k x x =≠-+BP (2)2BP yk x x =≠-由题意可得,3(2)224y y x x x ⨯=-≠±+-化简,得点的轨迹方程为.P 221(2)43x y x +=≠±故221(2)43x y x +=≠±14.【正确答案】 2,【详解】圆的标准方程为,圆心,2C 22()2(2)x a y a a -+=->()2,0C a 则为的角平分线,所以.2PC APB ∠22AC PA BC PB=设,则,()00,P x y ()22054x y -+=所以,则,2PAPB===222AC BC =即,解得,则,()124a a -=-3a =222:(3)1C x y -+=所以点与重合,N ()4,0B 此时,可得,221,30C M MAC =∠=52M ⎛ ⎝.故;215.【正确答案】(1)或;22114480x y +=22114480y x +=(2).22143x y +=【详解】(1)由题得,222212328c a a b b a b c c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=+=⎩⎪⎪⎩所以椭圆的标准方程为或.22114480x y +=22114480y x +=(2)椭圆满足,故该椭圆焦点坐标为,2212x y +=1c ==()1,0±因为椭圆与有相同的焦点,且经过点,C 2212x y +=31,2M ⎛⎫ ⎪⎝⎭所以可设椭圆方程为,且,解得,C 22221x y a b +=22222231211ab a b ⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪=+⎩4241740a a -+=故,解得(舍去)或,故.()()224140aa --=214a =24a =2213b a =-=所以椭圆的标准方程为.C 22143x y +=16.【正确答案】(1)()()224310x y -+-=(2)或10x -=512170x y +-=【详解】(1)由题意,则的中点为,且,()()1,4,3,6A B AB (2,5)64131AB k -==-故线段中垂线的斜率为,AB 1-则中垂线的方程为,即,5(2)y x -=--70x y +-=联立,解得,即圆心,34070x y x y -=⎧⎨+-=⎩43x y =⎧⎨=⎩()4,3C 则半径r CA ===故圆的方程为.C ()()224310x y -+-=(2)当直线斜率不存在时,直线的方程为,l 1x =圆心到直线的距离为,由半径,(4,3)C 3r =则直线截圆所得的弦长,满足题意;l C 2=当直线斜率存在时,设直线方程为,l l 1(x 1)y k -=-化为一般式得,10kx y k -+-=由直线截圆所得的弦长,半径.l C 2r =1则圆心到直线的距离,又圆心,3d ==(4,3)由点到直线的距离公式得,3d 解得,故直线方程为,512k =-l 51(1)12y x -=--化为一般式方程为.512170x y +-=综上所述,直线的方程为或.l 10x -=512170x y +-=17.【正确答案】(1)证明见详解;【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;(2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,EN AD ⊥N 利用勾股定理,因此可以以,,所在的直线分别为轴、轴、轴建立空BM BC BF x y z 间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)因为平面,又平面,FB ⊥ABCD AD ⊂ABCD 所以.又,且,FB AD ⊥FM AD ⊥FB FM F ⋂=所以平面.因为,所以平面.AD ⊥BFM //BC AD ⊥BC BFM (2)作,垂足为.则.又,EN AD ⊥N //FM EN //EF AD 所以四边形是平行四边形,又,FMNE EN AD ⊥所以四边形是矩形,又四边形为等腰梯形,且,,FMNE ADEF 4=AD 2EF =所以.1AM =由(1)知平面,所以.又,AD ⊥BFM BM AD⊥AB =所以.在中,1BM =Rt AFMFM ==在中,.Rt FMB 3FB ==所以由上可知,能以,,所在的直线分别为轴、轴、轴建立如图所示空间BM BC BF x y z 直角坐标系.则,,,,,所以,,(1,1,0)A --(0,0,0)B (0,0,3)F (1,3,0)D -(0,2,3)E (1,1,0)AB =,,,设平面的法向量为,(0,0,3)BF = (1,3,0)BD =- (0,2,3)BE =ABF ()111,,m x y z = 由,得可取.00m AB m BF ⎧⋅=⎪⎨⋅=⎪⎩ 1110,0,x y z +=⎧⎨=⎩(1,1,0)m =- 设平面的法向量为,BDE ()222,,n x y z =由,得,可取.00n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 222230,230,x y y z -+=⎧⎨-+=⎩(9,3,2)n = 因此,.cos ,m n m n m n ⋅===依题意可知,平面与平面的夹角的余弦值为ABFDBE 18.【正确答案】(1)r =(2);1k =±(3)max λ=【详解】(1)由题意得,,O (0,0)()()2222220112x y x y x y +--=⇒-+-=故圆心,圆E 的半径为()1,1E 因为,故在圆E 上,()()2201012-+-=O (0,0)所以圆O 的半径,且r >OE r ==r =(2)由(1)知,联立,22:8O x y +=()2222812701x y k x kx y kx ⎧+=⇒++-=⎨=+⎩设,则恒成立,()()1122,,,M x y N x y ()22Δ42810k k =++>且,12122227,11k x x x x k k +=-=-++所以,()2222121212222721811111k k k y y k x x k x x k k k -=+++=--+=+++所以,解得.221212222718681711O k k x x y O y k k k M N ⋅=---+=-+==+++-1k =±(3)如图,因为直线和直线倾斜角互补,AB CD所以当直线斜率不存在时,此时直线的斜率也不存在,AB CD 此时,,AB CD=1AB CDλ==当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,AB CD 当直线斜率存在且不为0时,设直线 即,AB ():11AB y k x -=-10kx y k --+=圆心O 到直线的距离为AB d故AB ===由直线方程得直线的方程为即,AB CD ()11y k x -=--10kx y k +--=同理得CD =则,AB CD λ====当,,0k>AB CDλ====因为对勾函数在上单调递减,在上单调递增,()1f x x x =+(0,1)(1,+∞)所以时,,0x >()())[)1,2,f x f ∞∞⎡∈+=+⎣所以时,故,0k >[)17212,k k ∞⎛⎫+-∈+ ⎪⎝⎭4411,1372k k ⎛⎤+∈ ⎥⎛⎫⎝⎦+- ⎪⎝⎭所以,λ⎛= ⎝当,0k <AB CDλ====由上知时,故,0k <()[)17216,k k ∞⎡⎤⎛⎫-+-+∈+ ⎪⎢⎥⎝⎭⎣⎦()431,14172k k ⎡⎫-∈⎪⎢⎡⎤⎛⎫⎣⎭-+-+ ⎪⎢⎥⎝⎭⎣⎦所以.λ⎫=⎪⎪⎭综上,max λ=19.【正确答案】(1)2(2)13-(3)10【分析】(1)首先说明为直线与所成的角,即,设PBC ∠AD PB ,AD BP PBC=∠,根据所给定义得到方程,解得即可;()0AB x x =>(2)在平面内过点作交的延长线于点,连接,为二ABCD D DF BE ⊥BE F PF PFD ∠面角的平面角,由锐角三角函数求出,设二面角的平面P EB D --cos PFD ∠P EB A --角为,则,利用诱导公式计算可得;θπPFD θ=-∠(3)依题意可得平面,在平面内过点作,垂足为,即EM ⊥PBC PDC D DN PC ⊥N 可证明平面,在平面内过点作交于点,在上取点DN ⊥PBC PBC N //MN BC PB M DA,使得,连接,即可得到四边形为平行四边形,求出,即E DE MN =EM DEMN DN可得解.【详解】(1)因为底面为矩形,底面,ABCD PD ⊥ABCD 所以,,又底面,所以,//AD BC BC DC ⊥BC ⊂ABCD PD BC ⊥又,平面,所以平面,PD DC D = ,PD DC ⊂PDC BC ⊥PDC 又平面,所以,PC ⊂PDC BC PC ⊥所以为直线与所成的角,即,PBC ∠AD PB ,AD BP PBC=∠设,则,()0AB x x =>PC ==PB ==在中Rt PBC s n i PCPBC PB ∠==又,解得(负值已舍去),AD BP ⨯==2x =所以;2AB =(2)在平面内过点作交的延长线于点,连接,ABCD D DF BE ⊥BE F PF 因为底面,底面,所以,又,PD ⊥ABCD BF ⊂ABCD PD BF ⊥DF PD D = 平面,所以平面,又平面,所以,,DF PD ⊂PDF BF ⊥PDF PF ⊂PDF BF PF ⊥所以为二面角的平面角,PFD ∠P EB D --因为为的中点,E AD所以π2sin4DF ==PF ==所以,1cos 3DF PFD PF ∠===设二面角的平面角为,则,P EB A --θπPFD θ=-∠所以,()1cos cos πcos 3PFD PFD θ=-∠=-∠=-即二面角的余弦值为;P EB A --13-(3)依题意,,又,()AD BP AD⨯⊥ ()AD BP BP⨯⊥ AD BP EM λ⨯= 所以,,又,所以,EM AD ⊥EM BP ⊥//AD BC EM BC ⊥又,平面,所以平面,PB BC B = ,PB BC ⊂PBC EM ⊥PBC 在平面内过点作,垂足为,PDC D DN PC ⊥N 由平面,平面,所以,BC ⊥PDC DN ⊂PDC BC DN ⊥又,平面,所以平面,PC BC C = ,PC BC ⊂PBC DN ⊥PBC 在平面内过点作交于点,在上取点,使得,连接PBC N //MN BC PB M DA E DE MN =,EM 所以且,所以四边形为平行四边形,//DE MN DE MN =DEMN 所以,又,即EM DN =DN ==EM=所以.10AD BP EMλ⨯===【关键点拨】本题关键是理解并应用所给定义,第三问关键是转化为求.DN。
2022-2023学年陕西省榆林中学高二上学期第一次月考数学(理)试题一、单选题1.设命题2:,21p x Z x x ∃∈≥+,则p 的否定为( ) A .2,21x Z x x ∀∉<+ B .2,21x Z x x ∀∈<+ C .2,21x Z x x ∃∉<+ D .2,2x Z x x ∃∈<【答案】B【分析】由特称命题的否定可直接得到结果.【详解】命题2:,21p x Z x x ∃∈≥+,则p 的否定为:2,21x Z x x ∀∈<+. 故选:B【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.2.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( )A .23B .09C .02D .17【答案】C【分析】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,如果在01和33之间就取出来,如果不在该区间,就不取,以此类推得到选出来的第6个红色球的编号.【详解】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02. 故答案为C.【点睛】本题主要考查随机数表,意在考查学生对该知识的掌握水平和分析推理能力. 3.若样本数据122018,,,x x x 的标准差为3,则数据12201841,41,,41x x x ---的方差为( )A .11B .12C .143D .144【答案】D【分析】根据数据方差公式()()2D aX b a D X +=求解即可.【详解】因为样本数据122018,,,x x x 的标准差为3,所以方差为9,所以数据12201841,41,,41---x x x 的方差为249144⨯=.故选:D.4.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:根据表中的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆy =6.5x +17.5,则表中m 的值为( )A .45 B .50 C .55 D .70【答案】D【分析】由表中数据求出平均数,根据回归直线经过样本中心点,代入求解即可. 【详解】由表可知,2456855x ++++==,3040506018055m my +++++==.因为回归直线会经过平均数样本中心点, 所以1805m+=6.5×5+17.5,解得m =70. 故选:D .5.2022年3月21日,东方航空公司MU5735航班在广西梧州市上空失联并坠毁.专家指出:飞机坠毁原因需要找到飞机自带的两部飞行记录器(黑匣子),如果两部黑匣子都被找到,那么就能形成一个初步的事故原因认定.3月23日16时30分左右,广西武警官兵找到一个黑匣子,虽其外表遭破坏,但内部存储设备完整,研究判定为驾驶员座舱录音器.则“找到驾驶员座舱录音器”是“初步事故原因认定”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【分析】因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,根据充分与必要条件的定义即可判断出结果.【详解】因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,则“找到驾驶员座舱录音器”不能形成“初步事故原因认定”;而形成“初步事故原因认定”则表示已经“找到驾驶员座舱录音器”,故“找到驾驶员座舱录音器”是“初步事故原因认定”的必要不充分条件,故选:C.6.《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙两人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶中的两个动作,两人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲只能模仿“爬”或“扶”且乙只能模仿“扶”或“捡”的概率是A.35B.712C.14D.512【答案】C【分析】记“甲只能模仿“爬”或“扶”且乙只能模仿“扶”或“捡””为事件A.列举出全部基本事件,求出事件A包含的基本事件个数,根据古典概型的概率计算公式,求出事件A的概率.【详解】记“甲只能模仿“爬”或“扶”且乙只能模仿“扶”或“捡””为事件A.全部基本事件为:(爬,扶)、(爬,捡)、(爬,顶)、(扶,爬)、(扶,捡)、(扶,顶)、(捡,爬)、(捡,扶)、(捡,顶)、(顶,爬)、(顶,扶)、(顶,捡)共12个.事件A包含(爬,扶)、(爬,捡)、(扶,捡)共3个基本事件故事件A的概率:()1 4P A=故选:C.【点睛】本题考查古典概型,属于基础题.7.从装有2个红球和2个白球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球【答案】C【分析】根据互斥事件以及对立事件的概念以及二者之间关系,一一判断各选项,可得答案.【详解】A:“至少有1个白球”和“都是白球”,可同时发生,故它们不是互斥事件,A错误;B:“至少有1个白球”和“至少有1个红球”,因为1个白球1个红球时两种情况同时发生,故它们不是互斥事件,B 错误;C :“恰有1个白球”和“恰有2个白球”,不可能同时发生,所以它们是互斥事件; 当2个球都是红球时它们都不发生,所以它们不是对立事件,C 正确;D :“至少有1个白球”和“都是红球”,不可能同时发生,所以它们是互斥事件;由于它们必有一个发生,所以它们是对立事件,D 错误, 故选:C8.下列有关命题的叙述错误的是( )A .对于命题p: 2000,10x x x ∃∈++<R ,则 2:,10p x R x x ⌝∀∈++≥.B .命题“若2320,1x x x -+==则”的逆否命题为“若21,320x x x ≠-+≠则”.C .若p q ∧为假命题,则,p q 均为假命题.D .“2x >”是“2320x x -+>”的充分不必要条件. 【答案】C【分析】根据特称命题的否定是全称命题的知识判断A 选项是否正确,根据逆否命题的知识判断B 选项是否正确,根据含有简单逻辑联结词命题真假的知识判断C 选项是否正确,根据充分必要条件的知识判断D 选项是否正确.【详解】对于A 选项,p 为特称命题,其否定为全称命题,叙述正确.对于B 选项,逆否命题是交换条件和结论,并同时进行否定,叙述正确.对于C 选项,p q ∧为假命题,则,p q 中至少有一个假命题,故C 选项叙述错误.对于D 选项.由2320x x -+>解得1x <或2x >,故2x >是2320x x -+>的充分不必要条件.综上所述,本题选C.【点睛】本小题主要考查特称命题的否定、考查逆否命题,考查含有逻辑连接词命题真假性判断,考查充分、必要条件的判断以及考查一元二次不等式的解法等知识.全称命题和特称命题互为否定.逆否命题是交换条件和结论,并同时进行否定. p q ∧为假命题,则,p q 中至少有一个假命题. p q ∧为真,则,p q 都是真命题.9.如图, 在矩形区域ABCD 的A, C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无信号的概率是A .14π-B .12π- C .22π-D .4π 【答案】A【详解】试题分析:由图形知,无信号的区域面积212121242S ππ=⨯-⨯⨯=-,所以由几何概型知,所求事件概率22124P ππ-==-,故选A .【解析】几何概型.10.如图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为1214,,,A A A .如图2是统计茎叶图中成绩在一定范围内的考试次数的一个程序框图.那么程序框图输出的结果是( )A .7B .8C .9D .10【答案】D【分析】根据流程图可知该算法表示统计14次考试成绩中大于90的人数,结合茎叶图可得答案. 【详解】由题可知该程序框图的作用是统计14次考试中成绩大于90分的次数.根据茎叶图可得超过90分的次数为10, 故选:D.11.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A .45B .35C .25D .15【答案】B【详解】试题分析:由题意可知()222222222444a c b a c b a c b a c +=⨯∴+=∴+==- 2223523052305c ac a e e e ∴+-=∴+-=∴=【解析】椭圆性质12.已知函数()()2223,log f x x x g x x m =-+=+,若对[]12,1,4x x ∀∈有()()12f x g x >恒成立,则实数m 的取值范围为( ) A .0m < B .0m > C .1m < D .m>2【答案】A【分析】对[]12,1,4x x ∀∈有()()12f x g x >恒成立,即 min max ()()f x g x >即可解决.【详解】因为22()23(1)2=-+=-+f x x x x , 所以函数()f x 在[]1,4上是增函数, 所以当[]1,4x ∈时,min ()(1)2==f x f , 因为()2log g x x m =+在[]1,4上是增函数,所以当[]1,4x ∈时,max 2()(4)log 42g x g m m ==+=+, 因为对[]12,1,4x x ∀∈有()()12f x g x >恒成立, 所以min max ()()f x g x >,所以22m >+,解得0m <, 所以实数m 的取值范围为0m <, 故选:A二、填空题13.设,,A B C 为三个随机事件,若A 与B 互斥,B 与C 对立,且1()4P A =,()23P C =,则()P A B +=_____________.【答案】712【分析】由B 与C 对立可求出()P B ,再由A 与B 互斥,可得()()()P A B P A P B +=+求解.【详解】B 与C 对立,()()211133P B P C ∴=-=-=, A 与B 互斥,117()()()4312P A B P A P B ∴+=+=+=. 故答案为:712. 14.在平面直角坐标系中,椭圆221259x y +=左右焦点为12,F F ,直线过左焦点1F 且与椭圆交于A 、B 两点,则2ABF △的周长为__________. 【答案】20【分析】由已知11AF BF AB +=,根据椭圆的定义可求12AF AF +,12BF BF +,由此可求2ABF △的周长.【详解】设椭圆221259x y +=的长半轴为a ,则5a =, 因为点,A B 在椭圆221259x y +=上,12,F F 是椭圆221259x y+=的左右焦点, 所以12210AF AF a +==,12210BF BF a +==, 所以121220AF AF BF BF +++=,又11AF BF AB +=, 所以2220AB AF BF ++=,故2ABF △的周长为20, 故答案为:20.15.某单位有840名职工,现采用系统抽样抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[]61,240的人数为___________. 【答案】9【分析】根据已知条件先确定出分段间隔,然后计算区间[]61,240对应的总人数除以分段间隔即可得到结果.【详解】由条件可知,分段间隔为:8402042=,所以编号落入区间[]61,240的人数为:240611920-+=,故答案为:9.16.已知命题()2:lg 220p x x --<,命题:112xq -<,若p 的否定为真命题,q 为真命题,则实数x 的范围是__________.【答案】()0134,∪,⎡+⎣【分析】由命题p 可得()22lg 2200221x x x x --<⇔<--<,由此可得p 的否定为真命题时x 的范围.再得q 为真命题时x 的范围.最后可得答案.【详解】()22lg 2200221x x x x --<⇔<--<,解得(()1113,∪x ∈--+故当p 的否定为真命题时,实数x 的范围是()1113A ⎡⎤⎡=-∞--++∞⎦⎣⎣,∪∪,因q 为真,则2111122x x ⎛⎫-<⇔-< ⎪⎝⎭,解得()0,4x ∈.则x 的范围是()0,4B =,若p 的否定为真命题,q 为真命题,则实数x 的范围是 ()0134A B ⎡=+⎣∩,∪,.故答案为:()0134,∪,⎡+⎣三、解答题17.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:(1)为了调查大众评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表:人数 50 100 150 150 50 抽取人数6(2)在(1)的前提下,若A ,B 两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率. 【答案】(1)表见解析;(2)29.【分析】(1)根据分层抽样的方法即可获得答案;(2)运用树状图分别得到有得事件总数和基本事件总数,再由古典概率计算公式计算即可. 【详解】(1)由题设知,分层抽样的抽取比例为6%, ∴各组抽取的人数如下表: 组别 ABC D E人数 50 100 150 150 50 抽取人数 36993(2)记从A 组抽到的3个评委分别为1a ,2a ,3a ,其中 1a ,2a 支持1号歌手;从B 组抽到的6个评委分别为1b ,2b ,3b ,4b ,5b ,6b ,其中1b ,2b 支持1号歌手.从{}123,,a a a 和{}123456,,,,,b b b b b b 中各抽取1人的所有可能结果为:由以上树状图知共有18种可能的结果,其中2人都支持1号歌手的有11a b ,12a b ,21a b ,22a b ,共4种结果, 故所求概率42189P ==. 18.某校在高二数学竞赛初赛后,对90分及以上的成绩进行统计,其频率分布直方图如图所示,若[]130,140分数段的参赛学生人数为2.(1)求该校成绩在[]90,140分数段的参赛学生人数;(2)估计90分及以上的学生成绩的众数、中位数和平均数(结果保留整数) 【答案】(1)40;(2)众数的估计值为115分,中位数的估计值为113分,平均数的估计值113分.【分析】(1)根据频率定义和频数的定义进行求解即可;(2)根据众数、中位数、平均数的定义,结合频率分布直方图进行求解即可. 【详解】(1)[]130,140分数段的人数为2,又[]130,140分数段的频率为[]0.005100.05,90,140⨯=∴分数段的参赛学生人数为20.0540÷=.(2)[)[)[)[)90,100,100,110,110,120,120,130分数段的参赛学生人数依次为40100.0104,40100.02510,40100.04518,40100.0156,⨯⨯=⨯⨯=⨯⨯=⨯⨯=90∴分及以上的学生成绩的众数的估计值为1101201152+=分, 中位数的估计值为0.50.10.253401101130.0453--+=≈分,平均数的估计值为95410510115181256135211340⨯+⨯+⨯+⨯+⨯=分.19.(1)命题“若x ∈R ,则()2110x a x +-+恒成立”是真命题,则实数a 的取值范围;(2)设()22:411,:210p x q x a x a a -≤-+++≤.若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.【答案】(1)[1,3]-;(2)1,02⎡⎤-⎢⎥⎣⎦.【分析】(1)由题意可得0∆≤,从而可求出实数a 的取值范围;(2)先求解出两个不等式,再由p ⌝是q ⌝的必要不充分条件,可得q 是p 的必要不充分条件,然后列不等式组可求得结果.【详解】(1)因为命题“若x ∈R ,则()2110x a x +-+恒成立”是真命题,所以2(1)40a ∆=--≤,得212a -≤-≤,解得13a -≤≤,所以实数a 的取值范围[1,3]-;(2)由411x -≤,得102x ≤≤, 即1:02p x ≤≤, 由()22210x a x a a -+++≤,得()[(1)]0x a x a --+≤,解得1a x a ≤≤+,即1q a x a ≤≤+:,因为p ⌝是q ⌝的必要不充分条件,所以q 是p 的必要不充分条件, 所以0112a a <⎧⎪⎨+≥⎪⎩或0112a a ≤⎧⎪⎨+>⎪⎩,解得102a -≤≤, 所以实数a 的取值范围为1,02⎡⎤-⎢⎥⎣⎦. 20.每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:C )与网上预约出租车订单数(单位:份); )C 网上预约订单数(1)经数据分析,一天内平均气温C x 与该出租车公司网约订单数y (份)成线性相关关系,试建立y 关于x 的回归方程,并预测日平均气温为7C -时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于5C -,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.【答案】(1)9.5655,ˆ1.yx =-+232份 (2)35【分析】(1)通过表格的数据解出ˆb,求出回归方程,即可得到日平均气温为7C -时,该出租车公司的预测网约订单数(2)写出选取两天的各种等可能情况,再写出其中恰有1天网约订单数不低于210份的情况,即可得到恰有1天网约订单数不低于210份的概率.【详解】(1)由表格可求出642251001351501852101,156,55x y ++--++++==== 5521120,5780,85ii i i i x y x y x ===⋅==∑∑ 所以5152215ˆ9.55ii i ii x y x yb xx ==-⋅==--∑∑, ∴ˆˆ156(9.5)1165.5ay bx =-=--⨯=, ∴ˆ9.5165.5yx =-+ 当7x =-时,()()ˆ9.57165.5232y=-⨯-+=. ∴可预测日平均气温为7C -时该出租车公司的网约订单数约为232份.(2)记这5天中气温不高于5C -的三天分别为,,A B C ,另外两天分别记为,D E ,则在这5天中任意选取2天有,,,,,,,,,AB AC AD AE BC BD BE CD CE DE ,共10个基本事件,其中恰有1天网约订单数不低于210份的有,,,,,AD AE BD BE CD CE ,共6个基本事件,∴所求概率63105P ==, 即恰有1天网约订单数不低于20份的概率为35. 21.已知命题0:[0,2]p x ∃∈,2log (2)2x m +<;命题:q 关于x 的方程22320x x m -+=有两个相异实数根.(1)若()p q ⌝∧为真命题,求实数m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求实数m 的取值范围.【答案】(1)1()2;(2)1(])2⋃+∞. 【详解】试题分析:首先结合对数函数二次函数性质求解命题p,q 为真命题时的m 的取值范围,(1)中由()p q ⌝∧为真命题可知p 假q 真,由此解不等式可求得实数m 的取值范围;(2)中p q ∨为真命题,p q ∧为假命题可知两命题一真一假,分两种情况可分别求得m 的取值范围试题解析:令()()2log 2f x x =+,则()f x 在[0,2]上是增函数,故当[]0,2x ∈时,()f x 最小值为()01f =,故若p 为真,则121,2m m >>. ……2分24120m ∆=->即213m <时,方程22320x x m -+=有两相异实数根, ∴3333m -<<; ……4分 (1)若()p q ⌝∧为真,则实数m 满足12{3333m m ≤-<<故3132m -<≤, 即实数m 的取值范围为31,22⎛⎤- ⎥ ⎝⎦……8分 (2)若p q ∨为真命题,p q ∧为假命题,则,p q 一真一假,若p 真q 假,则实数m 满足12{3333m m m >≤-≥或即33m ≥; 若p 假q 真,则实数m 满足12{3333m m ≤-<<即3132m -<≤. 综上所述,实数m 的取值范围为313,,323⎛⎤⎡⎫-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭. ……12[来源:学& 【解析】复合命题真假的判定及函数性质22.如图,已知椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线2AF 交椭圆于另一点B .(1)若190∠=F AB ,求椭圆的离心率;(2)若椭圆的焦距为2,且222AF F B =,求椭圆的方程.【答案】(1)22;(2)22132x y +=. 【解析】(1)根据190∠=F AB 得到b c =,2a c =,可得2c e a ==;(2)设(),B x y ,根据222AF F B =得到32x =,2b y =-,代入22221x y a b+=,解得23a =,可得222312b a c =-=-=,从而可得椭圆方程.【详解】(1)若190F AB ∠=︒,则12F AF 和2AOF △为等腰直角三角形.所以有2OA OF =,即b c =.所以a,c e a = (2)由题知()0,A b ,()21,0F ,设(),B x y ,由222AF F B =,得()()1,21,b x y -=-,所以 32x =,2b y =-. 代入22221x y a b +=,得2229441b a b +=. 即291144a +=,解得23a =.所以222312b ac =-=-=, 所以椭圆方程为22132x y +=. 【点睛】本题考查了求椭圆的离心率,考查了求椭圆方程,考查了平面向量共线的坐标表示,属于中档题.。
2015-2016学年河南省驻马店市上蔡一高高二(上)第一次月考数学试卷(理科)一、填空题(每个小题5分,共60分)1.把二进制数11000转换为十进制数,该十进制数为()A.48 B.24 C.12 D.62.数列{a n}中,,则a2015=()A.2 B.﹣1 C.1 D.3.设{a n}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,则下列等式中恒成立的为()A.P+R=2Q B.Q(Q﹣P)=P(R﹣P)C.Q(Q﹣P)=R D.Q2=PR4.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=()A.4 B.C.D.不确定5.数列{a n}前n项和为S n,已知,且对任意正整数m,n,都有a m+n=a m•a n,若S n<a恒成立,则实数a的最小值为()A.B.C.D.46.某人年初用98万元购买了一条渔船,第一年各种费用支出为12万元,以后每年都增加4万元,而每年捕鱼收益为50万元.第几年他开始获利?()A.1 B.2 C.3 D.47.已知数列{a n}中,a1=1,a n+1=,则a5=()A.108 B.C.161 D.8.已知函数f(x)=,(a>0,a≠1).若数列{a n}满足a n=f(n)且a n+1>a n,n∈N*,则实数a的取值范围是()A.(7,8)B.[7,8)C.(4,8)D.(1,8)9.平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.10.直线被圆x2+y2﹣5x=0所截得的n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为a n,若公差,则n的最大取值为()A.6 B.7 C.8 D.911.设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.10012.已知函数为奇函数,g(x)=f(x)+1,若,则数列的前2015项之和为()A.2016 B.2015 C.2014 D.2013二、填空题(共4小题,每小题5分,满分20分)13.已知等差数列{a n}的前n项和为S n,若,且A,B,C三点不共线(该直线不过O点),则S11= .14.已知数列{a n}中a1=1且(n∈N),a n= .15.已知向量,,n∈N*,其中s n为数列{a n}的前n项和,若,则数列的最大项的值为.16.设m∈N+,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F17.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n,b n,c n).(1)请写出数列{a n},{b n},{c n}的通项公式,(无需证明)(2)若数列{c n}的前n项和为M n,求M10.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,a=5.(1)若A=60°,求b的值;(2)若函数f(x)=x2﹣7x+m的两零点分别为b,c,求m的值.19.数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).(1)设b n=a n+1﹣a n,证明{b n}是等差数列.(2)求(2)令c n=,求数列{c n}的前n项和S n.20.已知数列{a n}满足(1)求数列{a n}的通项公式(2)设b n=1+tana n+1•tana n+2,求数列{b n}的前n项和.21.已知各项均为正数的数列{a n}的前n项为S n,满足a2n+1=2s n+n+4,且a2﹣1,a3,a7恰为等比数列{b n}的前3项.(1)求数列{a n},{b n}的通项公式;(2)令,数列{c n}的前n项和为T n,且恒成立,求实数m的取值范围.22.已知数列{a n}是等比数列,S n为其前n项和.(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;(2)设,,b n=λa n﹣n2,若数列{b n}是单调递减数列,求实数λ的取值范围.2015-2016学年河南省驻马店市上蔡一高高二(上)第一次月考数学试卷(理科)参考答案与试题解析一、填空题(每个小题5分,共60分)1.把二进制数11000转换为十进制数,该十进制数为()A.48 B.24 C.12 D.6【考点】进位制.【专题】计算题;转化思想;分析法;算法和程序框图.【分析】把二进制数转化为十进制数,只要依次累加各位数字上的数×该数位的权重,即可得到结果.【解答】解:11000(2)=0×20+0×21+0×22+1×23+1×24=24,即11000(2)=24.故选:B.【点评】此题主要考查了二进制数与十进制数互化的方法,属于基础题.2.数列{a n}中,,则a2015=()A.2 B.﹣1 C.1 D.【考点】数列递推式.【专题】计算题;函数思想;综合法;等差数列与等比数列.【分析】通过计算出前几项的值确定周期,进而计算可得结论.【解答】解:∵,∴a2===2,a3===﹣1,a4===,∴数列{a n}是以3为周期的周期数列,又∵2015=3×671+2,∴a2015=a2=2,故选:A.【点评】本题考查数列的通项,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.3.设{a n}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,则下列等式中恒成立的为()A.P+R=2Q B.Q(Q﹣P)=P(R﹣P)C.Q(Q﹣P)=R D.Q2=PR【考点】等比数列的前n项和.【专题】计算题;方程思想;综合法;等差数列与等比数列.【分析】由等比数列的性质得:P,Q﹣P,R﹣Q也成等比数列,由此能求出结果.【解答】解:∵{a n}是任意的等比数列,它的前n项和,前2n项和与前3n项和分别为P,Q,R,∴由等比数列的性质得:P,Q﹣P,R﹣Q也成等比数列,∴(Q﹣P)2=P(R﹣Q),整理,得Q2﹣PQ+P2﹣PR=0,∴Q(Q﹣P)=P(R﹣P).故选:B.【点评】本考查恒成立的等式的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=()A.4 B.C.D.不确定【考点】正弦定理.【专题】方程思想;转化思想;解三角形.【分析】利用正弦定理与比例的性质即可得出.【解答】解:由正弦定理可得:=,∴=,∴2=,解得a=.故选:B.【点评】本题考查了正弦定理与比例的性质,考查了推理能力与计算能力,属于中档题.5.数列{a n}前n项和为S n,已知,且对任意正整数m,n,都有a m+n=a m•a n,若S n<a恒成立,则实数a的最小值为()A.B.C.D.4【考点】数列的求和.【专题】计算题.【分析】由a m+n=a m•a n,分别令m和n等于1和1或2和1,由a1求出数列的各项,发现此数列是等比数列,利用等比数列的前n项和的公式表示出S n,而S n<a恒成立即n趋于正无穷时,求出S n的极限小于等于a,求出极限列出关于a的不等式,即可得到a的最小值.【解答】解:令m=1,n=1,得到a2=a12=,同理令m=2,n=1,得到a3=a2•a1=所以此数列是首项为公比,以为公比的等比数列,则S n==∵S n<a恒成立即而=∴则a的最小值为故选A【点评】此题考查了等比数列关系的确定,掌握不等式恒成立时所满足的条件,灵活运用等比数列的前n项和的公式及会进行极限的运算,是一道综合题.6.某人年初用98万元购买了一条渔船,第一年各种费用支出为12万元,以后每年都增加4万元,而每年捕鱼收益为50万元.第几年他开始获利?()A.1 B.2 C.3 D.4【考点】函数模型的选择与应用.【专题】计算题;函数思想;转化思想;解题方法;函数的性质及应用.【分析】通过纯收入与年数n的关系f(n)=﹣2n2+40n﹣98,进而问题转化为求不等式﹣2n2+40n﹣98>0的最小正整数解,计算即得结论;【解答】解:由题意,每年的费用支出是以12为首项、4为公差的等差数列,∴纯收入与年数n的关系f(n)=50n﹣[12+16+…+(8+4n)]﹣98=﹣2n2+40n﹣98,由题设知,f(n)>0,即﹣2n2+40n﹣98>0,解得10﹣<n<10+,又∵n∈N*,∴2<n<18,即n=3,4,5, (17)故第3年开始获利;故选:C.【点评】本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.7.已知数列{a n}中,a1=1,a n+1=,则a5=()A.108 B.C.161 D.【考点】数列递推式.【专题】计算题.【分析】因为a1=1,且a n+1=,则令n=1并把a1代入求得a2,再令n=2并把a2代入求得a3,依此类推当n=4时,求出a5即可.【解答】解:因为a1=1,且a n+1=,则令n=1并把a1代入求得a2==;把n=2及a2代入求得a3==,把n=3及a3代入求得a4==,把n=4及a4代入求得a5==.故选D.【点评】考查学生会利用数列的递推式求数列各项,解题时学生要注意计算要准确.8.已知函数f(x)=,(a>0,a≠1).若数列{a n}满足a n=f(n)且a n+1>a n,n∈N*,则实数a的取值范围是()A.(7,8)B.[7,8)C.(4,8)D.(1,8)【考点】数列与向量的综合;分段函数的应用.【专题】计算题;函数的性质及应用;等差数列与等比数列.【分析】利用一次函数和指数函数的单调性,注意a6<a7,列出不等式组,即可得出.【解答】解:∵数列{a n}满足a n=f(n)且a n+1>a n,n∈N*,∴,即有,解得4<a<8.故选:C.【点评】本题考查了分段函数的应用、一次函数和指数函数的单调性,属于中档题.9.平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C .D .【考点】向量在几何中的应用. 【专题】计算题. 【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选C .【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角. 10.直线被圆x 2+y 2﹣5x=0所截得的n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差,则n 的最大取值为( )A .6B .7C .8D .9 【考点】直线与圆的位置关系.【专题】综合题;方程思想;综合法;直线与圆.【分析】先求出圆的圆心和半径,根据圆的几何性质计算出过点P (,)的最短弦长和最长弦长,即等差数列的第一项和第n 项,再根据等差数列的公差,求出n 的取值集合,即可得出结论..【解答】解:圆x 2+y 2﹣5x=0的圆心为C (,0),半径为r=.过点P (,)最短弦的弦长为a 1=2=4过点P (,)最长弦长为圆的直径长a n =5, ∴4+(n ﹣1)d=5, ∴d=,∵, ∴≤≤,∴6≤n≤8,∴n的最大取值为8.故选:C.【点评】此题重点考查了圆中求解弦的最大与最小,还考查了等差数列的任意两项间的通项公式及利用公差的范围和n的取值范围逼出n的数值.11.设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100【考点】数列的求和;三角函数的周期性及其求法.【专题】计算题;压轴题.【分析】由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断【解答】解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D【点评】本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.12.已知函数为奇函数,g(x)=f(x)+1,若,则数列的前2015项之和为()A.2016 B.2015 C.2014 D.2013【考点】函数奇偶性的性质.【专题】计算题;转化思想;函数的性质及应用.【分析】由已知可得函数g(x)=f(x)+1的图象关于点(,1)对称,即g(x)+g(1﹣x)=2,进而得到答案.【解答】解:∵函数为奇函数图象关于原点对称,∴函数f(x)的图象关于点(,0)对称,∴函数g(x)=f(x)+1的图象关于点(,1)对称,∴g(x)+g(1﹣x)=2,∵,∴数列的前2015项之和为+++…++=2015,故选:B【点评】本题考查的知识点是函数的奇偶性,函数的对称性,函数求值,根据已知得到g(x)+g(1﹣x)=2,是解答的关键.二、填空题(共4小题,每小题5分,满分20分)13.已知等差数列{a n}的前n项和为S n,若,且A,B,C三点不共线(该直线不过O点),则S11= 11 .【考点】等差数列的前n项和.【专题】计算题;方程思想;综合法;等差数列与等比数列.【分析】由已知得到a4+a8=2,由此能求出S11的值.【解答】解:∵等差数列{a n}的前n项和为S n,,且A,B,C三点不共线(该直线不过O点),∴a4+a8=2,∴S11=(a1+a11)===11.故答案为:11.【点评】本题考查数列的前11项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.已知数列{a n}中a1=1且(n∈N),a n= .【考点】数列递推式.【专题】计算题.【分析】本题考查数列的概念,由递推数列求数列的通项公式,适当的变形是完整解答本题的关键.【解答】解:根据题意,a n+1a n=a n﹣a n+1,两边同除以a n a n+1,得,于是有:,,…,,上述n﹣1个等式累加,可得,又a1=1,得,所以;故答案为.【点评】解答本题用到的累加法是求数列通项公式以及数列前n项和的重要方法15.已知向量,,n∈N*,其中s n为数列{a n}的前n项和,若,则数列的最大项的值为.【考点】数列的函数特性;平面向量数量积的运算.【专题】转化思想;点列、递归数列与数学归纳法;不等式的解法及应用.【分析】由,可得=0,可得s n=,利用递推关系可得a n.再利用基本不等式的性质即可得出.【解答】解:∵,∴=2s n﹣n(n+1)=0,∴s n=,∴当n=1时,a1=1;当n≥2时,a n=s n﹣s n﹣1=﹣=n.当n=1时也成立,∴a n=n.∴==≤=,当且仅当n=2时取等号.故答案为:.【点评】本题考查了向量垂直与数量积的关系、递推关系、基本不等式的性质,考查了推理能力与计算能力,属于中档题.16.设m∈N+,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F+F(2)+F(3)+F (4)+F(5)+F(6)+F(7)+F(8)+…+F+F(2)+F(2)+F(4)+F(4)+F(4)+F(4)+F(8)+…+F+10设S=1×2+2×22+3×23+4×24+…+9×29则2S=1×22+2×23+3×24+…+8×29+9×210∴两式相减得:﹣S=2+22+23+…+29﹣9×210==﹣8×210﹣2∴S=8×210+2∴F(1)+F(2)+…+F17.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n,b n,c n).(1)请写出数列{a n},{b n},{c n}的通项公式,(无需证明)(2)若数列{c n}的前n项和为M n,求M10.【考点】数列的求和;数列的概念及简单表示法.【专题】计算题;转化思想;综合法;点列、递归数列与数学归纳法.【分析】(1)由已知条件分别写出a n,b n,c n的前5项,总结规律,能求出数列{a n},{b n},{c n}的通项公式.(2)由,利用分组求和法能求出数列{c n}的前10项和为M10.【解答】解:(1)∵(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(a n,b n,c n),∴a1=1,a2=2,a3=3,a4=4,a5=5,…=2,,,,,…c1=3=1+2,,,,,…由此猜想:…..(2)∵,数列{c n}的前n项和为M n,∴M10=(1+2+3+...+10)+(2+22+23+ (210)==2101.…..【点评】本题考查数列的通项公式的求法,考查数列的前10项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,a=5.(1)若A=60°,求b的值;(2)若函数f(x)=x2﹣7x+m的两零点分别为b,c,求m的值.【考点】正弦定理;解三角形.【专题】函数的性质及应用;解三角形.【分析】(1)先求sinB的值,由正弦定理可得b的值.(2)由韦达定理可得:8+c=7①,8c=m②,即可解得m的值.【解答】解:(1)∵cosB=,B∈(0,π),∴sinB==,∵a=5,A=60°,∴由正弦定理可得:b===8.(2)∵函数f(x)=x2﹣7x+m的两零点分别为b,c,∴8+c=7①,8c=m②,∴由①②可解得:c=7,m=56﹣64.【点评】本题主要考查了同角三角函数关系式的应用,考查了正弦定理,韦达定理的应用,属于基本知识的考查.19.数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).(1)设b n=a n+1﹣a n,证明{b n}是等差数列.(2)求(2)令c n=,求数列{c n}的前n项和S n.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(1)由数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).变形为(a n+1﹣a n)﹣(a n ﹣a n﹣1)=2,即b n﹣b n﹣1=2,即可证明.(2)由(1)可得:b n=2n﹣1.可得a n+1﹣a n=2n﹣1,利用“累加求和”可得:a n=n2﹣2n+2.因此c n==.利用“裂项求和”即可得出.【解答】(1)证明:∵数列{a n}满足a1=1,a2=2,a n+1=2a n﹣a n﹣1+2(n≥2).∴(a n+1﹣a n)﹣(a n﹣a n﹣1)=2,即b n﹣b n﹣1=2,b1=a2﹣a1=1,∴{b n}是等差数列,首项为1,公差为2.(2)解:由(1)可得:b n=1+2(n﹣1)=2n﹣1.∴a n+1﹣a n=2n﹣1,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=[2(n﹣1)﹣1]+[2(n﹣2)﹣1]+…+(2×1﹣1)+1=﹣(n﹣1)+1=n2﹣2n+2.∴c n===.∴数列{c n}的前n项和S n=++…++==﹣.【点评】本题考查了等差数列的通项公式及其前n项和公式、“累加求和”、“裂项求和”,考查了推理能力与计算能力,属于中档题.20.已知数列{a n}满足(1)求数列{a n}的通项公式(2)设b n=1+tana n+1•tana n+2,求数列{b n}的前n项和.【考点】数列的求和;数列递推式.【专题】方程思想;转化思想;等差数列与等比数列.【分析】(1)由于数列{a n}满足,可得=2n(n+1),可得S n=,利用递推关系即可得出a n.(2),利用“裂项求和”即可得出.【解答】解:(1)∵数列{a n}满足,∴=2n(n+1),解得S n=,∴当n=1时,a1=1;当n≥2时,a n=S n﹣S n﹣1=﹣=n.∴a n=n.(2),∴,∴.【点评】本题考查了递推关系、指数幂的运算性质、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.21.已知各项均为正数的数列{a n}的前n项为S n,满足a2n+1=2s n+n+4,且a2﹣1,a3,a7恰为等比数列{b n}的前3项.(1)求数列{a n},{b n}的通项公式;(2)令,数列{c n}的前n项和为T n,且恒成立,求实数m的取值范围.【考点】数列的求和;数列递推式.【专题】计算题;作差法;定义法;点列、递归数列与数学归纳法.【分析】(1)根据条件得出a2n+1=2S n+n+4,①和a2n=2S n﹣1+n+3,②,通过两式相减得到a n+1=a n+1,即为等差数列,再求b n的通项;(2)先运用错位相减法求得c n的前n项和T n,再用作差法判断单调性,最后求m的范围.【解答】(1))∵a2n+1=2S n+n+4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①∴n≥2时,a2n=2S n﹣1+n﹣1+4,﹣﹣﹣﹣﹣﹣﹣﹣﹣②①﹣②,得:a n+12﹣a n2=2a n+1,∴a n+12=a n2+2a n+1=(a n+1)2,∵a n>0,∴a n+1=a n+1,因此,数列{a n}是公差为1的等差数列,又a2=a1+1,a22=2a1+1+4,解得a1=2或a1=﹣2(舍),∴a n=2+(n﹣1)×1=n+1.∵a2﹣1,a3,a7恰为等比数列{bn}的前3项,∴b1=2+1﹣1=2,b2=a3=3+1=4,b3=a7=7+1=8,∴q=2,∴b n=2×2n﹣1=2n,所以,a n=n+1,b n=2n;(2)根据题意,c n==,运用错位相减法得T n=2﹣,下面证明T n单调递增,T n+1﹣T n=(2﹣)﹣(2﹣)=[(2n+4)﹣(n+3)]=>0恒成立,所以,所以{T n}单调递增,所以,要使T n>恒成立,只需满足T1>即可,解得,m<2.因此,实数m的取值范围为(﹣∞,2).【点评】本题主要考查了数列通项公式和前n项和的求法,涉及等差数列和等比数列的定义和性质,以及错位相减法的应用和单调性的证明,属于中档题.22.已知数列{a n}是等比数列,S n为其前n项和.(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;(2)设,,b n=λa n﹣n2,若数列{b n}是单调递减数列,求实数λ的取值范围.【考点】等比数列的性质;数列的函数特性;数列的应用;等差关系的确定.【专题】计算题.【分析】(1)设数列{a n}的公比为q,根据等差中项的性质可知2S10=S4+S7,代入等比数列求和公式整理得1+q3=2q6.进而根据等比数列的通项公式可推断a1+a4=2a7.进而证明原式.(2)把等比数列的求和公式代入S3和S6,两式相除即可求得q,把q代入S3求得a1,进而可得数列{a n}的通项公式,根据数列{b n}是单调递减数列可知b n+1<b n,把b n=λa n﹣n2代入不等式,进而根据当n是奇数时,当n=1时取最大值;n是偶数时,当n=2时取最大值,进而得到λ的范围.【解答】解:(1)证明:设数列{a n}的公比为q,因为S4,S10,S7成等差数列,所以q≠1,且2S10=S4+S7.所以,因为1﹣q≠0,所以1+q3=2q6.所以a1+a1q3=2a1q6,即a1+a4=2a7.所以a1,a7,a4也成等差数列.(2)因为,,所以,①,②由②÷①,得,所以,代入①,得a1=2.所以,又因为b n=λa n﹣n2,所以,由题意可知对任意n∈N*,数列{b n}单调递减,所以b n+1<b n,即,即对任意n∈N*恒成立,当n是奇数时,,当n=1时,取得最大值﹣1,所以λ>﹣1;当n是偶数时,,当n=2时,取得最小值,所以λ.综上可知,,即实数λ的取值范围是.【点评】本题主要考查等比数列的性质,考查了学生根据已知条件,分析和解决问题的能力.。
高二上学期8月月考--数学(理)I 卷一、选择题1.计算机执行下面的程序段后,输出的结果是( )A .1,3B .4,1C .0,0D .6,0【答案】B2.下图是计算函数y =⎩⎪⎨⎪⎧ln(-x ),x ≤-20,-2<x ≤32x ,x >3的值的程序框图,在①、②、③处应分别填入的是( )A .y =ln(-x ),y =0,y =2xB .y =ln(-x ),y =2x,y =0C .y =0,y =2x,y =ln(-x )D .y =0,y =ln(-x ),y =2x【答案】B3.任何一个算法都离不开的基本结构为( )A . 逻辑结构B . 条件结构C . 循环结构D .顺序结构【答案】D4.执行下面的程序框图,如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040 【答案】B5.如图所示的算法流程图中(注:“1A =”也可写成“:1A =”或“1←A ”, 均表示赋值语句),第3个输出的数是( )A .1B .32 C . 2 D .52【答案】C6.执行如图所示的程序框图,输出的S 值为( )A .1B .1-C . 2-D .0【答案】D7.下列语句中:①32m x x =- ②T T I =⨯ ③32A = ④2A A =+⑤2(1)22A B B =*+=*+ ⑥((73)5)1p x x x =+-+ 其中是赋值语句的个数为( )A .6B .5C .4D .3【答案】C8.为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) INPUT x IF x<0 THEN y=(x+1)*(x+1) ELSEy=(x-1)*(x-1) END IF PRINT y ENDA . 3或-3B . -5C .5或-3D . 5或-5【答案】D 二 填空题9.用秦九韶算法求n 次多项式0111)(a x a x a x a x f n n n n ++++=-- ,当0x x =时,求)(0x f 需要算乘方、乘法、加法的次数分别为( )A .n n n n ,,2)1(+ B .n,2n,n C . 0,2n,n D . 0,n,n【答案】D10.把“二进制”数(2)1011001化为“五进制”数是( )A .(5)224B .(5)234C .(5)324D .(5)423【答案】C11.当3 a 时,下面的程序段输出的结果是( )A .9B .3C .10D .6【答案】D12.给出以下一个算法的程序框图(如图所示):该程序框图的功能是( )A .求出a, b, c 三数中的最大数B . 求出a, b, c 三数中的最小数C .将a, b, c 按从小到大排列D . 将a, b, c 按从大到小排列【答案】BII 卷二、填空题13.若执行如下图所示的框图,输入x 1=1,x 2=2,x 3=3,=2,则输出的数等于________.【答案】2314.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当x=2时的值的过程中,要经过 次乘法运算和 次加法运算。
山东省青岛第二中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.已知空间向量()1,3,5a =-r ,()2,,b x y =r ,且//a b r r ,则x y -=( )A .16-B .16C .4D .4-2.已知点()2,3A -,()3,2B --,若过点()1,1P -的直线与线段AB 相交,则该直线斜率的取值范围是( )A .32,,43⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U B .][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭ C .34,23⎡⎤-⎢⎥⎣⎦D .43,32⎡⎤-⎢⎥⎣⎦ 3.已知空间向量()1,,2a n =r ,()2,1,2b =-r ,若3a b -r r 与b r 垂直,则a r 等于( )A B C D .24.设A ,B 为两个随机事件,以下命题正确的为( )A .若A ,B 是对立事件,则()1P AB =B .若A ,B 是互斥事件,11(),()32P A P B ==,则1()6P A B += C .若11(),()32P A P B ==,且1()3P AB =,则A ,B 是独立事件 D .若A ,B 是独立事件,12(),()33P A P B ==,则1()9P AB = 5.已知点()0,1P -关于直线10x y -+=对称的点Q 在圆22:50C x y mx +++=上,则m =( ) A .4 B .5 C .-4 D .-56.连掷两次骰子得到的点数分别为m 和n ,记向量(),a m n =v 与向量()1,1b =-v 的夹角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦的概率是( ) A .512 B .12 C .712D .56 7.边长为1的正方形ABCD 沿对角线AC 折叠,使14AD BC ⋅=u u u r u u u r ,则三棱锥D ABC -的体积为( )A B C D 8.已知空间向量a r ,b r ,c r 两两的夹角均为60o ,且2a b ==r r ,4c =r .若向量x r ,y r 满足()x x a x b ⋅+=⋅r r r r r ,()y y a y c ⋅+=⋅r r r r r ,则x y -r r 的最大值是( )A .1+B .1C .D .2二、多选题9.下列说法正确的是( )A .8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是6111B .若样本数据1x ,2x ,L ,10x 的平均数为2,则数据121x -,221x -,L ,1021x -的平均数为3C .一组数据4,3,2,6,5,8的60%分位数为6D .某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知m ∈R ,若过定点A 的动直线1:20l x my m -+-=和过定点B 的动直线2:420l mx y m +-+=交于点P (P 与A ,B 不重合),则以下说法正确的是( )A .B 点的坐标为()2,4-B .22PA PB +为定值C .PAB S V 最大值为252D .2PA PB +的最大值为11.在棱长为1的正方体1111ABCD A B C D -中,1BP xBB yBC =+u u u r u u u r u u u r ,x ,()0,1y ∈,11AQ z AC =u u u r u u u r ,[]0,1z ∈,若直线1A P 与11A B 的夹角为45o ,则下列说法正确的是( )A .线段1A PB 1AQ PQ +的最小值为1C .对任意点P ,总存在点Q ,使得1⊥D Q CPD .存在点P ,使得直线1A P 与平面11ADD A 所成的角为60o三、填空题12.已知()11,0,1n =-u r ,()2,3,2n m =-u u r ,()30,1,1n =-u u r ,若{}123,,n n n u r u u r u u r 不能构成空间的一个基底,则m =.13.已知半径为1的圆经过点()3,4,则其圆心到直线3430x y --=距离的最大值为. 14.在长方体1111ABCD A B C D -中,已知异面直线1AC 与11B C ,1AC 与11C D 所成角的大小分别为60o 和45o ,E 为1CC 中点,则点E 到平面1A BC 的距离为.15.平面直角坐标系中,矩形的四个顶点为,O 0,0 ,()8,0A ,()8,6B ,C 0,6 ,光线从OA 边上一点()04,0P 沿与x 轴正方向成θ角的方向发射到AB 边上的1P 点,被AB 反射到BC 上的2P 点,再被BC 反射到OC 上的3P 点,最后被OC 反射到x 轴上的()4,0P t 点,若()4,6t ∈,则tan θ的取值范围是.四、解答题16.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程. 17.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为()1101p p <<,收到0的概率为11p -;发送1时,收到0的概率为()2201p p <<,收到1的概率为21p -.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1,若依次收到1,1,1,则译码为1).(1)已知13p 4=,223p =, (i )若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率; (ii )若采用单次传输方案,依次发送0,0,1,判断事件“第三次收到的信号为1”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(2)若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求2p 的取值范围.18.如图,四面体ABCD 中,ABC V 为等边三角形,且2AB =,ADC △为等腰直角三角形,且90ADC ∠=o .(1)当BD(i )求二面角D AC B --的正弦值;(ii )当P 为线段BD 中点时,求直线AD 与平面APC 所成角正弦值;(2)当2BD =时,若()01DP DB λλ=<<u u u r u u u r ,且PH ⊥平面ABC ,H 为垂足,CD 中点为M ,AB中点为N ;直线MN 与平面APC 的交点为G ,当三棱锥P ACH -体积最大时,求MG GN的值.。
长安一中2022—2023学年度第一学期第一次质量检测高二年级数学(理科)试题时间:100分钟总分:150分一、选择题:本大题共14小题,每小题5分,共70分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}2.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)4.将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减 5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得至其关,要见次日行里数,请公仔细算相还.”其意思为有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .96里B .48里C .192里D .24里 6.如图,在四面体ABCD 中,已知AB ⊥AC ,BD ⊥AC ,那么点D 在平面ABC 内的射影H 必在( )A .直线AB 上 B .直线BC 上 C .直线AC 上D .△ABC 内部7.已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是( )A .p q ∧B .p q ⌝∧ C .p q ⌝∧ D .p q ⌝⌝∧8.已知椭圆及以下3个函数:①②③;其中函数图像能等分该椭圆面积的函数个数有()A, 1个 B ,2个 C, 3个 D,0个9.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .1610.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A .312-B .23-C .312-D .31-11.若不等式组2022020x y x y x y m +-⎧⎪+-⎨⎪-+⎩≤≥≥,表示的平面区域为三角形,且其面积等于43,则m 的值为()A .-3B .1C .43D .3 12.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]13.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为( ) A .334B .938 C .6332 D .9414.在△ABC 中,AC =3,BC =4,∠C =90∘.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的取值范围是( ) A. [−5,3]B. [−3,5]C. [−6,4]D. [−4,6]二、填空题:本大题共6小题,每小题5分,共30分。
2022-2023学年宁夏石嘴山市平罗中学高二(重点班)上学期期中数学(理)试题一、单选题1.设全集U =R ,集合{|1}A x x =≥,{|22}B x x =-≤≤,则()U A ∩B =( )A .[2-,1]B .(2-,1)C .[2-,1)D .[1,2] C【分析】直接根据交集和补集的概念计算即可.【详解】由已知{|1}U A x x =<,则()U A ∩B =[){|1}{|22}=2,1x x x x <-≤≤-故选:C.2.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②报告厅有32排,每排有40个座位. 有一次报告会恰好坐满了听众,报告会结束后,为了调查听众对报告会的意见,需要请32名听众进行座谈;③平罗中学共有360名教职工,其中专职教师300名,行政教辅人员36名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为60的样本.较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样A【分析】观察所给的四组数据,根据四组数据的特点,把所用的抽样选出来①简单随机抽样,②系统抽样,③分层抽样.【详解】观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,所以选用系统抽样,③个体有了明显了差异,所以选用分层抽样法,故选:A .3.一个魔方的六个面分别是红、橙、蓝、绿、白、黄六种颜色,且红色面和橙色对、蓝色面和绿色对,白色面和黄色对,将这个魔方随意扔到桌面上,则事件“红色面朝上”和“绿色面朝下”( )A .是对立事件B .不是互斥事件C .既不是互斥事件也不是对立事件D .是互斥事件但不是对立事件D 【分析】根据互斥事件和对立事件的定义即可判断.【详解】将魔方随意扔到桌面上,则事件“红色面朝上”和“绿色面朝下”不能同时发生,但可以同时不发生,故“红色面朝上”和“绿色面朝下”是互斥事件但不是对立事件.故选:D4.《算法统宗》是由明代数学家程大位所著的一部应用数学著作,其完善了珠算口诀,确立了算盘用法,并完成了由筹算到珠算的彻底转变,该书清初又传入朝鲜、东南亚和欧洲,成为东方古代数学的名著.书中卷八有这样一个问题:“今有物靠壁,一面尖堆,底脚阔一十八个,问共若干?”如图所示的程序框图给出了解决该题的一个算法,执行该程序框图,输出的S 即为该物的总数S ,则总数S =( )A .136B .153C .171D .190C【分析】执行程序框图,计算S 【详解】由图可知,输出(118)181********S +⨯=++++== 故选:C5.关于直线m 、n 与平面α、β,有以下四个①若//m α,//n β且//αβ,则//m n ;②若m α⊥,n β⊥且αβ⊥,则m n ⊥;③若m α⊥,//n β且//αβ,则m n ⊥;④若//m α,n β⊥且αβ⊥,则//m n .其中真命题的序号是( )A .①②B .③④C .①④D .②③ D【分析】根据①②③④中的已知条件判断直线m 、n 的位置关系,可判断①②③④的正误.【详解】对于①,若//m α,//n β且//αβ,则m 与n 平行、相交或异面,①错误;对于②,如下图所示:设a αβ⋂=,因为αβ⊥,在平面β内作直线l a ⊥,由面面垂直的性质定理可知l α⊥, m α⊥,//m l ∴,n β⊥,l β⊂,n l ∴⊥,因此,m n ⊥,②正确;对于③,若m α⊥,//αβ,则m β⊥,因为//n β,过直线n 作平面γ使得a βγ=,由线面平行的性质定理可得//n a ,m β⊥,a β⊂,则m a ⊥,因此m n ⊥,③正确;对于④,若//m α,n β⊥且αβ⊥,则m 与n 平行、相交或异面,④错误.故选:D.方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.6.如图是甲、乙两名运动员在某赛季部分场次得分的茎叶图,据图可知( )A .甲的平均成绩大于乙的平均成绩,且甲发挥的比乙稳定B .甲的平均成绩大于乙的平均成绩,但乙发挥的比甲稳定C .乙的平均成绩大于甲的平均成绩,但甲发挥的比乙稳定D .乙的平均成绩大于甲的平均成绩,且乙发挥的比甲稳定A【分析】分别计算甲乙的平均分和方差,比较大小得到答案. 【详解】122233435373844444936.29x ++++++++=≈, 2812141721292933365225.110x +++++++++==, ()()()222212236.22336.24936.274.69S -+-++-=≈, ()()()22222825.11225.15225.1160.4910S -+-++-==,12x x >且2212S S <. 故选:A7.若x 、y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则2z x y =+的最大值为( )A .3B .7C .8D .10C【分析】作出不等式组所表示的可行域,平移直线2z x y =+,找出使得该直线在y 轴上截距最大时对应的最优解,代入目标函数即可得解. 【详解】作出不等式组50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩所表示的可行域如下图所示:联立21050x y x y -+=⎧⎨+-=⎩可得32x y =⎧⎨=⎩,即点()3,2A , 平移直线2z x y =+,当该直线经过可行域的顶点A 时,直线2z x y =+在y 轴上的截距最大, 此时z 取最大值,即max 2328z =⨯+=.故选:C.8.某校举行运动会期间,将学校600名学生编号为001,002,003,…,600,采用系统抽样方法抽取一个容量为50的样本,且在第一段中随机抽得的号码为009.将这600名学生分别安排在看台的A ,B ,C 三个区,001号到130号在A 区,131号到385号在B 区,386号到600号在C 区,则样本中属于A ,B ,C 三个区的人数分别为( )A .10,21,19B .10,20,20C .11,20,19D .11,21,18D 【分析】系统抽样是等间隔抽样,所以抽样间隔为6001250=,且第一段中随机抽得的号码为009,所以所有抽到的号码为()1290,1,2,,49k k +=⋅⋅⋅,根据条件列出不等式即可解得A ,B ,C 三个区的人数. 【详解】由题意知抽样间隔为6001250=, 因为在第一段中随机抽得的号码为009,故所有抽到的号码为()1290,1,2,,49k k +=⋅⋅⋅,根据条件得:A 区:1129130k <+<, 即121812k -<<, 所以k 可以取:0,1,2,3,4,5,6,7,8,9,10共11人,同理,可得B 区抽中21人,C 区抽中18人.故选:D .9.设数据1x ,2x ,3x ,……,n x 的平均数为m ,方差为5,数据124x +,224x +,324x +,……,24n x +的平均数为8,方差为n ,则m 、n 的值分别是( )A .4,14B .4,20C .2,36D .2,20D 【分析】根据平均数和方差的性质直接求解即可.【详解】因为数据1x ,2x ,3x ,……,n x 的平均数为m ,数据124x +,224x +,324x +,……,24n x +的平均数为8,248m ∴+=,解得2m =,数据1x ,2x ,3x ,……,n x 的方差为5,数据124x +,224x +,324x +,……,24n x +的方差为n ,22520n ∴=⨯=故选:D10.已知三棱锥-P ABC 的底面是正三角形,PA ⊥平面ABC ,且PA AB =,则直线PA 与平面PBC 所成角的正弦值为( )AB.7 CDB【分析】如图所示,连接各线段,证明⊥AE 平面PBC ,得到APD ∠即为直线PA 与平面PBC 所成角,再计算线段长度得到答案.【详解】如图所示:D 为BC 中点,连接AD ,PD ,作AE PD ⊥于E .PA ⊥平面ABC ,BC ⊂平面ABC ,故PA BC ⊥,BC AD ⊥,PA AD A ⋂=, 故BC ⊥平面PAD ,AE ⊂平面PAD ,故AE BC ⊥,又AE PD ⊥,PDBC D =,故⊥AE 平面PBC ,即APD ∠即为直线PA 与平面PBC 所成角.设PA AB a ==,则AD =,PD ,故sin AD APD PD ∠===. 故选:B11.已知实数x ,y 满足:22(1)3x y -+=,则1y x +的取值范围为( ) A .[3-,3]B .[23-,23]C .3[3-,3]3D .23[3-,23]3A【分析】确定圆心和半径,将题目转化为点(),x y 和点()1,0A -直线的斜率,画出图像,计算角度,计算斜率得到答案.【详解】22(1)3x y -+=表示圆心为()1,0M ,半径3R =的圆,1k y x =+表示点(),x y 和点()1,0A -直线的斜率, 如图所示:直角ADM △中2AM =,3DM R ==,故3sin 2DAM ∠=, π0,2DAM ⎛⎫∠∈ ⎪⎝⎭,故π3DAM ∠=,同理可得π3EAM ∠=,对应的斜率为3和3-. 故,313k y x ⎡⎤=∈-⎣+⎦, 故选:A12.已知三棱柱ABC —A 1B 1C 1的外接球的半径为R ,若AA 1⊥平面ABC ,△ABC 是等边三角形,则三棱柱ABC —A 1B 1C 1的侧面积的最大值为( )A .243RB .26RC .233RD .23R C【分析】设三棱柱的高为h ,底面三角形的边长为a ,根据勾股定理结合均值不等式得到23ah R ≤,再计算侧面积即可.【详解】设三棱柱的高为h ,底面三角形的边长为a ,如图所示:易知122333323AO AD a a ==⨯=, 在直角1AOO 中:222323h R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,即222223243433h a h a R ah =+≥⨯=, 即23ah R ≤,当2243h a =,即3622a h R ==时等号成立. 侧面积2333S ah R =≤.故选:C二、填空题13.过点(1,2)P 且与直线21y x =+平行的直线的方程是__________________.2y x =【分析】设与直线21y x =+平行的直线的方程为2y x b =+,代点P 计算即可.【详解】设与直线21y x =+平行的直线的方程为()21y x b b =+≠,代入点(1,2)P 得22b =+,解得0b =所以过点(1,2)P 且与直线21y x =+平行的直线的方程是2y x =故2y x =14.已知(1,3)a =-,(3,1)b =,则2a b +=__________.25 【分析】根据向量坐标运算求出()223132a b +=-+,,进而根据向量模的坐标公式计算得解. 【详解】因为()223132a b +=-+,, 所以()()2222313225a b +=-+=+,故答案为.2515.三棱锥中-P ABC ,底面ABC 是锐角三角形,PC 垂直平面ABC ,若其三视图中主视图和左视图如图所示,则棱PB 的长为______42【分析】根据三视图,求得,BC PC 的长度,再利用勾股定理即可求得PB .【详解】根据主视图可知,4,PC B =点在AC 的投影位于AC 的中点,不妨设其为H ,故可得2AH HC ==,根据左视图可知:23BH =224BC BH HC +=,又PC ⊥面,ABC BC ⊂面ABC ,故可得PC BC ⊥,则2242PB PC BC +故答案为.4216.已知正方体1111ABCD A B C D -的棱长为2,点M 、N 在正方体的表面上运动,分别满足:2AM =,AN ∥平面1BDC ,设点M 、N 的运动轨迹的长度分别为m 、n ,则m n=_______________. 2π2 【分析】M 的轨迹为半径为2的球A 与正方体表面的交线,即3个半径为2的14圆弧,要满足AN ∥平面1BDC ,则N 在平行于平面1BDC 的平面与正方体表面的交线上,可证得为11AB D ,最后求值即可得m n 【详解】点M 、N 在正方体的表面上运动,由2AM =,则M 的轨迹为半径为2的球A 与正方体表面的交线,即3个半径为2的14圆弧,故132π23π4m =⨯⨯⨯=. 正方体中,11111111111,,,,AD BC AB DC AD AB A DC BC C AD AB ==⊂∥∥、平面11AB D ,11DC BC ⊂、平面1BDC ,故平面11AB D ∥平面1BDC ,当N 在11AB D 上时,即满足AN ∥平面1BDC 且N 在正方体的表面上,故32262n =⨯=,故3π2π462m n ==. 故2π4三、解答题17.学习了《高中数学必修3》的内容后,高二年级某学生认为:月考成绩与月考次数存在相关关系.于是他收集了自己进入高二以后的前5次月考成绩,列表如下:第x 次月考1 2 3 4 5 月考成绩y85 100 100 105 110经过进一步研究,他发现:月考成绩y 与月考的次数 x 具有线性相关关系.(1)求y 关于x 的线性回归方程ˆˆˆy bx a =+;(2)判断变量y 与x 之间是正相关还是负相关(只写出结论即可).(3)按计划,高二年级两学期共有8次月考,请你预测该同学高二最后一次月考的成绩(结果保留整数).(1)ˆ 5.583.5yx =+ (2)正相关 (3)128【分析】(1)根据已知数据直接计算回归方程即可; (2)结合回归方程x 的系数判断即可;(3)根据(1)中的方程计算8x =时的值,估计即可. 【详解】(1)解:根据已知可得()11234535x =++++=,()1851001001051101005y =++++=, 所以,()5214101410i i x x=-=++++=∑,()()()512150052055iii x x y y =--=-⨯-++++=∑,所以,()()()5152155ˆ 5.510iii i i x x y y x bx===---==∑∑,ˆˆ100 5.5383.5a y bx=-=-⨯=, 所以,y 关于x 的线性回归方程为ˆ 5.583.5yx =+ (2)解:因为y 关于x 的线性回归方程为ˆ 5.583.5yx =+, 所以,变量y 与x 之间是正相关.(3)解:结合(1)得y 关于x 的线性回归方程为ˆ 5.583.5y x =+, 所以,当8x =时,ˆ 5.5883.5127.5128y=⨯+=≈ 所以,高二最后一次月考的成绩大约为128分. 18.已知函数()2sin (cos )f x x x x =+(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调区间和对称中心. (1)π(2)答案见解析【分析】(1)根据二倍角公式结合辅助角公式化简得()2sin(π2)3f x x =+,进而可得周期;(2)将π23x +代入sin y x =的单调增减区间,对称中心,求出x 即为所求. 【详解】(1)由已知()2sin (cos 3sin )3f x x x x =-+ sin 23(1cos 2)3x x =--+πsin 23cos22sin(2)3x x x =+=+则最小正周期2ππ2T ==; (2)令ππ3π2π22π,232k x k k Z +≤+≤+∈,得7πππ,1212πk x k k Z +≤≤+∈ 令πππ2π22π,232k x k k -+≤+≤+∈Z ,得5ππππ,1212k x k k -+≤≤+∈Z令π2π,3x k k +=∈Z ,得ππ,62k x k Z =-+∈,故函数()f x 的单调增区间为π5ππ,π,1212k k k Z ⎡⎤-++∈⎢⎥⎣⎦,单调减区间7ππ,π,π1212k k k Z ⎡⎤++∈⎢⎥⎣⎦, 对称中心ππ,0,62k k Z ⎛⎫-+∈ ⎪⎝⎭.19.当前,新冠肺炎疫情防控形势依然复杂严峻. 为进一步增强学生的防控意识,让全体学生充分了解新冠肺炎疫情的防护知识,提高防护能力,做到科学防护,平罗中学组织学生进行了新冠肺炎疫情防控科普知识线上问答,共有100人参加了这次问答,将他们的成绩(满分100分)分成六组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],制成如图所示的频率分布直方图.(1)求图中a 的值;(2)试估计这100人的问答成绩的中位数和平均数(结果保留整数);(3)用分层抽样的方法从问答成绩在[70,100]内的学生中抽取24人参加疫情防控知识宣讲,那么在[70,80),[80,90),[90,100]内应各抽取多少人? (1)0.015a =(2)中位数为73,平均数为72 (3)12,10,2【分析】(1)直接利用频率和为1计算得到答案. (2)直接利用平均数和中位数的公式计算即可. (3)根据分层抽样的比例关系计算得到答案.【详解】(1)()0.0050.0200.0300.0250.005101a +++++⨯=,解得0.015a =. (2)()0.0050.0150.020100.4++⨯=,故中位数为0.50.41070730.03010-⨯+=⨯.平均数为450.05550.15650.2750.3850.25950.0572⨯+⨯+⨯+⨯+⨯+⨯=. (3)0.03:0.025:0.056:5:1=,[70,80),[80,90),[90,100]内应各抽人数分别为: 6241212⨯=,5241012⨯=,124212⨯=. 20.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,cos cos b C c B a c -=-. (1)求B ;(2)若b =△ABC 22)a c +,求△ABC 的周长. (1)π3(2)3【分析】(1)先利用余弦定理角化边,整理后直接用余弦定理求角;(2)利用面积公式和题中面积相等构造一个方程,再用余弦定理构造一个方程,解方程组即可. 【详解】(1)cos cos b C c B a c -=-,由余弦定理可得22222222a b c a c b b c a c ab ac+-+-⨯-⨯=-, 整理得222a c b ac +-=,2221cos 222a cb ac B ac ac +-∴===,又()0,πB ∈π3B ∴=;(2)由已知221π)=sin 23ABCS a c ac +, 整理得2223a c ac +=①又222π2cos33b ac ac =+-=, 整理得223a c ac +-=②由①②得a c ⎧=⎪⎨=⎪⎩12a c =⎧⎨=⎩=123++=+∴△ABC 的周长为321.数列{}n a 的各项均为正数,11a =,当2n ≥时,1n n a a --(1)证明:是等差数列,并求数列{}n a 的通项公式; (2)设141n n b a =-,数列{}n b 前n 项和为n S ,证明:12n S <. (1)证明见解析;2n a n =(2)证明见解析【分析】(1)将递推式变形为=再根据等差数列的通项公式求解即可;(2)变形得11122121n b n n ⎛⎫=- ⎪-+⎝⎭,利用裂项相消法计算n S ,再观察即可得结果.【详解】(1)由1n n a a --=因为数列{}n a 0≠,1=1=所以是以1为首项,1为公差的等差数列.()1n n -=即2n a n =;(2)由(1)2n a n =得2141n b n =-,()()1111212122121n b n n n n ⎛⎫∴==- ⎪-+-+⎝⎭,1112111111111123355227211n S n n n ⎛⎫⎛⎫=-+-+-++=∴---++ ⎪ ⎪⎝⎭⎝⎭1021n >+, 则11121n -<+,11112212n ⎛⎫-< ⎪+⎝⎭,即12n S <. 22.如图1,在直角梯形ABCD 中,ABCD ,AB BC ⊥,224AB BC CD ===,E 是AB 的中点. 沿DE 将ADE 折起,使得AE BE ⊥,如图2所示. 在图2中,M 是AB 的中点,点N 在线段BC 上运动(与点B ,C 不重合).在图2中解答下列问题:(1)证明:平面EMN ⊥平面ABC ;(2)设二面角M EN B --的大小为θ,求tan θ的取值范围 (1)证明见解析 (2)()tan 2,θ∈+∞【分析】(1)证明⊥AE 平面BCDE ,BC ⊥平面AEB 得到EM ⊥平面ABC ,得到证明.(2)如图所示建立空间直角坐标系,计算各点坐标,计算平面EMN 的法向量为()1,2,n t t =--,平面EBN 的法向量为()20,0,1n =,根据向量的夹角公式得到224tan 1t θ=+,计算得到答案. 【详解】(1)AEB △中,AE EB =,M 时AB 中点,故EM AB ⊥, AE BE ⊥,AE DE ⊥,DE BE E ⋂=,故⊥AE 平面BCDE ,BC ⊂平面BCDE ,故AE BC ⊥,又BC BE ⊥,AE BE E =,故BC ⊥平面AEB ,EM ⊂平面AEB ,故EM BC ⊥,AB BC B ⋂=, 故EM ⊥平面ABC ,EM ⊂平面EMN ,故平面EMN ⊥平面ABC . (2)如图所示,分别以,,EB ED EA 分别为,,x y z 轴建立空间直角坐标系. 则()0,0,0E ,()2,0,0B ,()0,0,2A ,()1,0,1M ,()2,,0N t ,()0,2t ∈,设平面EMN 的法向量为()1,,n a b c =,则()()()()11,,1,0,10,,2,,020n EM a b c a c n EN a b c t a bt ⎧⋅=⋅=+=⎪⎨⋅=⋅=+=⎪⎩,取a t =,则()1,2,n t t =--.取平面EBN 的法向量为()20,0,1n =,二面角M EN B --的平面角为锐角,大小为θ,则12212cos 24n n t n n t θ⋅==⋅+222221244tan 111cos t t tθθ+=-=-=+,()0,2t ∈, 故()2tan 2,θ∈+∞,故()tan 2,θ∈+∞.。
2021-2022学年湖北省黄石二中高二(上)月考数学试卷(8月份)一、单项选择题(共8小题,每小题5分,共40分).1.设平面向量=(1,2),=(﹣2,y),若∥,则|3+|等于()A.B.C.D.2.设f(z)=|z|,z1=3+4i,z2=﹣2﹣i,则f(z1﹣z2)=()A.B.5C.D.53.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为()A.12B.18C.24D.324.设m为直线,α,β为两个不同的平面,则下列结论中错误的是()A.m∥α,α∥β,且m⊄β⇒m∥βB.α∥β,且m与α相交⇒m与β相交C.m∥α,m∥β⇒α∥βD.α∥β,且m⊂α⇒m∥β5.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣()A.10 4 人B.108 人C.112 人D.120 人6.在棱长为a的正方体ABCD﹣A1B1C1D1中,E,F,G分别是AD,AA1,A1B1的中点,则点B到平面EFG的距离为().A.B.C.a D.7.同时投掷两个骰子,向上的点数分别记为a,b,则方程2x2+ax+b=0有两个不等实根的概率为()A.B.C.D.8.若过点P(1,0),Q(2,0),R(4,0),S(8,0)作四条直线构成一个正方形,则该正方形的面积不可能等于()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.每小题漏选得2分,选错得0分,全对得5分.9.在正方体ABCD﹣A1B1C1D1中,有下列说法,其中正确的有()A.B.C.与的夹角为60°D.正方体的体积为10.已知向量,是两个非零向量,在下列四个条件中,一定能使,共线的是()A.2﹣3=4且+2=﹣2B.存在相异实数λ,μ,使λ﹣μ=C.当x+y=0时,x+y=D.已知梯形ABCD,其中=,=11.如图,已知矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则△ADE在翻折过程中,下列说法正确的是()A.线段BM的长是定值B.存在某个位置,使DE⊥A1CC.点M的运动轨迹是一个圆D.存在某个位置,使MB⊥平面A1DE12.如图所示,在球O的内接八面体PABCDQ中,顶点P,Q分别在平面ABCD两侧,且四棱锥P﹣ABCD与Q﹣ABCD都是正四棱锥.设二面角P﹣AB﹣Q的平面角的大小为θ,则tanθ的取值可能为()A.﹣4B.3C.D.1三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l经过点P(4,3),且在两坐标轴上的截距相等,则直线l的方程.14.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响,现规定:投进两个得4分,投进一个得2分,一个未进得0分,则一名同学投篮得2分的概率为.15.已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O 所得截面的面积为π,则球O的表面积为.16.如图,,,BE与CD交于P点,若,则m =,n=.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.一个袋中装有6个大小形状完全相同的球,球的编号分别为1,2,3,4,5,6.(1)从袋中随机抽取两个球,求取出的球的编号之和为6的概率;(2)先后有放回地随机抽取两个球,两次取的球的编号分别记为a和b,求a+b>5的概率.18.某海上养殖基地A,接到气象部门预报,位于基地南偏东60°方向相距20(+1)nmile的海面上有一台风中心,影响半径为20nmile,正以10nmile的速度沿某一方向匀速直线前进,预计台风中心在基地东北方向刮过且(+1)h后开始影响基地持续2小时,求台风移动的方向.19.已知△ABC中,顶点A(3,7),边AB上的中线CD所在直线的方程是4x﹣3y﹣7=0,边AC上的高BE所在直线的方程是5x+12y﹣13=0.(1)求点A关于直线CD的对称点的坐标;(2)求顶点B、C的坐标;(3)过A作直线l,使B,C两点到l的距离相等,求直线l的方程.20.已知四边形ABCD满足AD∥BC,AB=AD=CD=BC=a,E是BC的中点,将△BAE 沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F是B1D的中点.(Ⅰ)求四棱锥B1﹣AECD的体积;(Ⅱ)求平面ADB1与平面ECB1所成角的正弦值.21.某校有高中生2000人,其中男女生比例约为5:4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽收了样本容量为n的样本,得到频数分布表和频率分布直方图.方案二:采用分层随机抽样方法,抽取了男、女生样本量均为25的样本,计算得到男生样本的均值为170,方差为16,女生样本的均值为160,方差为20.身高(单位:cm)[145,155)[155,165)[165,175)[175,185)[185,195]频数m p q64(1)根据图表信息,求n,q并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二中总样本的均值及方差;(3)计算两种方案总样本均值的差,并说明用方案二总样本的均值作为总体均值的估计合适吗?为什么?22.如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE 为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:平面FBC⊥平面ACFE;(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.参考答案一、单项选择题(共8小题,每小题5分,共40分).1.设平面向量=(1,2),=(﹣2,y),若∥,则|3+|等于()A.B.C.D.解:∵∥,∴则2×(﹣2)﹣1•y=0,解得y=﹣4,从而3+=(1,2),∴|3+|=故选:A.2.设f(z)=|z|,z1=3+4i,z2=﹣2﹣i,则f(z1﹣z2)=()A.B.5C.D.5解:因为z1=3+4i,z2=﹣2﹣i,所以z1﹣z2=5+5i,又f(z)=|z|,所以f(z1﹣z2)=|5+5i|=.故选:D.3.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为()A.12B.18C.24D.32解:设男同学有x人,则女同学有x+6人,由题意可得=,解得x=6,则这个班所有的参加聚会的同学的人数为2x+6=18人,故选:B.4.设m为直线,α,β为两个不同的平面,则下列结论中错误的是()A.m∥α,α∥β,且m⊄β⇒m∥βB.α∥β,且m与α相交⇒m与β相交C.m∥α,m∥β⇒α∥βD.α∥β,且m⊂α⇒m∥β解:由m∥α,α∥β,得m⊂β或m∥β,而m⊄β,所以m∥β,故A正确;由α∥β,且m与α相交,可得m与β相交,故B正确;由m∥α,m∥β,得α∥β或α与β相交,故C错误;由α∥β,得α与β无公共点,又m⊂α可得m与β无公共点,则m∥β,故D正确.故选:C.5.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣()A.10 4 人B.108 人C.112 人D.120 人解:根据分层抽样原理,抽样比例为=,∴北乡应遣8100×=108(人).故选:B.6.在棱长为a的正方体ABCD﹣A1B1C1D1中,E,F,G分别是AD,AA1,A1B1的中点,则点B到平面EFG的距离为().A.B.C.a D.解:分别以DA,DC,DD′所在直线为x,y,z轴建立空间直角坐标系,如图示:,显然B(a,a,0),E(,0,0),F(a,0,),G(a,,0),故=(,0,),=(,,a),=(,a,0),设平面EFG的法向量为=(x,y,z),则•=0,•=0,故,令x=1,则=(1,1,﹣1),故点B到平面EFG的距离为:d===a,故选:B.7.同时投掷两个骰子,向上的点数分别记为a,b,则方程2x2+ax+b=0有两个不等实根的概率为()A.B.C.D.解:同时投掷两个骰子,向上的点数分别记为a,b,则基本事件的(a,b)的总数为6×6=36.方程2x2+ax+b=0有两个不等实根,则△=a2﹣8b>0,满足上述条件的(a,b)的对数为9:(3,1),(4,1),(5,1),(6,1),(5,2),(6,2),(5,3),(6,3),(6,4).∴方程2x2+ax+b=0有两个不等实根的概率==.故选:B.8.若过点P(1,0),Q(2,0),R(4,0),S(8,0)作四条直线构成一个正方形,则该正方形的面积不可能等于()A.B.C.D.解:如果过点P(1,0),Q(2,0),R(4,0),S(8,0)作四条直线构成一个正方形,过P点的必须和过Q,R,S的其中一条直线平行和另外两条垂直,假设过P点和Q点的直线相互平行时,如图,设直线PC与x轴正方向的夹角为θ,再过Q作它的平行线QD,过R、S作它们的垂线RB、SC,过点A作x轴的平行线分别角PC、SC于点M、N,则AB=AM sinθ=PQ sinθ=sinθ,AD=AN cosθ=RS cosθ=4cosθ,因为AB=AD,所以sinθ=4cosθ,则tanθ=4,所以正方形ABCD的面积S=AB•AD=4sinθcosθ===,同理可求,当直线PC和过R的直线平行时正方形ABCD的面积S为,当直线PC和过S点的直线平行时正方形ABCD的面积S为,故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.每小题漏选得2分,选错得0分,全对得5分.9.在正方体ABCD﹣A1B1C1D1中,有下列说法,其中正确的有()A.B.C.与的夹角为60°D.正方体的体积为解:如图:对A:()²=()²=²=3²,故A正确;对B:•()=•=(﹣)•=0,故B正确;对C:与的夹角是与夹角的补角,而△ACD1为正三角形,所以与夹角为60°,故与的夹角是120°,故C错误;对D:正方体的体积为||||||,故D错误;故选:AB.10.已知向量,是两个非零向量,在下列四个条件中,一定能使,共线的是()A.2﹣3=4且+2=﹣2B.存在相异实数λ,μ,使λ﹣μ=C.当x+y=0时,x+y=D.已知梯形ABCD,其中=,=解:A.联立和消去向量可得出,∴,且,∴,共线;B.∵都是非零向量,且λ≠μ,,∴λ,μ都不为0,∴,∴共线;C.当x=y=0时,满足x+y=0,此时对任意的向量都有,∴得不出共线;D.∵AB与CD不一定平行,∴得不出共线.故选:AB.11.如图,已知矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则△ADE在翻折过程中,下列说法正确的是()A.线段BM的长是定值B.存在某个位置,使DE⊥A1CC.点M的运动轨迹是一个圆D.存在某个位置,使MB⊥平面A1DE解:取CD的中点F,连接BF,MF,∵M,F分别为A1C、CD中点,∴MF∥A1D,∵A1D⊂平面A1DE,MF⊄平面A1DE,∴MF∥平面A1DE,∵DF∥BE且DF=BE,∴四边形BEDF为平行四边形,∴BF∥DE,∵DE⊂平面A1DE,BF⊄平面A1DE,∴BF∥平面A1DE,又BF∩MF=F,BF、MF⊂平面BMF,∴平面BMF∥平面A1DE,∵BM⊂平面BMF,∴BM∥平面A1DE,即D错误.设AB=2AD=2a,则MF=A1D=,BF=DE=,∠A1DE=∠MFB=45°,∴BM==a,即BM为定值,所以A正确;∴点M的轨迹是以B为圆心,a为半径的圆,即C正确;∵DE=CE=,CD=AB=2a,∴DE2+CE2=CD2,∴DE⊥CE,设DE⊥A1C,∵A1C、CE⊂平面A1CE,A1C∩CE=C,∴DE⊥平面A1CE,∵A1E⊂平面A1CE,∴DE⊥A1E,与DA1⊥A1E矛盾,所以假设不成立,即B错误.故选:AC.12.如图所示,在球O的内接八面体PABCDQ中,顶点P,Q分别在平面ABCD两侧,且四棱锥P﹣ABCD与Q﹣ABCD都是正四棱锥.设二面角P﹣AB﹣Q的平面角的大小为θ,则tanθ的取值可能为()A.﹣4B.3C.D.1解:设二面角P﹣AB﹣C大小为α,平面Q﹣AB﹣C的大小为β,球心到平面ABCD的距离为d,球半径为1,则,,d∈[0,1),所以=∈,所以tanθ的取值可能﹣4,,故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l经过点P(4,3),且在两坐标轴上的截距相等,则直线l的方程y=x 或x+y﹣7=0.解:∵直线l经过点P(4,3),且在两坐标轴上的截距相等,当直线经过原点时,斜率为=,直线的方程为y=x,当直线不经过原点时,设方程为x+y﹣k=0,把点P(4,3)代入,求得k=7,此时直线的方程为x+y﹣7=0,所以直线的方程为y=x或x+y﹣7=0,故答案为:y=x或x+y﹣7=0.14.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响,现规定:投进两个得4分,投进一个得2分,一个未进得0分,则一名同学投篮得2分的概率为0.48.解:每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响,现规定:投进两个得4分,投进一个得2分,一个未进得0分,则一名同学投篮得2分的概率为P==0.48.故答案为:0.48.15.已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O 所得截面的面积为π,则球O的表面积为.解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,∵α截球O所得截面的面积为π,∴d=R时,r=1,故由R2=r2+d2得R2=12+(R)2,∴R2=∴球的表面积S=4πR2=.故答案为:.16.如图,,,BE与CD交于P点,若,则m=,n=.解:因为,,且E、P、B三点共线,D、P、C三点共线,所以存在x,y使得=x+(1﹣x)=x+(1﹣x);=y+(1﹣y)=y+(1﹣y);所以,解得x=,y=,所以=×+(1﹣)=+=+,又因为,所以m=,n=.故答案为:,.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.一个袋中装有6个大小形状完全相同的球,球的编号分别为1,2,3,4,5,6.(1)从袋中随机抽取两个球,求取出的球的编号之和为6的概率;(2)先后有放回地随机抽取两个球,两次取的球的编号分别记为a和b,求a+b>5的概率.解:(1)从袋中随机抽取两个球共有15种取法,取出球的编号之和为6的有(1,5),(2,4),共2种取法,故取出的球的编号之和为6的概率.(2)先后有放回地随机抽取两个球共有36种取法,两次取的球的编号之和大于5的有26种,分别为:(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),故a+b>5的概率.18.某海上养殖基地A,接到气象部门预报,位于基地南偏东60°方向相距20(+1)nmile 的海面上有一台风中心,影响半径为20nmile,正以10nmile的速度沿某一方向匀速直线前进,预计台风中心在基地东北方向刮过且(+1)h后开始影响基地持续2小时,求台风移动的方向.解:如图所示,设预报时台风中心为B,开始影响基地时台风中心为C,基地刚好不受影响时台风中心为D,则B、C、D在一直线上,且AD=20、AC=20,由题意AB=20(+1),DC=20,BC=(+1)•10,在△ADC中,∵DC2=AD2+AC2,∴∠DAC=90°,∠ADC=45°在△ABC中,由余弦定理得cos∠BAC==,∴∠BAC=30°,又∵B位于A南偏东60°,60°+30°+90°=180°,∴D位于A的正北方向,又∵∠ADC=45°,∴台风移动的方向为向量的方向,即北偏西45°方向.答:台风向北偏西45°方向移动.19.已知△ABC中,顶点A(3,7),边AB上的中线CD所在直线的方程是4x﹣3y﹣7=0,边AC上的高BE所在直线的方程是5x+12y﹣13=0.(1)求点A关于直线CD的对称点的坐标;(2)求顶点B、C的坐标;(3)过A作直线l,使B,C两点到l的距离相等,求直线l的方程.解:(1)设A关于CD的对称点A'(m,n),则,解得,即点A关于直线CD的对称点的坐标为;(2)由题知k BE=,则k AC=,所以直线AC的方程为y=(x﹣3)+7,联立,解得,即C(﹣2,﹣5);设B(a,b),代入BE:5x+12y﹣13=0,则AB中点D(,)代入直线4x﹣3y﹣7=0,得,解得,即B(5,﹣1);(3)由题意知过A的直线的斜率存在,设直线l的方程为y﹣7=k(x﹣3),即kx﹣y﹣3k+7=0,由题意,得=,整理得|2k+8|=|﹣5k+12|,解得k=或k=,所以直线l的方程为20x﹣3y﹣39=0或4x﹣7y+37=0.20.已知四边形ABCD满足AD∥BC,AB=AD=CD=BC=a,E是BC的中点,将△BAE 沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F是B1D的中点.(Ⅰ)求四棱锥B1﹣AECD的体积;(Ⅱ)求平面ADB1与平面ECB1所成角的正弦值.解:(Ⅰ)取AE的中点M,连接B1M,∵BA=AD=DC=BC=a,E是BC的中点,∴△ABE为等边三角形,∴B1M=a,又∵面B1AE⊥面AECD,∴B1M⊥面AECD,∴四棱锥B1﹣AECD的体积:V=×=.(Ⅱ)连接MD,分别以ME,MD,MB1为x,y,z轴,建立空间直角坐标系.则E(,0,0),C(a,,0),A(﹣,0,0),D(0,,0),B1(0,0,),=(,0),=(﹣),=(,0),=(),设面ECB1的法向量=(x,y,z),则,令x=1,则=(1,﹣,),设面ADB1的法向量=(x,y,z),则,令x=1,得=(1,﹣,﹣),∴cos<>===,∴平面ADB1与平面ECB1所成角θ的正弦值为:sinθ==.21.某校有高中生2000人,其中男女生比例约为5:4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽收了样本容量为n的样本,得到频数分布表和频率分布直方图.方案二:采用分层随机抽样方法,抽取了男、女生样本量均为25的样本,计算得到男生样本的均值为170,方差为16,女生样本的均值为160,方差为20.身高(单位:cm)[145,155)[155,165)[165,175)[175,185)[185,195]频数m p q64(1)根据图表信息,求n,q并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二中总样本的均值及方差;(3)计算两种方案总样本均值的差,并说明用方案二总样本的均值作为总体均值的估计合适吗?为什么?解:(1)因为身高在区间[185,195)的频率为0.008×10=0.08,频数4,所以n==50,故m=0.008×10×50=4,p=0.04×10×50=20,q=50﹣4﹣20﹣6﹣4=16,所以身高在区间[165,175)的频率为=0.32,在区间[175,185)的频率为=0.12,由此可补充完整频率分布直方图:由频率分布直方图可知,样本的身高均值为:150×0.008×10+160×0.04×10+170×0.032×10+180×0.012×10+190×0.008×10=12+64+54.4+21.6+15.2=167.2cm;(2)把男生样本记为x1,x2,...,x25,其均值记为,方差记为;把女生样本记为y1,y2,...,y25,其均值记为,方差记为,则总样本均值=+==165,又因为(x i﹣)=x i﹣25=0,所以2(x i﹣)(﹣)=2(﹣)(x i﹣)=0,同理可得2(y j﹣)(﹣)=0,所以总样本方差s2=[+]=[+]={25[+]+25[+]}={25[16+(170﹣165)2]+25[20+(160﹣165)2]}=43;(3)两种方案总样本均值的差为167.2﹣165=2.2.用方案二总样本均值作为总体均值的估计不合适,原因为:没有按照等比例进行分层抽样,每个个体被抽到的可能性不同,因此样本的代表性比较差.22.如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE 为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:平面FBC⊥平面ACFE;(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.【解答】(1)证明:在四边形ABCD中,∵AB∥CD,AD=DC=CB=1,∠ABC=60°,∴AB=2,∴AC2=AB2+BC2﹣2AB•BC•cos60°=3,∴AB2=AC2+BC2,∴BC⊥AC.∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACFE.又∵BC⊂平面FBC,∴平面ACFE⊥平面FBC.…(2)解:由(1)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示的空间直角坐标系,令FM=λ(0≤λ≤),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),∴=(﹣,1,0),=(λ,﹣1,1),设=(x,y,z)为平面MAB的一个法向量,由,得取x=1,则=(1,,),∵=(1,0,0)是平面FCB的一个法向量,∴cosθ=cos<>==,…∵0≤λ≤,∴当λ=0时,cosθ有最小值,当λ=时,cosθ有最大值.∴cosθ∈[].…。
2022—2023学年度上学期高二数学月考试卷一、选择题(60分)1.已知直线过点和点,则直线的斜率为()A.B.C.D.2.已知向量,2,,,,,且,那么()A.B.C.D.3.直线的倾斜角是()A.B.C.D.4.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1 B.A1E⊥BC1C.A1E⊥BD D.A1E⊥AC5.直线:,:,则“”是“”的()条件A.必要不充分B.充分不必要C.充要D.既不充分也不必要6.已知△ABC三个顶点的坐标分别为A(2,6),B(1,-6),C(5,2),M为BC的中点,则中线AM所在直线的方程为()A.10x+y-26=0 B.8x+y-22=0 C.8x+y-26=0 D.10x-y-34=07.若直线与直线l₂关于点对称,则直线l₂一定过定点()A. B.C.D.8.已知,若共面,则实数的值为()A.B.C.D.9.如图,平行六面体,其中,,,,,,则的长为()A.B.C.D.10.如果,,那么直线不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.已知两定点A(﹣3,5),B(2,8),动点P在直线x﹣y+1=0上,则|PA|+|PB|的最小值为()A.5 B. C.5 D.12.已知长方体ABCD﹣A1B1C1D1中,B1C,C1D与底面ABCD所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A. B.C.D.二、填空题(20分)13.已知空间四边形OABC,其对角线为OB,AC,M,N分别是OA,BC的中点,点G在线段MN上,且,现用基底{}表示向量,有=x+y+z,则x,y,z的值分别为______________.14.两条平行直线和之间的距离是__________.15. 如图,已知正三棱柱的侧棱长为底面边长的2倍,是侧棱的中点,则异面直线和所成的角的余弦值为__________16. 在空间直角坐标系中,点为平面ABC外一点,其中若平面的一个法向量为,则点到平面的距离为__________.三、解答题(其中17题10分,其余每小题12分,共70分。
太原师院附中师苑中学2021-2022学年度第一次月考 数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的个数为( )①三角形肯定是平面图形;②若某四边形的两条对角线相交于一点,则该四边形是平面图形;③圆心和圆周上两点可确定一个平面;④三条平行线最多可确定三个平面 A .1 B .2 C .3 D .42.设直线m 与平面α相交但不垂直,则下列说法中正确的是( ) A .在平面α内有且只有一条直线与直线m 垂直 B .过直线m 有且只有一个平面与平面α垂直 C .与直线m 垂直的直线不行能与平面α平行 D .与直线m 平行的平面不行能与平面α垂直3.如图的正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图形的周长为( )A .6cmB .8cmC .(232)cm +D .(223)cm + 4.如图,已知M 为Rt ABC ∆斜边AB 的中点,PM ⊥平面ABC ,则( )A .PA PB PC => B .PA PB PC =< C. PA PB PC ==D .PA PB PC ≠≠5.已知在三棱锥A BCD -中,,M N 分别是,AB CD 的中点,则下列结论正确的是( )A .1()2MN AC BD ≥+ B .1()2MN AC BD ≤+ C. 1()2MN AC BD =+ D .1()2MN AC BD <+6.已知三棱柱111ABC A B C -的则棱与底面垂直,体积为94,底面是边长为3的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A .512π B .3π C. 4π D .6π 7.如图,在四周体D ABC -中,若D ABC -,AD CD =,E 是AC 的中点,则下列命题中正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BCDC. 平面ABC ⊥平面BDE ,且平面ACD ⊥平面BDE D .平面ABC ⊥平面ACD ,且平面ACD ⊥平面BDE 8.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23π B .43π C. 53π D .2π 9.某圆锥的侧面开放图为一个半径为R 的半圆,则该圆锥的体积为( )A .3324R π B .338R π C. 3525R π D .358R π 10.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .2865+B .3065+ C. 56125+ D .60125+11.下列四个正方体图形中,,A B 为正方体的两个顶点,,,M N P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .①④ C. ②③ D .②④12.已知球的半径为5,球面被相互垂直的两个平面所截,得到的两个圆的公共弦长为23,若其中一个圆的半径为23,则另一个圆的半径为( ) A .3 B .4 C.10 D .11二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图所示,已知,M N 分别正方体1111ABCD A B C D -中1BB 和11B C 的中点,则MN 与1CD 所成的角为 .14.在棱长为a 的正方体1111ABCD A B C D -中,EF 是棱AB 上的一条线段,且线段EF 的长为b (b a <),若Q 是CD 上的动点,则三棱锥1Q D EF -的体积为 .15.如图,PA ⊥于圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上异于,A B 的一点,,E F 分别是点A 在,PB PC 上的正投影,给出下列结论:①AF PB ⊥;②EF PB ⊥;③AF BC ⊥;④AE ⊥面PBC 其中正确结论的序号是 .16.一四周体的三视图如图所示,则该四周体四个面中,面积最大的那个面的面积是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,P 是1DD 的中点,设Q 是1CC 上的点,问:当点Q 在什么位置时,平面1//D BQ 平面PAO ?18. 如图,在空间四边形ABCD 中,2AD BC a ==,,E F 分别是,AB CD 的中点,3EF a =,求,AD BC所成角19. 如图,正方体''''ABCD A B C D -棱长为a ,连接''AC ,'A D ,'A B ,BD ,'BC ,'C D ,得到一个三棱锥,求:(1)三棱锥''A BC D -的表面积与正方体表面积的比值; (2)三棱锥''A BC D -的体积.20. 如图,在梯形ABCD 中,//AD BC ,AB BC ⊥,1AB BC ==,PA ⊥平面ABCD ,CD PC ⊥.(1)证明:CD ⊥平面PAC ;(2)若E 为AD 的中点,求证://CE 平面PAB .21. 如图,直三棱柱111ABC A B C -中,122AA AC BC ==,D 是1AA 的中点,1CD B D ⊥.(1)证明:11CD B C ⊥;(2)平面1CDB 分此棱柱为两部分,求这两部分体积的比.22.如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,3BAD π∠=,M 为BC 上一点,且12BM =.(1)证明:BC ⊥平面POM ;(2)若MP AP ⊥,求四棱锥P ABMO -的体积.试卷答案一、选择题1-5:CBBCD 6-10:BCCAB 11、12:BB 二、填空题13. 060 14.216a b 15.①②③ 16. 23三、解答题17.解:当Q 为1CC 的中点时,平面1//D BQ 平面PAO .∵Q 为1CC 的中点,P 为1DD 的中点,∴//QB PA . 连接DB ,∵,P O 分别为1DD ,DB 的中点,∴1//D B PO ,又1D B ⊄平面PAO ,QB ⊄平面PAO ,∴1//D B 面PAO . 再由//QB 面PAO ,且1D BQB B =,∴平面1//D BQ 平面PAO .18.解:如图所示,取AC 的中点M ,连接,EM FM , ∵,E F 分别是,AB CD 的中点,∴EM //=12BC ,FM //=12AD ∴EMF ∠或其补角即为异面直线AD 与BC 所成的角, 又2AD BC a ==, ∴EM FM a ==在EFM ∆中,由余弦定理可得:2222222(3)1cos 222EM FM EF a a EMF EM FM a +-⨯-∠===-•⨯∴异面直线AD 与BC 所成的角为060.。
2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。
高二数学上学期月考试题一、单选题(4分×10=40分)1.如图.空间四边形OABC 中,OA a,OB b,OC c ===,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =( )A .121232a b c -+ B .221332a b c +- C .111222a b c +- D .211322a b c -++ 2.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有( )A .25种B .50种C .300种D .150种 3.已知随机变量X 的分布列为()24k P X k ==,2,4,5,6,7k =,则()15P X <≤等于( ) A .1124 B .712 C .23 D .13244.以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =-B .210x y =-或28y x =C .210y x =或28x yD .210y x =-或28x y =5.已知圆2260x y x +-=,过点()2,2的直线被该圆所截得的弦长的最小值为( )A .1B .2C .3D .46.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =( )A .π6B .π4C .π3D .π2 7.已知()511a x x ⎛⎫++ ⎪⎝⎭的展开式中31x 的系数为10,则实数a 的值为( ) A .12- B .12 C .2- D .28.已知(1+2x )n 的展开式中第3项与第9项的二项式系数相等,则所有偶数项的二项式系数之和为( )A .211B .210C .29D .289.若直线1:210l mx y -+=与2:(1)20l m x my -++=互相垂直,则实数m =( ) A .23 B .32 C .1-或0 D .32或0 10.已知抛物线216x y =的焦点为F ,点P 在抛物线上,点Q 在圆()()22:264E x y -+-=上,则PQ PF +的最小值为( )A .12B .10C .8D .6二、填空题(5分×4=20分)11.一袋中装有4只同样大小的球,编号分别为1,2,3,4,现从中随机取出2个球,以X 表示取出球的最大号码,则X 的分布列为_____________12.已知椭圆C :22221x y a b+=(0a b >>)左、右焦点分别为1F 、2F ,过1F 且倾斜角为60°的直线1l 与过2F 的直线2l 交于A 点,点A 在椭圆上,且1290F AF ∠=︒.则椭圆C 的离心率e =__________.13.过点()1,4A -作圆22231x y 的切线l ,则切线l 的方程为_________.14.我校去年11月份,高二年级有9人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余4人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有______种不同的选法三、解答题(10分×4=40分)15.在n ax ⎛ ⎝的展开式中,前三项的二项式系数之和等于79. (1)求n 的值;(2)若展开式中的常数项为552,试问展开式中系数最大的项是第几项? 16.若()82801281mx a a x a x a x +=++++,其中356a =-. (1)求m 的值;(2)求128a a a +++;(3)求()()22024681357a a a a a a a a a ++++-+++.17.如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.18.某城市为了加快“两型社会”(资源节约型,环境友好型)的建设,本着健康、低碳的生活理念,租自行车骑游的人越来越多,自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量X ,求X 的分布列.。
贵州兴仁二中-高二上学期8月月考--数学(理)
I 卷
一、选择题
1.执行如图所示的程序框图,输出的s 值为( )
A .-3
B .-12
C .13
D .2 【答案】D
2.计算机执行下面的程序段后,输出的结果是( )
A .
B .
C .
D . 【答案】B
3.以下给出的是计算的值的一个程序框图(如图所示),其中判断框内应填入的条件是( )
1,34,10,06,020
1614121+⋅⋅⋅+++
A . i>10
B . i<10
C . i<20
D . I>20
【答案】A
4.下列语句中:① ② ③ ④ ⑤ ⑥ 其中是赋值语句的个数为(
)
A .6
B .5
C .4
D .3
【答案】C
A =138,
B =22,则输出的结果是( )
A .2
B .4
C .128
D .0
【答案】A
6.840和1764的最大公约数是( )
A .84
B .12
C .168
D .252
【答案】A
32m x x =-T T I =⨯32A =2A A =+2(1)22A B B =*+=*+((73)5)1p x x x =+-+
7.执行下面的程序框图,如果输入的n 是4,则输出的p 是( )
A .8
B .5
C .3
D .2
【答案】C
8.下面的程序框图(如图所示)能判断任意输入的数的奇偶性:
其中判断框内的条件是( )
A .
B .
C .
D .
【答案】D
9.如图21-7所示程序框图,若输出的结果y 的值为1,则输入的x 的值的集合为(
)
x 0=m 0=x 1=x 1=m
图21-7
A .{3}
B .{2,3}
C .⎩⎨⎧⎭⎬⎫1
2,3 D .⎩⎨⎧⎭⎬⎫
12,2,3
【答案】C
10.执行下面的程序框图,如果输入的N 是6,那么输出的p 是( )
A .120
B .720
C .1440
D .5040
【答案】B
11.如果执行下边的程序框图,输入x =-12,那么其输出的结果是(
)
A .9
B .3
C . 3
D .19
【答案】C
12.把十进制数15化为二进制数为( C )
A. 1011 B.1001 (2)C. 1111(2)D.1111 【答案】C
II卷
二、填空题
13.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n= .
【答案】192
14.某地区为了解70岁~80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进
【答案】6.42
15.下列程序执行后输出的结果是S=________.
i=1
S=0
WHILE i<=50
S=S+i
i=i+1
WEND
PRINT S
END
【答案】1275
16.若执行如下图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于________.
【答案】154
三、解答题
17.某市电信部门规定:拔打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话时间以分钟计,不足1分钟时按1分钟计),试设计一个计算通话费的算法。
要求写出算法,画出程序框图,编写程序。
【答案】我们用(单位:元)表示通话费用,(单位:分钟)表示通话时间,则依题意必有
算法步骤如下:
第一步:输入通话时间;第二步:如果,那么;否则令;
第三步:输出通话费用。
程序框图如下所示:
程序为:
18.请.从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内.
c t ⎩⎨⎧>-+≤<=.
3),3(1.02.0,30,2.0t t t c t 3≤t
2.0=c )3(1.02.0-+=t c
c
【答案】
19. 用冒泡排序法将下列各数排成一列:8,6,3,18,21,67,54.
并写出各趟的最后结果及各趟完成交换的次数
.
一般画成
圆角矩形
一般画成
画成带箭
头的流线
处理框(执行框):赋值、计算
【答案】每一趟都从头开始,两个两个地比较,若前者小,则两数位置不变;否则,调整这两个数的位置.
第一趟的结果是:6 3 8 18 21 54 67
完成3次交换.
第二趟的结果是:3 6 8 18 21 54 67
完成1次交换.
第三趟交换次数为0,说明已排好次序,
即3 6 8 18 21 54 67.
20.某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物:
①在1000元以上者按九五折优惠;
②在2000元以上者按九折优惠;
③在5000元以上者按八折优惠。
(1)写出实际付款y (元)与购物原价款x (元)的函数关系式;
(2)写出表示优惠付款的算法;
【答案】(1)设购物原价款数为元,实际付款为元,则实际付款方式可用分段函数表示为:
(2)用条件语句表示表示为:
21.已知一个正三角形的周长为,求这个正三角形的面积。
设计一个算法,解决这个问题。
【答案】算法步骤如下:
第一步:输入的值;
x y 10000.95100020000.9200050000.85000
x x x x y x
x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≥⎪⎪
⎩a a
第11页 共11页 第二步:计算的值; 第三步:计算的值;第四步:输出的值。
22. 火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x 元的车票退掉后,返还的金额y 元的算法的程序框图.
【答案】
3
a l =243l S ⨯=
S。