数字信号处理基础书后题答案中文版
- 格式:doc
- 大小:12.23 MB
- 文档页数:176
Chapter 2 Solutions2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。
2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f =3.18 Hz 。
信号的奈奎斯特采样频率为6.37 Hz 。
(b)、35000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。
(c)、73000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。
2.3 (a) 12580001f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。
2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。
因此,5个周期为5π/2000 = π/400 sec 。
对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。
所以采样频率为f S = 4(4000/π) = 16000/π Hz 。
因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。
2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。
因此,5个周期为5/1250 sec 。
对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。
采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。
这意味着在模拟信号的五个周期内只有8个点被采样。
事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。
2.62.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 (a) 采样频率满足奈奎斯特采样定理,所以没有混叠发生。
西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。
解:x( n)(n4) 2 (n 2) ( n 1)2 (n)(n 1) 2 (n 2) 4 ( n 3)0.5(n 4)2 (n 6)2n 5, 4 n 12. 给定信号: x( n)6,0n 40, 其它(1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列;(3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形;(4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形;(5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。
解:( 1) x(n) 的波形如 题 2 解图(一) 所示。
( 2)x(n)3 ( n 4)(n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1)6 ( n 2)6(n 3) 6 (n 4)( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。
( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。
( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移2 位, x3 ( n) 波形如 题 2 解图(四) 所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1) x( n)Acos(3n) ,A 是常数;78(2)x(n)j ( 1n)e 8。
解:(1)w 3214T=14 ;7,,这是有理数,因此是周期序列,周期是w3(2)w 1 , 216 ,这是无理数,因此是非周期序列。
8w5. 设系统分别用下面的差分方程描述,x(n) 与 y(n) 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
《数字信号处理》第三版课后习题答案数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-??=≤≤其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n =-,试画出1()x n 波形;(4)令2()2(2)x n x n =+,试画出2()x n 波形;(5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n 及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n nn n n n nnn n 2. 给定信号:25,41()6,040,nnx n n其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n ,试画出1()x n 波形;(4)令2()2(2)x n x n ,试画出2()x n 波形;(5)令3()2(2)x n x n ,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n nnnn n n n n n (3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n,A 是常数;(2)1()8()j n x n e 。
解:(1)3214,73w w ,这是有理数,因此是周期序列,周期是T=14;(2)12,168ww,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n;(3)0()()y n x n n ,0n 为整常数;(5)2()()y n x n ;(7)0()()n m y n x m 。
第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。
解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。
数字信号处理(姚天任江太辉)第三版课后习题答案第二章2.1 判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-nej(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n)=∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n)=∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=a n-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
1.、2. 用冲激响应不变法将以下 )(s H a变换为变换为 )(z H ,抽样周期为T 。
为任意正整数 ,)()( )2()()()1(022n s s As H b a s as s H na a -=+++=分析:①冲激响应不变法满足)()()(nT h t h n h a nTt a===,T 为抽样间隔。
这种变换法必须)(s H a 先用部分分式展开。
②第(②第(22)小题要复习拉普拉斯变换公式1!][+=n n S n t L ,na n t s a S S As H t u n t Ae t h )()()()!1()(010-=⇔-=-,可求出可求出 )()()(kT Th t Th k h a kTt a===,|又 dz z dX z k kx )()(-⇔,则可递推求解。
解: (1)22111()()2a s a H s s a b s a jb s a jb ⎡⎤+==+⎢⎥+++++-⎣⎦[])( 21)()()(t u e e t h tjb a t jb a a --+-+= 由冲激响应不变法可得:由冲激响应不变法可得:由冲激响应不变法可得:[]()()()() ()2a jb nT a jb nT a T h n Th nT e e u n -+--==+ 11011() () 211naT jbT aT jbT n T H z h n z e e z e e z ∞------=⎡⎤==+⎢⎥--⎣⎦∑ 2211cos 21cos 1 ------+--⋅=z e bT z e bT z e T aT aT aT(2) 先引用拉氏变换的结论[]1!+=n n s n t L 可得:可得: n a s s As H )()(0-=))()!1()(10t u n t Ae t h n t s a -=-则 )()!1()()()(10k u n kT Ae T Tk Th k h n kT s a -⋅==- dzz dX zk kx az k u a ZZk )()( , 11)( 1-−→←-−→←-且按)11()()!1( )()!1( )()(111111000--∞=---∞=----=-==∑∑ze dz d z n AT e z k n T TA z k h z H T s n n kkT s n n k k可得⎪⎪⎩⎪⎪⎨⎧=-=-=•••---,3,2)1(1,1)(111000n z e z e AT n z e ATz H n T s T S n T s ,可以递推求得:2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为:2'4142136.111)(s s s H a ++=而而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用502⨯πs 来代替424'108696044.928830.444108696044.9)100()(⨯++⨯==s s s H s H a a π:设系统抽样频率为设系统抽样频率为Hz f s 500=,要求从这一低通模拟滤波器设计一个低通数字滤波器,采用阶跃响应不变法。
《数字信号处理(第四版)》部分课后习题解答一、简答题1. 什么是数字信号处理?数字信号处理(DSP)是指对数字信号进行处理和分析的一种技术。
它使用数学和算法处理模拟信号,从而实现信号的采样、量化、编码、存储和重构等过程。
DSP广泛应用于通信、音频处理、图像处理和控制系统中。
2. 数字信号处理的主要特点有哪些?•数字信号处理能够处理和分析具有广泛频谱范围的信号。
•数字信号处理能够实现高精度的信号处理和复杂的算法运算。
•数字信号处理能够实现信号的存储、传输和复原等功能。
•数字信号处理可以利用计算机等处理硬件进行实时处理和系统集成。
3. 数字信号处理的基本原理是什么?数字信号处理的基本原理是将连续时间的模拟信号转换成离散时间的数字信号,然后通过一系列的算法对数字信号进行处理和分析。
该过程主要涉及信号的采样、量化和编码等环节。
4. 什么是离散时间信号?离散时间信号是指信号的取样点在时间上呈现离散的情况。
在离散时间信号中,只能在离散时间点上获取信号的取样值,而无法观测到连续时间上的信号变化。
5. 描述离散时间信号的功率和能量的计算方法。
对于离散时间信号,其功率和能量的计算方法如下:•功率:对于离散时间信号x(n),其功率可以通过求平方和的平均值来计算,即功率P = lim(T->∞) [1/T *∑|x(n)|^2],其中T表示信号x(n)的观测时间。
•能量:对于离散时间信号x(n),其能量可以通过求平方和来计算,即能量E = ∑|x(n)|^2。
二、计算题1. 设有一个离散时间周期序列x(n) = [2, 3, -1, 4, 0, -2],求其周期N。
由于x(n)是一个周期序列,我们可以通过观察序列来确定其周期。
根据观察x(n)的取值,我们可以发现序列在n=1和n=5两个位置上取得了相同的数值。
因此,序列x(n)的周期为N = 5 - 1 = 4。
2. 设有一个信号x(t) = 2sin(3t + π/4),请将其离散化为离散时间信号x(n)。
数字信号处理基础书后题答案中文版Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。
2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。
信号的奈奎斯特采样频率为6.37 Hz 。
(b)、35000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。
(c)、73000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。
2.3 (a) 12580001f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。
2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。
因此,5个周期为5π/2000 = π/400 sec 。
对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。
所以采样频率为f S = 4(4000/π) = 16000/π Hz 。
因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。
2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。
因此,5个周期为5/1250 sec 。
对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。
采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。
这意味着在模拟信号的五个周期内只有8个点被采样。
事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。
2.7 信号搬移发生在kf S± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍-200200400600800100012000.10.20.30.40.50.60.70.80.91幅度频(b) 采样频率对于这个信号来说太低了,所以混叠发生了。
混叠图用虚线展示,最后的频谱用实线展示。
2.8 蜂窝电话信号是带宽受限的。
传输范围为30 kHz 。
最小采样频率至少为60kHz 。
在这道题中,60kHz 采样频率是足够的。
传输范围的基带搬移能被一个截止频率为2.9 (a)、信号在300Hz 处的镜像出现在3001000±-, 3000±, 3001000±,3002000± Hz ,......,即–1300, –700, 300, 700, 1300, 1700, 2300 Hz ,......。
这些信号只有一个位于奈奎斯特范围内(采样后能被恢复的范围,这道题为0到500Hz )。
真实的信号频率为300Hz ,没有混叠发生。
(b)、信号的镜像出现在6001000±-, 6000±, 6001000±,6002000±Hz ,......,即–1600, –600, –400, 400, 600, 1400, 1600, 2600Hz ,......。
这些信号只有400Hz 落在奈奎斯特范围内。
这是混叠频率。
(c)、信号的镜像出现在13001000±-, 13000±, 13001000±,13002000±Hz ,......,即–2300, –1300, –300, 300, 700, 1300, 2300, 3300Hz ,......。
这些信号只有300Hz 落在奈奎斯特范围内。
这是混叠频率。
2.10 (a)、信号在100到400Hz 发生混叠。
频率倒置不发生在基带。
0 10 20 30 40 50 60 70 80 90 100 …0 30 60 0 10 20 30 40 50 60 70 80 90 1002.11 8kHz 的采样频率允许奈奎斯特范围为0到4kHz 。
在采样之后,信号的频谱搬移发生在–24000 ± 25000, –16000 ± 25000, –8000 ± 25000, 0 ± 25000, 8000 ± 25000, 16000 ± 25000Hz......。
奈奎斯特范围内唯一的镜像点为1000Hz 。
这就是混叠频率。
2.12 最简单的方法是通过看这两个信号有相同的采样点来比较两者。
采样时刻由nT S n t = nT S x 1(t) x 2(t) 0 0 1.000 1.000 1 1/150 –0.809 –0.809 2 2/150 0.309 0.309 3 3/150 0.309 0.309 4 4/150 –0.809 –0.809 5 5/150 1.000 1.000 6 6/150 –0.809 –0.8092.13 由于目标的镜像出现在0 ± 0.2 MHz, 2 ± 0.2 MHz, 4 ± 0.2 MHz, … 900 ± 0.2 MHz ,目标的实际频率为900.2MHz 。
2.14 车轮每转一圈,轮胎走过πd = .635π = 1.995 m 。
自行车速为15 km/h ,即15000/3600 = 4.17 m/sec 。
因此,自行车每个轮子以cycles/sec 09.2m/cycle1.995m/sec17.4=-50050010001500-1-0.8-0.6-0.4-0.200.20.40.60.81f幅度频率 -50050010001500-1-0.8-0.6-0.4-0.200.20.40.60.81幅度的频率往复出现。
根据奈奎斯特采样定理,每个周期至少有两个采样点。
所以采样频率应为4.18 samples/sec。
这能通过每100s 418次快照完成。
2.15 当信号以600Hz的频率采样,正弦波频率的镜像出现在采样频率整数倍的两边。
由于混叠频率为150Hz。
镜像出现在0 ± 150, 600 ± 150, 1200 ±150Hz......。
只有150、450、750Hz在1kHz以下。
当采样频率为550Hz时,混叠频率为200Hz,所以镜像出现在0 ± 50, 550 ± 200, 1100 ± 200Hz......。
只有200、350、750和900Hz处在1kHz以下。
与两者都一致的正弦波频率为750Hz。
2.16 模拟电压范围为6V。
(a)量化步长为6/24 = 375 mV(b)量化步长为6/28 = 23.44 mV(c) 量化步长为6/216 = 91.55 μV2.17 (a) 28 = 256 (b) 210 = 1024 (c) 212 = 40962.18 量化映射一个无限模拟信号等级到一个有限数字信号等级,量化程度由使用的数位来决定。
对于任意有限数位,误差一定会出现,因为量化步长的大小是非零的。
n 0 1 2 3 4 5 6 7 8 9量化误差–0.4 0.3 –0.10.4 –0.3–0.10.4 –0.1–0.2–0.22.20 量化步长为范围/2N = 4/24 = 0.25 V。
下表标书了量化方法。
底端范围是步长的一半,顶端范围是步长的1.5倍。
所有其数字编码量化标准(V) 映射到数字编码的模拟输入范围(V)0000 –2.0 –2.0 ≤ x < –1.8750001 –1.75 –1.875 ≤ x < –1.6250010 –1.5 –1.625 ≤ x < –1.3750011 –1.25 –1.375 ≤ x < –1.1250100 –1.0 –1.125 ≤ x < –0.8750101 –0.75 –0.875 ≤ x < –0.6250110 –0.5 –0.625 ≤ x < –0.3750111 –0.25 –0.375 ≤ x < –0.1251000 0 –0.125 ≤ x < 0.1251001 0.25 0.125 ≤ x < 0.3751010 0.5 0.375 ≤ x < 0.625 1011 0.75 0.625 ≤ x < 0.875 1100 1.0 0.875 ≤ x < 1.125 1101 1.25 1.125 ≤ x < 1.375 1110 1.5 1.375 ≤ x < 1.625 1111 1.75 1.625 ≤ x < 2.02.21 n 模拟采样 (V) 数字编码 量化标准 (V) 量化误差 (V) 0 0.5715 001 0.625 0.0535 1 4.9575 111 4.375 –0.5825 2 0.625 001 0.625 0.0000 33.6125 110 3.750 0.1375 44.0500 110 3.750 –0.3000 5 0.9555 010 1.250 0.2945 6 2.7825 100 2.500 –0.2825 7 1.5625 011 1.875 0.3125 8 2.7500 100 2.500 –0.25 9 2.8755 101 3.1250.24952.22 动态范围为20 log (2N ) (a) 24.1 dB (b) 48.2 dB (c) 96.3 dB-2-1.5-1-0.500.51 1.52-2-1.5-1-0.500.511.52量化值1000数字编码2.23 动态范围为20 log (2N ) = 60.2 dB ,由此可以得出2N= 1023.29。
N 的值最靠近10,所以N 取10。
2.24 范围 = R, 量化步长 = QR = 1 V0.5Q = 0.1 V因此, Q = 0.2 VR/Q = 2N = 5两个量化位(N = 2)不满足需求。
至少需要三个量化位(N=3)。
2.25 比特率=B bits/sample *f samples/sec=16*8000=128kbps2.26 中间范围最大量化误差是量化步长Q 的一半。
对于范围R ,位数N 来说,步长为R/2N 因此。
R 01.02R 21Q 21N ≤= 将会保持量化误差在满意范围内。
消去R 然后解出N 为02.021N ≤,即502N ≥。
N 满足关系的最小值为N=6。
因此,最小比特率为Nf S = 6(16) = 96 kbps 。