高性能计算HPC
- 格式:ppt
- 大小:4.18 MB
- 文档页数:28
高性能计算中的并行编程模型介绍高性能计算(High-Performance Computing,HPC)是一种利用大规模计算机系统进行高效计算和解决复杂问题的技术。
在高性能计算中,为了提高计算效率和处理大规模数据,使用并行编程模型是必不可少的。
并行编程模型是一种在多个处理单元(如CPU、GPU等)上同时执行代码的方法,能够实现任务的分解和并发执行,提高计算速度和系统的整体性能。
并行编程模型主要有以下几种:共享内存模型、分布式内存模型以及混合模型。
共享内存模型是指多个处理单元共享同一个内存空间,在该模型中,所有的处理单元可以同时访问和修改共享内存中的数据。
共享内存模型的最大优势在于简单易用,程序员只需要在编写代码时考虑数据的同步和互斥。
常用的共享内存编程模型包括OpenMP和POSIX线程。
OpenMP(Open Multi-Processing)是一种支持并行编程的API,可以通过在代码中添加一些特殊的指令来实现并行化。
通过使用OpenMP,程序员可以简单地将串行代码转化为并行代码。
OpenMP使用的指令主要包括#pragma omp并行指令、#pragmaomp for指令以及#pragma omp critical指令等。
这些指令可以指定代码块并行执行、循环并行化以及实现临界区保护等。
OpenMP适用于共享内存系统,对于多核CPU和SMP(Symmetric Multi-Processing)系统,具有较好的扩展性。
POSIX线程(Pthreads)是一种标准的共享内存并行编程模型,可以在多线程环境下创建和管理线程。
Pthreads使用的函数库包括pthread_create、pthread_join和pthread_mutex等,可以创建线程、等待线程结束并实现互斥和同步。
使用Pthreads编写的并行程序可以同时利用多个CPU核心进行计算,有效地提高了程序的执行速度。
分布式内存模型是指多个处理单元之间通过消息传递来共享数据,每个处理单元拥有自己的本地内存。
什么是高性能计算,涉及哪些技术和知识高性能计算(HPC指通常使用很多处理器(作为单个机器的一部分)或者某一集群中组织的几台计算机(作为单个计算资源操作)的计算系统和环境。
高性能集群上运行的应用程序一般使用并行算法,把一个大的普通问题根据一定的规则分为许多小的子问题,在集群内的不同节点上进行计算,而这些小问题的处理结果,经过处理可合并为原问题的最终结果。
由于这些小问题的计算一般是可以并行完成的,从而可以缩短问题的处理时间。
高性能集群在计算过程中,各节点是协同工作的,它们分别处理大问题的一部分,并在处理中根据需要进行数据交换,各节点的处理结果都是最终结果的一部分。
高性能集群的处理能力与集群的规模成正比,是集群内各节点处理能力之和,但这种集群一般没有高可用性。
高性能计算的分类方法很多。
这里从并行任务间的关系角度来对高性能计算分类。
一、高吞吐计算(High-throughput Computing)有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。
因为这种类型应用的一个共同特征是在海量数据上搜索某些特定模式,所以把这类计算称为高吞吐计算,而且算力也比较大。
所谓的In ternet计算都属于这一类。
按照Fly nn的分类,高吞吐计算属于SIMDSinglelnstruction/Multiple Data,单指令流-多数据流)的范畴。
二、分布计算(Distributed Computing)另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。
按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/MultipleData ,多指令流-多数据流)的范畴。
有许多类型的HPC系统,其范围从标准计算机的大型集群,到高度专用的硬件。
大多数基于集群的HPC系统使用高性能网络互连,基本的网络拓扑和组织可以使用一个简单的总线拓扑。
通用计算(GPC):这种类型的计算是指使用计算机或计算系统来执行范围广泛的任务,例如文字处理、互联网浏览和多媒体播放。
这种类型的计算需要一个通用的计算机体系结构,该体系结构足够灵活以处理不同类型的任务和应用程序。
异构计算:异构计算是指使用多种类型的处理单元(例如CPU 和GPU)来执行范围广泛的任务的系统。
这种类型的计算可以更好地利用可用资源,因为可以将不同的任务分配给最合适的处理单元。
与同类计算系统相比,这种方法可以提高性能和效率。
高性能计算(HPC):HPC 是指使用专门的计算系统和算法来解决需要大量计算能力的复杂问题。
这种类型的计算通常用于科学和工程应用,例如天气预报、药物发现和模拟。
HPC 系统通常由许多互连的计算机组成,通常具有专门的硬件和软件,旨在处理高性能计算所需的大量数据和复杂计算。
宝德HPC高性能计算服务器集群系统简介HPC高性能计算服务器集群系统是高性能计算和高可用技术有机结合的性能强大、高可用的集群系统。
在实际应用中,许多科学研究和商业企业的计算问题都可以通过HPC系统来解决。
HPC可以在下列领域能够帮助开发和研究人员进行建模和模拟,同时,以最快的速度计算出模拟的结果,为下一步开发和最终结构的确定提供及时可靠的依据:⎫⎫天气预报气象⎫制药企业的药理分析⎫科研人员的大型科学计算问题⎫石油勘探中对石油储量的分析⎫航空航天企业的设计和模拟⎫化工企业中对分子结构的分析计算⎫制造业中的CAD/CAM系统和模拟试验分析⎫银行和金融业对经济情况的分析生物/生命科学中生物分子研究和基因工程计算宝德HPC系统由高性能并行计算应用系统,集群控制节点、通信库以及管理服务器,数据库存储系统,各节点操作系统,节点通信系统,各计算节点,以及系统运行环境等组成。
★高性能计算应用系统各种并行计算的应用程序,针对不同的应用对象和问题而设计的软件系统。
★集群控制节点、通信库及管理服务器集群控制节点是HPC的核心设备,担任着运行主控程序和作业分发的任务。
其上的集群管理软件是整个高性能计算系统的管理者。
HPC控制节点通过集群控制、管理及通讯库将整个系统紧密联系在一起。
同时,还要负责初始化集群节点、在所需数量的节点上安装应用程序、并监视集群节点和互连的当前运行状况。
★数据库存储系统数据库存储系统是高性能计算的后端存储系统,与主控节点相连,高性能计算的结果通过主控节点统一送到该系统进行集中存储。
该系统可以一个RAID存储阵列柜,也可以是一个存储网络,如SAN等。
★节点操作系统因为Linux操作系统具有开放源码、容易整合和再开发的特点,所以在HPC Cluster中被普遍采纳,占到操作系统的80%以上的比例。
而Windows NT受其自身的封闭环境阻碍,Linux 有大量的集群系统可供选择,适合于不同的用途和需要,保证系统可适应最新的工具,有较高的可用性。
高性能计算集群(HPC CLUSTER)1.1什么是高性能计算集群?简单地说,高性能计算(High-Performance Computing)是计算机科学的一个分支,它致力于开发超级计算机,研究并行算法和开发相关软件。
高性能集群主要用于处理复杂的计算问题,应用在需要大规模科学计算的环境中,如天气预报、石油勘探与油藏模拟、分子模拟、基因测序等。
高性能集群上运行的应用程序一般使用并行算法,把一个大的普通问题根据一定的规则分为许多小的子问题,在集群内的不同节点上进行计算,而这些小问题的处理结果,经过处理可合并为原问题的最终结果。
由于这些小问题的计算一般是可以并行完成的,从而可以缩短问题的处理时间。
高性能集群在计算过程中,各节点是协同工作的,它们分别处理大问题的一部分,并在处理中根据需要进行数据交换,各节点的处理结果都是最终结果的一部分。
高性能集群的处理能力与集群的规模成正比,是集群内各节点处理能力之和,但这种集群一般没有高可用性。
1.2高性能计算分类高性能计算的分类方法很多。
这里从并行任务间的关系角度来对高性能计算分类。
1.2.1高吞吐计算(High-throughput Computing)有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。
因为这种类型应用的一个共同特征是在海量数据上搜索某些特定模式,所以把这类计算称为高吞吐计算。
所谓的Internet计算都属于这一类。
按照Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data,单指令流-多数据流)的范畴。
1.2.2分布计算(Distributed Computing)另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。
按照Flynn的分类,分布式的高性能计算属于MIMD (Multiple Instruction/Multiple Data,多指令流-多数据流)的范畴。
什么是高性能计算(HPC)?HPC是指在多个服务器上高速并行处理复杂计算。
这些服务器的一组称为集群,它由通过网络连接的数百或数千台计算服务器组成。
在HPC集群中,每台执行计算操作的计算机称为节点。
HPC 集群通常运行批量计算。
HPC 集群的核心是一个用于跟踪可用资源的调度程序。
这样可以通过高速网络在不同的计算资源(CPU 和 GPU)之间有效分配作业请求。
现代HPC 解决方案可以在本地数据中心、边缘或云端运行。
它们可以以合理的时间和成本解决大规模计算问题,使其适用于广泛的问题。
高性能数据分析(HPDA)是将 HPC 资源应用于大数据以解决日益复杂的问题的新领域。
HPDA 关注的主要领域之一是人工智能 (AI) 的进步,特别是大规模深度学习模型。
在本文中:•人工智能如何影响高性能计算•编程语言的调整•虚拟化和容器•增加记忆力•HPC 如何帮助您构建更好的AI 应用程序•人工智能与高性能计算的融合•使用Run:AI 在HPC 上运行AI人工智能如何影响高性能计算高性能计算早于人工智能,因此这两个领域使用的软件和基础设施有很大不同。
这两个领域的集成需要对工作负载管理和工具进行某些改变。
以下是 HPC 为应对 AI 挑战而不断发展的几种方法。
编程语言的调整HPC 程序通常用 Fortran、C 或 C++ 编写。
HPC 流程由用这些语言编写的遗留接口、库和扩展支持。
然而,人工智能严重依赖 Python 和 Julia 等语言。
为了使两者成功地使用相同的基础设施,接口和软件必须与两者兼容。
在大多数情况下,这意味着人工智能框架和语言将覆盖在继续像以前一样运行的现有应用程序上。
这使得 AI 和 HPC 程序员可以继续使用他们喜欢的工具,而无需迁移到其他语言。
虚拟化和容器容器为 HPC 和 AI 应用程序提供了巨大的好处。
这些工具使您可以轻松地调整基础架构以适应工作负载不断变化的需求,并以一致的方式将其部署在任何地方。
高性能计算与应用研究随着科技和经济的不断发展,计算机技术已经成为现代生产和科学研究的重要工具。
高性能计算则是计算机领域的重要分支,可以优化计算机硬件和软件系统,实现更快、更稳定、更高效的计算和数据处理。
本文将从高性能计算的定义、技术体系、主要应用领域和未来发展趋势等多个方面进行深入探讨。
一、高性能计算的定义高性能计算,简称HPC (High Performance Computing),是指开展大规模计算、深度学习、数据科学等任务的一种计算范式。
它主要运用计算机系统的并行、分布式、异构和高可用等特点,将计算、存储、网络、软件和人力等资源无缝集成,从而实现高速度、高效率和高可靠性的计算和数据处理。
高性能计算系统通常包括多个计算节点、存储节点、网络交换机和调度器等硬件组件。
二、高性能计算技术体系高性能计算技术是一个开放的、复杂的和多层次的技术体系,涵盖了计算、存储、网络、软件和人工智能等方方面面。
具体来说,高性能计算技术体系包括以下几个方面:1.计算技术:计算技术包括CPU/GPU、FPGA/CPU/GPU、功率墙、超级计算机等不同类型的计算节点。
它们通过并行计算、向量计算、矩阵计算、量子计算等方式,提高计算效率和算法精度。
2.存储技术:存储技术包括硬盘、固态硬盘、闪存、内存等多种类型的数据存储介质。
它们通过优化数据访问、数据备份、数据恢复和数据安全等方面,提高数据的可靠性和可访问性。
3.网络技术:网络技术包括局域网、广域网、光纤、交换机、路由器等多种类型的网络设备。
它们通过优化数据传输、分布式文件系统、数据中心网络、云计算和容器化等技术,提高了计算和数据处理的效率和可靠性。
4.软件技术:软件技术包括操作系统、编程语言、编译器、并行库、调度器等多种类型的软件工具。
它们通过优化代码质量、并行性、负载均衡性、数据局部性等方面,提高了程序性能和可扩展性。
5.人工智能技术:人工智能技术包括深度学习、自然语言处理、图像识别、机器学习等多种类型的技术工具。
hpc基本概念HPC基本概念什么是HPC•HPC全称High Performance Computing,即高性能计算。
•是一种通过集群或超级计算机等高性能计算设备,以及相应的软件和算法来处理大规模、复杂、需要高计算能力的科学、工程和商业计算问题的领域。
HPC的特点•高性能: HPC系统通常由多台计算节点组成,能够同时进行大规模并行计算,具有很高的计算能力。
•数据密集型: HPC应用往往需要处理海量、复杂的数据,包括大规模的科学数据、仿真数据等。
•并行计算: HPC系统利用并行计算技术,将任务分为多个子任务,同时在多个计算节点上执行,加快计算速度。
•可扩展性: HPC系统可以根据需求进行扩展,通过增加计算节点来提升计算能力,适应不断增长的计算需求。
HPC应用领域•科学研究: HPC在天文学、生物学、物理学等科学研究中得到广泛应用,用于模拟、模型推导、数据分析等。
•工程设计: HPC可以用于工程设计和仿真,如飞机设计、汽车碰撞测试等,加快产品开发速度并降低成本。
•天气预报:天气预报需要处理大量的气象数据,通过HPC可以加快气象模型的计算速度,提升预报准确率。
•金融风险分析: HPC可以对金融市场的海量数据进行快速分析和模拟,帮助预测风险和制定决策。
•药物研发: HPC在药物研发中能够进行大规模的分子模拟和虚拟筛选,加快新药研发进程。
HPC相关技术•并行计算: HPC系统利用并行计算技术,将任务分解为多个子任务,通过多个计算节点同时执行,提高计算速度。
•分布式存储: HPC系统通常采用分布式存储架构,将数据存储在多个节点上,提高数据访问和传输效率。
•高速互联: HPC系统需要高速的网络互联,以便于快速的数据传输和节点之间的通信。
•任务调度: HPC系统通过任务调度软件来管理和调度计算任务,合理分配计算资源,提高系统利用率。
•并行编程: HPC应用需要使用并行编程模型来实现任务的并行执行,如MPI、OpenMP等。
高性能计算与人工智能【前言】对于计算机科技的发展,现在得到了更广泛的关注和重视,高性能计算和人工智能也是这其中的焦点。
而这两个领域的技术交叉也是越来越显著。
在本文中,我们将讨论这两个方向的发展、相互融合对未来发展的影响。
【一、高性能计算】高性能计算(High Performance Computing,缩写HPC)是一种在一个网络或局域网上通过运用并行化计算方法,使得一个计算任务能够被拆分成许多计算子任务同时处理的情况。
其最终目的是通过加速计算过程,以达到解决复杂计算问题的效果。
高性能计算不仅仅是一种计算机处理能力的提升,而是改变了计算的方式,解决计算复杂度更高的问题。
高性能计算是在执行数学计算任务方面更快、更准确的解决方案。
可以用于解决大型科学和工程问题,如气候和天气模拟、核模拟、大规模结构分析、药物设计等。
传统意义上的高性能计算以数值计算、科学计算为主,而目前各种新技术如大数据技术和人工智能深度学习技术的出现,则使得高性能计算进一步发挥了它的价值,并创造了更多应用。
【二、人工智能】人工智能依靠计算机科学和转化,实现对象的感知、思考、推理、学习、规划和行动等过程,具备认知功能。
人工智能得以崛起的关键,正是由于计算机发展的快速普及,计算能力的不断提升。
人工智能不仅对于解决数据处理问题具有重要意义,也能够为各行各业带来显著的效益,如工业制造、医疗健康、金融、交通等。
目前人工智能技术的核心是深度学习和神经网络。
由于计算能力的不断提升,人工智能得以快速发展和广泛应用。
在语音和图像识别、自动驾驶、机器翻译、虚拟助手等方面有了许多重大突破。
【三、高性能计算与人工智能的融合】高性能计算和人工智能可以相互借鉴发展,相互融合以适应更宽广的需求。
具体来说,人工智能可以借助高性能计算处理大规模的数据,而高性能计算则可以依赖人工智能完成更复杂的计算工作,提高计算效率。
两者的融合可以产生更强大的计算能力。
针对于AI应用,HPC在以下方面起到关键作用:提高数据处理和分析的速度和准确性,支持复杂神经网络训练、加速深度学习、辅助科学研究等。
高性能计算的科学应用高性能计算(High Performance Computing,简称HPC)是指基于高速网络、快速储存器和超级计算机等高端技术,进行多维度的模拟、模型计算、数据分析和可视化等事项。
它主要是用来解决一些庞大、复杂、难以通过实验手段获取结果和信息的科学、工程、医学问题,而不仅仅是为企业提供决策、数据挖掘等商业上的代价。
在当今科技发展的大趋势下,高性能计算已成为科学研究的重要工具之一,能够为人们带来许多意想不到的科学应用。
1. 生命科学在生命科学领域,高性能计算已成为研究生物信息学、转化医学和药物研发的基石。
生命科学方面的研究包括了对新药物分析、分子仿真、基因组学、蛋白质工程以及分子动力学等问题的解决。
其中,分子动力学的研究特别引人注目,主要是通过模拟分子间的相互作用力进行计算,以预测分子的行为和互动。
2. 航空航天在航空航天领域,高性能计算的主要应用方向是飞行器设计,控制系统分析和优化,以及飞行模拟等。
这包括了飞机的气动外形设计、材料分析和试验,涡轮机引擎的优化和改进,以及航空电子设备的设计和验证等课题。
3. 自然资源在自然资源领域,高性能计算用于分析、优化和预测地球系统的运作,从而改进环境质量、保护资源和推进可持续发展。
这方面的研究包括了对气象、海洋、气候、水资源以及地球物理化学等方面的计算,以及基于这些计算得到的应用,如旱灾预警、气候变化预测、海底资源勘探和地震学等。
4. 新材料在物质科学领域,高性能计算可用于材料基因组学、分子设计、材料模拟和制造过程模拟等方面的研究。
通过HPC将实验数据、理论计算和模拟结果相结合,可以更加快速和准确地设计和制造出新的材料,为各行各业提供技术支持和帮助。
5. 人工智能随着人工智能的发展,高性能计算已成为必不可少的工具,辅助进行自然语言处理、机器学习、视觉识别、推理和规划等事项。
这需要巨大且高效的计算能力来实现,因为现阶段的机器学习和深度学习算法需要处理“海量”级别的数据,也需要有充足的计算能力来进行模型训练和测试。
高性能计算平台(HPC)简介SHPC概念简介HPC技术架构HPC应用分析123HPC案例实践4HPC面临挑战5普通计算—传统列车高性能计算—高铁列车 高性能计算好比“高铁列车”,除了车头,每节车厢都有动力,所以算得快。
普通计算好比“传统列车”,只有车头有动力,所以算得慢。
高性能计算(High Performance Computing),通过软件和网络将多台独立的计算机组建成为一个统一系统,通过将一个大规模计算任务进行分割并分发至内部各个计算节点上来实现对中大规模计算任务的支持。
目标:提高大规模应用问题的求解速度,包括但不限于工程仿真、材料科学、生命医药等领域。
l 计算性能强大l 具有海量级存储空间l 高速数据通讯l 完整的软件基础平台软件部分:集群管理软件、作业调度软件、并行存储软件,并行环境,操作系统,行业应用软件硬件部分:服务器、网络、存储数据中心服务部分:专业售后服务,专业应用调优、开发服务,专业设计咨询服务生命科学气象预报数值计算石油勘探生物物理汽车设计药物设计航空航天国防军事云计算中心/省市计算中心异构集群芯片设计基因信息影视渲染船舶制造高性能计算机是一个国家综合实力的体现HPC行业应用HPC超级计算快速发展我国超级计算系统研制过去十年,我国在顶尖超算系统研制处于国际领先行列我国超级计算系统部署情况2023.062022.11过去十年,我国超算系统部署数量处于国际领先行列我国应用情况(以入围ACM Gordon Bell Prize为例)2014地震模拟2016大气动力框架相场模拟海浪模拟地震模拟气候模拟20172018图计算框架量子模拟人造太阳第一性原理过去十年,依托我国顶尖超算系统,大规模并行应用设计和研制方面取得显著进步2021获得国际超算最高奖ACM Gordon Bell奖CPU计算节点硬件平台软件平台应用场景GPU计算节点整机柜产品并行文件存储高性能计算管理平台基础设施管理平台高性能计算行业应用大内存服务器通用服务器气象海洋生命科学物理化学材料科学工业仿真高能物理石油勘探动漫渲染天文遥感基础设施数据中心高密服务器HGX机型PCIe机型整机柜服务器高速网络InfiniBand网络RoCE网络全闪存储混闪存储集群管理集群调度作业提交精细计费应用特征分析平台系统环境微模块数据中心(MDC)液冷MDC 风液式解决方案操作系统编译器并行环境数学库HPC全栈方案架构HPC集群软硬件层次架构SAAS 并行环境PAAS 节点X86机架异构节点X86刀片Gauss Fluent Vasp Wien2k 基础设施供电系统(UPS&PDU)机房机柜系统(水冷/风冷)空调系统(精密空调)……Material studio Matlab 异构开发并行开发集群管理平台网络IB/OPA 千/万兆以太网络KVM IPMIIAAS 存储存储服务器IB/FC 存储阵列集群软件操作系统Linux(RedHat,CentOS…)Windows Server 编译环境环境工具并行文件系统调试工具应用软件应用开发……并行化应用模式应用结点间通讯系统与控制内部互连计算单元处理器,物理层设计,硬件管理Linux, Windows 操作系统与配置管理 操作系统中间件通讯函数库 (MPI, DVSM, PVM, etc) 集群控制与管理编译器,函数库,性能分析与调试工具开发工具作业管理批作业序列与调度,集群监控,系统扩展工具用户, ISV’s 软件工具 HPC 增值供应商 平台与网络供应商供电系统,制冷系统,机房环境基础架构机房方HPC集群硬件拓扑图通用计算——双路计算机架(高密度)、刀片通用计算——胖节点异构节点虚拟工作站区满足所有应用的可视化需求管理登陆机架高速计算网络并行存储区:满足所有应用的共享存储需求KVM、机柜、供电等附属设施CPU Memory I/O Channel ...CPU Memory I/O Channel CPU Memory I/O Channel CPUMemoryI/O Channel CPU Memory I/O Channel 网 络集群(Cluster):将多台计算机组织起来,通过网络连接在一起,进行协同工作,来模拟一台功能更强大的计算机,叫做集群。