高三数学重点知识点归纳精选5篇
- 格式:doc
- 大小:18.75 KB
- 文档页数:12
高三数学常见知识点归纳大全高三数学常见知识点归纳第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数;⑶是偶函数;⑷奇函数在原点有定义,则;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
高中数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是小编给大家带来的高三数学知识点,希望能帮助到大家大家!高三数学知识点11、三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法培养兴趣是关键。
学生对数学产生了兴趣,自然有动力去钻研。
如何培养兴趣呢?(1)欣赏数学的美感比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.学好数学,是现代公民的基本素养之一啊.(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
高三数学知识点21、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高三数学知识点31.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,,,,,…所构成的数列1,,,,,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
高三数学必考学问点复习梳理5篇与高一高二不同之处在于,高三复习学问是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的同学,此时需要进展查漏补缺,但也需要同时提升力气,填补学问、技能的空白。
下面就是我给大家带来的高三数学复习学问点,期望大能关怀到大家!高三数学复习学问点11、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。
组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。
元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a∉A。
3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一具体对象,那么x或者是A的元素,或者不是A的元素,两种状况必有一种且只有一种成立。
例如A={0,1,3,4},可知0∈A,6ÎA。
(2)互异性:“集合张的元素必需是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
4、集合的分类集合科依据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。
如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。
无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于全部点”“全部的三角形”,组成上述集合的元素不行数的,因此他们是无限集。
特殊的,我们把不含有任何元素的集合叫做空集,记错F,如{xÎR|+1=0}。
5、特定的集合的表示为了书写便利,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。
最新高考高三数学知识点总结5篇第一篇:高三数学知识点总结-函数函数是高中数学的基础,高三数学中也是重中之重。
重要的函数知识点有:函数的定义、函数的分类、函数的性质、函数的图像和函数的应用等。
1. 函数的定义函数是数学中一个非常基本和重要的概念,它是一种对应关系,将一个自变量对应一个因变量。
一个函数通常写作f(x) = y,其中x为自变量,y为因变量,f(x)表示函数名称。
函数的定义域是指所有能够被输入到函数中的自变量的值,而值域则是函数所有可能的因变量的值。
2. 函数的分类函数可以按照其输入和输出的类型分类为以下几种:一次函数、二次函数、指数函数、对数函数、三角函数以及复合函数等。
3. 函数的图像函数的图像就是在平面直角坐标系内把对应关系中的自变量和因变量的值画出来的结果。
通过画出函数的图像,我们可以更容易地理解函数的性质。
例子:考虑函数f(x) = x²,其图像可以描述为一个抛物线,开口朝上,顶点坐标为(0, 0)。
第二篇:高三数学知识点总结-三角函数三角函数是高中数学中另一个重要的知识点。
三角函数包括正弦、余弦、正切、余切、正割和余割等。
1. 正弦、余弦和正切函数正弦、余弦和正切函数是最基本的三角函数。
它们可以用三角形中各条边的比例去定义。
正弦函数f(x) = sin(x)定义为对边(x)除以斜边(h),余弦函数f(x)=cos(x)定义为邻边(a)除以斜边(h),正切函数f(x)=tan(x)定义为对边(x)除以邻边(a)。
2. 逆三角函数可以通过三角函数的函数关系,如sin²(x)+cos²(x)=1,推出三角函数的逆函数。
这些逆三角函数的命名包括反正弦、反余弦、反正切和反余切函数等。
用记号arcsin(x)、arccos(x)、arctan(x)和arcctan(x)等表示。
例子:cos(π/4) = sin(π/4) = 1/√2,因为90度的等腰直角三角形斜边长和两边之一的长度是相等的。
高三数学知识点归纳高三学生很快就会面临继续学业或事业的选择。
面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的选择。
下面小编为大家带来高三数学知识点归纳,希望大家喜欢!1.满足二元一次不等式(组)的x 和y 的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线 l:Ax+By+C=0(A、B 不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式 Ax+By+C>0(或≥0),另一部分对应二元一次不等式 Ax+By+C<0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入 Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。
“线定界,点定域”。
6.满足二元一次不等式(组)的整数 x 和y 的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。
所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式 Ax+By+C≥0 所表示的平面区域时,应把边界画成实线,画二元一次不等式 Ax+By+C>0 所表示的平面区域时,应把边界画成虚线。
8.若点 P(x0,y0)与点 P1(x1,y1)在直线 l:Ax+By+C=0 的同侧,则Ax0+By0+C 与 Ax1+Byl+C 符号相同;若点 P(x0,y0)与点 P1(x1,y1)在直线 l:Ax+By+C=0 的两侧,则 Ax0+By0+C 与 Ax1+Byl+C 符号相反。
高三上册数学知识点整理多篇在竞争异常激烈的现今时代,只有通过不断地学习,掌握尽可能多的技能知识,不断地充实自己,才能在竞争中立于不败之地。
下面小编为您推荐高三上册数学知识点整理三篇。
高三上册数学知识点一(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的`实际背景。
(2)一元二次不等式①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高三上册数学知识点二一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).两个防范(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.三种方法等比数列的判断方法有:(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q (q为非零常数且n≥2且n∈N_),则{an}是等比数列.(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.注:前两种方法也可用来证明一个数列为等比数列.高三上册数学知识点三1、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
高三数学重要知识点总结五篇课文高三数学重要知识点总结第一篇:函数与方程函数与方程是数学中最基础且重要的知识点之一。
函数是一种关系,它描述了输入和输出之间的关系。
而方程是一个等式,其中包含一个未知数,我们需要找到这个未知数的值使得等式成立。
在高三数学中,我们经常遇到的函数包括一次函数、二次函数、指数函数和对数函数等。
一次函数的表达式为y=ax+b,其中a和b为常数。
二次函数则是y=ax^2+bx+c,其中a、b和c为常数。
指数函数和对数函数是互逆关系,指数函数的表达式为y=a^x,对数函数的表达式为y=loga(x),其中a为一个正常数。
方程的解是使得等式成立的值。
我们需要通过一系列的解题方法来求解方程,比如配方法、因式分解、分式方程的通分和二次函数的根与系数之间的关系等。
在高三数学中,我们需要运用这些方法来解题,并且要理解解的意义和方法的适用条件。
第二篇:几何与图形几何与图形是数学中的重要分支之一。
几何研究空间和形状,图形则是几何的一种特殊形式。
高三数学中,我们需要掌握的几何知识包括线段的垂直、平行关系,三角形的定理,如勾股定理、正弦定理、余弦定理,以及圆的相关概念,如圆心角、弦、弧等。
在解决几何题目时,我们需要应用这些知识,运用勾股定理或者三角函数来求解各种角度或边长的关系。
同时,我们需要灵活运用画图、标注和推理等方法,来辅助解决几何问题。
第三篇:概率与统计概率与统计是数学中的另一重要分支。
概率是研究随机事件发生的可能性,统计则是研究收集、整理和分析数据的方法。
在高三数学中,我们需要掌握概率的基本概念和计算方法,如事件的概率、条件概率等。
我们还需要了解概率的性质,如概率的加法规则和乘法规则。
统计方面,我们需要学会如何收集和整理数据,如何通过图表和统计量来描述数据特征。
同时,我们需要学会如何应用概率的知识来分析数据,并作出合理的推断和判断。
第四篇:数列与数列极限数列是一系列按照一定规律排列的数,数列极限则是数列中的数随着项数无限增大或减小时的极限值。
高三必背数学复习知识点整理5篇分享高三数学复习知识点1等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分.不等式基本性质有:(1)a bb(2)a b,b ca c(传递性)(3)a ba+c b+c(c∈R)(4)c 0时,a bac bcc 0时,a bac运算性质有:(1)a b,c da+c b+d.(2)a b 0,c d 0ac bd.(3)a b 0an bn(n∈N,n 1).(4)a b 0 (n∈N,n 1).应注意,上述性质中,条件与结论的逻辑关系有两种:〝〞和〝〞即推出关系和等价关系.一般地,证明不等式就是从条件出发施行一系列的推出变换.解不等式就是施行一系列的等价变换.因此,要正确理解和应用不等式性质.②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立.(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小.(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系. 高三数学复习知识点21.对于函数f(_),如果对于定义域内任意一个_,都有f(-_)=-f(_),那么f(_)为奇函数;2.对于函数f(_),如果对于定义域内任意一个_,都有f(-_)=f(_),那么f(_)为偶函数;3.一般地,对于函数y=f(_),定义域内每一个自变量_,都有f(a+_)=2b-f(a-_),则y=f(_)的图象关于点(a,b)成中心对称;4.一般地,对于函数y=f(_),定义域内每一个自变量_都有f(a+_)=f(a-_),则它的图象关于_=a成轴对称.5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个_,则-_也一定是定义域内的一个自变量(即定义域关于原点对称). 高三数学复习知识点31向考生强调:确保简单题全拿分,中档题少失分>中要求〝高考数学考查中学的基础知识.基本技能的掌握程度〞,在〝考查基础知识的同时,注重考查能力〞.〝试题设计力求情境熟.入口宽.方法多.有层次.〞高考试题很大部分是简单题与中档题,所以,学生如果基础知识不掌握,那么还谈什么能力呢?因此建议:老师们一定要引导考生在最后一个学期,加强基础知识.基本方法的巩固,保证简单题全拿分.中档题少失分.对于难题,则要鼓励考生切不可放弃,第一小题要拿下,最后小题多角度地思考努力寻找恰当方法,尽可能多拿分,平时一定要养成不会做的难题拿步骤分的习惯.2引导考生学会反思归纳,学会反思命题者出题意图>指出,试题要〝注重通性通法〞.〝常规方法〞.根据此,老师们要做的是:首先,引导考生反思归纳,寻找〝通性通法〞〝常规方法〞.数学需要一定的训练量,几天不练就会感觉手生,但题海战术并不可取,因为题海战术会挤占反思的时间.因此平时在做练习模拟卷时,做完题目,除了订正,还应该反思.>中关于空间想象能力是这样叙述的:〝能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解.组合;会运用图形与图表等手段形象地揭示问题的本质.〞其次,引导考生反思命题人为什么出这个题,想考查什么?比如立体几何解答题为什么是这样出题的?显而易见,要考查空间想象能力.因此做完立体几何解答题后,要再审视一下,这个几何体是怎样构成的,几何元素间有哪些关系.再比如,对于很多考生而言,解析几何难于计算,为什么难?因为不会〝寻找与设计合理.简捷的运算途径〞!解析几何解答题没有过关的学生,引导他们反思下自己的运算求解能力,平时遇到计算时,不可畏难退却,认认真真地做透几个解析几何解答题,体会其中的基本技巧,运算求解能力也就培养起来了.3用考试说明,引导考生查漏补缺,提高复习效率用>引导学生查漏补缺,看看有哪些知识点考生已经达到了考试要求,有哪些还没有达到.比如〝会求一些简单的函数的值域〞,考生不仅要能够说出求值域的常用方法——观察法.配方法.换元法.图象法.单调性法等,还应该说得出与方法对应的经典例题.对于没有达到考试要求的知识点,就需要重点加强.专项突破. 对于不知道的〝数学概念.性质.法则.公式.公理.定理〞,需要认真地看教材,补上短板.比如〝理解函数的(小)值及其几何意义,并能求出函数的值〞,如果说不出最值的几何意义,就应该再看一遍教材上关于(小)的定义.通过研读考试说明,把考试说明先读厚再读薄,对基础知识.基本技能进行网络化的加工整理,发现知识内在的联系与规律,形成脉络清晰.主线突出的知识体系,从而有利于快速提取知识解决问题.比如关于〝恒成立问题〞的知识网络构建,应该知道有四种常见的解法,一是变量分离,二是转化为最值问题,三是图象法,四是转换主元法,应该知道四种解法内在的联系与区别是什么,除此之外,还应该知道〝恒成立问题〞与〝存在性问题〞的区别.建议考生画出这张知识网络,在考试中遇到〝恒成立问题〞,就可以根据这张网络快速探索合适的解题方法.数学对于文科生来说是个大难题,有些同学甚至〝谈数学色变〞.其实只要掌握恰当的学习方法,文科生一样可以学好数学并在高考中取得满意的分数.■杜绝负面的自我暗示首先对数学学习不要抱有放弃的想法.有些同学认为数学差一点没关系,只要在其他三门文科上多用功就可以把总分补回来,这种想法是非常错误的.我高三时的班主任曾经说过一个〝木桶原理〞:一只木桶盛水量的多少取决于它最短的一块木板.高考也是如此,只有各科全面发展才能取得好成绩.其次是要杜绝负面的自我暗示.高三一年会有许许多多的考试,不可能每一次都取得自己理想的成绩.在失败的时候不要有〝我肯定没希望了〞.〝我是学不好了〞这样的暗示,相反的,要对自己始终充满信心,最终成功会到你的身边.■抄笔记别丢了〝西瓜〞高考数学试卷中大部分的题目都是基础题,只要把这些基础题做好,分数便不会低了.要想做好基础题,平时上课时的听课效率便显得格外重要.一般教高三的都是有着丰富经验的老师,他们上课时的内容可谓是精华,认真听讲45分钟要比自己在家复习2个小时还要有效.听课时可以适当地做些笔记,但前提是不影响听课的效果.有些同学光顾着抄笔记却忽略了老师解题的思路,这样就是〝捡了芝麻丢了西瓜〞,反而有些得不偿失.■题目做两遍要想学好数学,平时的练习必不可少,但这并不意味着要进行题海战术,做练习也要讲究科学性.在选择参考书方面可以听一下老师的意见,一般来说老师会根据自己的教学方式和进度给出一定的建议,数量基本在1—2本左右,不要太多.在选好参考书以后要认真完整地做,每一本好的参考书都存在着一个知识体系,有些同学这本书做一点,那本书做一点,到最后做了许多本书但都没有做完,无法形成一个完整的知识体系,效果反而不好.做题的时候要多做简单题,并且要定好时间,这样可以提高解题速度.在高考前的冲刺阶段要保证1—2天做一套试卷来保持状态.最重要的是要通过做题发现并解决自己已有的问题,总结出各类题目的解题方法并且熟练掌握.在这里有两个小建议:一是在做填空选择题时可以在旁边的空白处写一些解题过程以方便以后复习;二是题目做两遍以上,可以加深印象.■应考时要舍得放弃对于大部分数学基础不是很扎实的同学来说,放弃最后两题应该是一个比较明智的选择.高考数学试卷的最后两题对于能力的要求较高,数学较弱的同学不要花太多的时间在上面,而应把精力放在前面的基础题上,这样成绩反而会有所提高.高考的大题目都是按过程给分的,所以万一遇到不会的题也不要空着,应根据题意尽量多写一些步骤.在对待粗心这个常见问题上,我有两个建议:一是少打草稿,把步骤都写在试卷上;二是规范草稿,让草稿一目了然,这样便不太会出现看错或抄错的现象了.考试中有时可以用代数字.特殊情况和计算器等方法来提高解题速度解决难题,但在考试过后一定要把题目正规的解题思路了解清楚.每一次考试的试卷和高考前各区的模拟卷都是珍贵的复习资料,一定要妥善保存.高三数学复习知识点4立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱.四棱柱.五棱柱等.表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥.四棱锥.五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态.四棱台.五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.高三数学复习知识点5①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高.斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高.侧棱.侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(_)(各个侧面的等腰三角形不知是否全等)ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:AB⊥CD,AC⊥BDBC⊥AD.令得,已知则.iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形.若对角线等,则为正方形._高三必背数学复习知识点整理5篇分享。
高三数学复习知识点总结最新精选5篇数学被很多学生认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的分量自是不清,很多学生也明白如果数学学不好的话想要考上理想的大学是天方夜谭,高三数学复习知识点11.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”;(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;(5)夹在两个平行平面间的平行线段相等;(6)经过平面外一点只有一个平面和已知平面平行。
高三数学复习知识点2不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。
因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。
在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。
不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
高三数学必考知识点总结【五篇】学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个方程式知识点,这样也方便同学们日后的复习。
高三数学知识点11、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
高三数学知识点2a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。
成立。
假设n=k时,等差数列的通项公式成立。
a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2n-1)]r不等于1时,S(n)=a[1-r]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。
高三数学复习资料(5篇)比方你写的C(4,1)就是指在4个里面选1个。
没有挨次(1个原来就没有挨次,但2个以上也同样不用考虑挨次问题。
) 你写的A(5,3)就是在5个里面选3个,但这3个不同的挨次算作不同的状况。
现举例说明A(5,3)和C(5,3)的区分。
如:12345这5个数,选其中的三个数,共有C(5,3)=10种选法。
列举为(123)、(124)、(125)、(134)、(135)、(145)、(234)、(235)、(245)、(345)共10种。
同样这5个数,假如组成没有复数字的三位数,就是A(5,3)=60种。
123、132、213、231、312、321也就是原来的一种组合如今变成了6种状况了。
公式更简洁。
C(4,1)=4/1=4C(5,3)=(5*4*3)/(3*2*1)C(7,2)=(7*6)/(2*1)也就是分子是下标依次递减相乘,乘的个数正好是上标的个数。
分母就是上标的阶乘。
A(5,3)=5*4*3A(8,6)=8*7*6*5*4*3A(4,2)=4*3也就是只有组合时分子的状况,没有分母。
高三数学复习资料2函数思想是指运用运动改变的观点,分析和讨论数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的互相转化。
数形结合思想中学数学讨论的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是查找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
特别与一般的思想用这种思想解选择题有时特殊有效,这是由于一个命题在普遍意义上成立时,在其特别状况下也必定成立,依据这一点,我们可以直接确定选择题中的正确选项。
高三数学知识点11.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b>0?;a-b=0?;a-b<0?.另外,若b>0,则有>1?;=1?;<1?.概括为:作差法,作商法,中间量法等.3.不等式的性质(1)对称性:a>b?;(2)传递性:a>b,b>c?;(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;(5)可乘方:a>b>0?(n∈N,n≥2);(6)可开方:a>b>0?(n∈N,n≥2).复习指导1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.3.“两条常用性质”(1)倒数性质:①a>b,ab>0?<;②a<0③a>b>0,0;④0(2)若a>b>0,m>0,则①真分数的性质:<;>(b-m>0);②假分数的性质:>;<(b-m>0).高三数学知识点21.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N_.(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_.(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项).注意:一个推导利用倒序相加法推导等差数列的前n项和公式:Sn=a1+a2+a3+…+an,①Sn=an+an-1+…+a1,②①+②得:Sn=n(a1+an)/2两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.高三数学知识点3定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
高中数学高考数学知识点归纳总结精华版高中数学是一门重要的学科,对于高考来说更是关键。
以下为大家精心归纳总结高考数学的重要知识点。
一、函数函数是高中数学的核心内容之一。
1、函数的概念:设 A、B 是非空数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质:单调性:如果对于定义域 I 内某个区间 D 上的任意两个自变量的值x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x)(或f(x)=f(x)),那么函数 f(x)就叫做偶函数(或奇函数)。
3、常见函数:一次函数:y = kx + b(k、b 为常数,k≠0)。
二次函数:y = ax²+ bx + c(a≠0),其图像是一条抛物线。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0)。
二、三角函数1、任意角和弧度制:了解任意角的概念,包括正角、负角和零角。
掌握弧度制与角度制的换算。
2、三角函数的定义:在平面直角坐标系中,设角α的终边上任意一点 P 的坐标为(x,y),它与原点的距离为 r(r =√(x²+ y²)),则sinα = y/r,cosα = x/r,tanα = y/x。
3、同角三角函数的基本关系:sin²α +cos²α = 1,tanα =sinα/cosα。
4、诱导公式:用于将不同象限的角的三角函数值进行转化。
5、三角函数的图像和性质:正弦函数 y = sin x:定义域为 R,值域为-1,1,周期为2π,是奇函数。
高三数学知识点归纳总结(优秀8篇)高三数学知识点归纳篇一高三上册数学知识点整理1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点。
3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:二次函数。
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
人教版高三数学知识点总结1、定义:用符号〉,=,〈号连接的式子叫不等式。
2、性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4、考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集高三数学知识点归纳总结篇二线线平行常用方法(1)定义:在同一平面内没有公共点的两条直线是平行直线。
(2)公理:在空间中平行于同一条直线的两只直线互相平行。
(3)初中所学平面几何中判断直线平行的方法(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。
高三数学知识点难点梳理最新5篇高三学生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的复习方法。
下面就是我给大家带来的高三数学知识点总结,希望能帮助到大家!高三数学知识点总结1定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高三数学知识点总结2正弦、余弦典型例题1.在△ABC中,∠C=90°,a=1,c=4,则sinA的值为2.已知α为锐角,且,则α的度数是()A.30°B.45°C.60°D.90°3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()A.75°B.90°C.105°D.120°4.若∠A为锐角,且,则A=()A.15°B.30°C.45°D.60°5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
高三数学知识点总结归纳三篇高三数学知识点总结高三数学是一个非常重要的阶段,它是数学学习的最后一步,也是数学知识体系的顶峰。
在高三学习数学,需要掌握一些基本的数学知识,例如三角函数、导数、微积分等。
本文将对高三数学知识点进行总结归纳,以便考生快速复习。
一、三角函数三角函数是高中数学的一个重要知识点,它包括正弦函数、余弦函数、正切函数和余切函数。
在高三学习三角函数时,需要掌握以下内容:1.1 角度制和弧度制角度制是平面直角坐标系中采用度作为单位,度数用符号“°”表示。
弧度制是以半径等于1的圆的周长作为单位,弧长用符号“rad”表示。
1.2 基本三角函数正弦函数是y=sin(x)函数,x表示的是弧度,y表示的是一个三角形的对边与斜边的比例关系。
余弦函数、正切函数和余切函数的定义方法类似,具体可以参考教材的讲解。
1.3 三角函数的性质三角函数有很多性质,例如周期性、奇偶性和单调性等。
加强对这些性质的认识,可以帮助我们更好地理解三角函数的图像和解题方法。
二、导数导数是数学中一个非常重要的概念,它与函数的变化率有关。
在高三学习导数时,需要掌握以下内容:2.1 导数的定义导数是函数y=f(x)在某一点x0的切线斜率。
它的定义式为:f'(x)=lim(f(x+Δx)-f(x))/Δx (Δx趋近于0)。
2.2 导数的求法导数可以通过求导公式或导数的定义来求。
其中,求导公式较为常用,掌握各类函数的求导公式可以帮助我们在解题时高效地计算导数。
2.3 导数的应用导数是解决一些实际问题时的强有力工具,例如最值问题和曲线的凹凸性等。
加强对导数的应用能力,可以帮助我们更好地应对高考试题。
三、微积分微积分是高中数学一个比较高级的知识点,主要包括微分和积分。
在高三学习微积分时,需要掌握以下内容:3.1 微分的定义微分是函数y=f(x)在某一点x0处的变化量。
它的定义式为:dy=f'(x0)dx。
3.2 微分的求法微分可以通过公式法或差值法来求。
高中数学知识点全总结一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
要点精讲:1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x 轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。
特别地,当直线l与x轴平行或重合时,规定α=0°.倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα(1)当直线l与x轴平行或重合时,α=0°,k=tan0°=0;(2)当直线l与x轴垂直时,α=90°,k不存在。
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。
3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。
4.两条直线的平行与垂直的判定(1)若l1,l2均存在斜率且不重合:注:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。
高三数学重点知识点归纳精选5篇
数学被很多学生认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的分量自是不清,很多学生也明白如果数学学不好的话想要考上理想的大学是天方夜谭,但是苦于无学习之法,那么高中数学都有哪些学习方法呢?下面就是给大家带来的高三数学知识点,希望能帮助到大家大家!
高三数学知识点1
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另
一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
高三数学知识点2
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。
因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。
在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。
不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。
解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。
在解不等式中,换元法和图解法是常用的技巧之一。
通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。
整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。
方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。
在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,
通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。
证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。
要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。
比较法的一般步骤是:作差(商)变形判断符号(值)。
高三数学知识点3
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等
函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数
导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理。