土壤污染的植物修复机理简介英文版
- 格式:ppt
- 大小:11.96 MB
- 文档页数:38
The science of phytoremediation 植物修复技术的科学原理植物修复技术(Phytoremediation)是指利用植物将有害物质从土壤、水中去除或转化为无害物质的一种环境修复技术。
这种技术具有成本低、对环境污染物无二次污染、延续性强等优点,近年来得到了广泛的应用和研究。
植物修复技术的原理主要有吸收、吸附、生物降解等三种方式,下面将从植物的各个层面来探讨这种技术的科学原理。
植物根系的吸收能力植物修复技术的前提是污染物必须能进入植物体内,进而被修复。
植物根系是污染物进入植物体内的主要通道。
植物根系主要由根毛和根尖组成,根毛是由根皮细胞伸长形成的纤毛状突起,其长度可达6倍根的长度,因此大大增加了吸收面积。
根毛可以通过质泵作用,将有机物、离子等有害物质带入植物体内。
根尖则负责植物往土壤中自由移动,将有害物质吸收进植物体内。
同时,根尖还具有抗压和抗裂功能,有利于根系在土壤中自由生长。
(我是一名AI语音助手,请勿模仿)植物组织的吸附能力有些植物具有极强的吸附能力,使得它们可以从水、土壤中吸附有害物质,并将其固定在植物组织中。
这种吸附是通过植物细胞壁中的负电荷来实现的,许多污染物是带正电荷的物质,因此可以被植物中的离子吸引,从而被固定在细胞壁上。
这种固定方式具有持久性和稳定性,可以更有效地清除有害物质。
植物代谢的生物降解能力植物修复技术最主要的原理之一是生物降解,即植物代谢能力将污染物分解为无害物质,从而达到修复效果。
植物代谢能力主要由植物中的酶催化来实现,能够加速并最终分解大部分污染物,从而产生无害物质。
此外,植物代谢过程中的合成和降解产物,还可以在生物地球化学循环中发挥一定的作用,使其回归到生态系统中,并用于植物生长、生态平衡等方面。
近年来,植物修复技术已经成为了环境修复领域实际性的一种技术,并取得了许多成功的案例。
例如,印度的多纳瓦尔纳核电站事故就是利用植物修复技术来处理生态环境的典型案例之一。
英语作文-土壤污染防治与修复方案Soil pollution is a critical issue that demands immediate attention and effective solutions. As the foundation of agriculture and essential for sustaining life, soil plays a pivotal role in ecosystem health and human well-being. However, rampant industrialization, urbanization, and agricultural practices have led to widespread contamination of soil, posing serious threats to the environment and public health. In this article, we will delve into strategies for preventing and remedying soil pollution.Firstly, prevention is paramount in addressing soil pollution. Implementing strict regulations on industrial waste disposal and promoting eco-friendly production methods can significantly reduce the introduction of harmful substances into the soil. Moreover, adopting sustainable agricultural practices such as organic farming, crop rotation, and integrated pest management can mitigate soil degradation and chemical contamination. Educating the public about the importance of soil conservation and fostering a culture of environmental responsibility are also crucial steps in preventing soil pollution.In addition to prevention, remediation efforts are essential for restoring contaminated soil and mitigating the adverse effects of pollution. One effective approach is phytoremediation, which utilizes plants to absorb, detoxify, or accumulate pollutants from the soil. Certain plant species, known as hyperaccumulators, have the ability to concentrate high levels of heavy metals or organic contaminants in their tissues, making them valuable tools for soil remediation. Furthermore, bioaugmentation involves introducing specialized microorganisms into contaminated soil to degrade pollutants and enhance soil fertility. This biological approach can be particularly effective in treating organic pollutants and petroleum hydrocarbons.Furthermore, soil erosion control measures such as afforestation, terracing, and contour plowing can help prevent the loss of topsoil and mitigate the spread of contaminants. By stabilizing soil structure and promoting vegetation growth, these techniques not only safeguard soil quality but also contribute to biodiversity conservation and carbon sequestration. Additionally, promoting the use of biodegradable materials andsustainable land management practices can reduce the accumulation of non-biodegradable waste in soil and minimize pollution risks.Moreover, fostering international cooperation and knowledge sharing is crucial in addressing the global challenge of soil pollution. By exchanging best practices, research findings, and technological innovations, countries can collaborate to develop effective strategies for soil protection and restoration. Furthermore, investing in research and development of advanced soil remediation technologies, such as nanoremediation and electrokinetic soil remediation, holds promise for more efficient and cost-effective solutions to soil pollution.In conclusion, soil pollution is a pressing environmental issue that requires concerted efforts from governments, industries, communities, and individuals. By prioritizing prevention, adopting sustainable practices, and implementing effective remediation strategies, we can safeguard soil quality, protect ecosystems, and ensure a sustainable future for generations to come. It is imperative that we act decisively and collectively to address soil pollution and preserve this invaluable resource for the well-being of our planet.。
第一章土壤环境污染概述第一节土壤的组成与性质土壤是岩石圈表面能够生长动物、植物的疏松表层,是陆生生物生活的基质,能提供生物生活所必须的矿质元素和水分。
一、土壤的基本结构和性质1、土壤的结构及组成土壤的剖面结构固体(无机和有机)土壤矿物质——土壤的“骨架”土壤液体土壤有机质——土壤的“肌肉”气体土壤液体——土壤的“血液”生物(动物、植物、微生物)2、土壤的性质最基本性质就是具有肥力。
土壤中各组分的组成及相互关系,形成了一定的土壤性质和土壤肥力,从而影响生物的生长。
土壤肥力即土壤满足生物生长发育对水、肥、气、热要求的能力。
二、土壤环境元素背景值和土壤环境容量1、土壤环境元素背景值又称土壤环境背景值。
指未受到污染土壤的化学元素的自然含量。
是自然成土因素和成土过程综合作用下的产物。
不同类型土壤,其环境背景值差别很大,包括范围值、平均中中位值等。
是土壤环境质量评价与管理的重要依据,是确定土壤环境容量、制定土壤环境标准的主要参考值。
2、土壤环境容量是指在人类生存和自然生态不致受害的前提下,土壤环境所能容纳污染物的最大负荷量。
是制定土壤环境标准的重要依据。
三、土壤在地球表层环境系统中的地位和作用土壤是生态系统中生物与无机环境相互作用的产物,是物质与能量交换的重要场所。
第二节土壤环境污染及其特点一、土壤污染的定义什么是土壤污染?目前还没有统一的定义。
一种看法认为,由于人类的活动向土壤添加有害化合物,此时土壤即受到污染。
这个定义的关键是存在有可鉴别的人为添加污染物,可视作为“绝对性”定义。
另一种是以特定的参照数据来加以判断的,如以背景值加两倍标准差为临界值,若超过了一数值,即认为该土壤为某元素所污染,这可视作为“相对性”定义。
第三种定义是不但要看含量的增加,还要看后果.即加入土壤的物质给生态系统造成了危害,此时才能称为污染,这可视作为”综合性”定义。
这三种定义的出发点虽然不同.但有一点却是相同的,即认为土壤中某种成分的含量明显高于原有含量时即构成了污染。
土壤修复中英词汇 Prepared on 22 November 2020英汉索引Aaboveground storage tank 地上储罐acceptable risk level 可接受风险水平*aeration zone 包气带air sparging 空气注入法air stripping 空气吹脱法ambient air of contaminated site 场地环境空气aquifer 含水层aquifuge 隔水层asbestos 石棉Bbackfill soil 回填土*bioattenuation 生物衰减biological remediation 生物修复biopiles 生物堆层法bioreactor 生物反应器*bioremediation 生物修复bioslurping 生物抽除法*biosparging 生物曝气法bioventing 生物通风法BTEX 苯系物buried depth of groundwater table 地下水埋藏深度Ccancer risk 致癌风险cancer slope factor 致癌斜率因子capillary zone 毛细带capping 帽封*carcinogenic potency factor 致癌强度系数case study 案例研究chemical oxidation 化学氧化法chemical remediation 化学修复*chlorinated diphenyl 氯化联苯circulating well 循环井法cleanup 清洁治理commercial land 商业用地community involvement 公众参与composting 堆肥法*condensed nuclear hydrocarbon 稠环烃confinement 限制construction completion 施工完成阶段construction landcontainment 围堵contaminant of concern 关注污染物contaminant transport model 污染物迁移模型contaminated site archive 污染场地档案contaminated site management 污染场地管理*contaminated site register 污染场地登记contaminated site report 污染场地申报contaminated site 污染场地cost-benefit analysis 成本-效益分析critical receptor 关键受体cyanide 氰化物Ddata collection 资料收集decision support 决策支持deep soil 深层土demonstration project for site remediation 场地修复示范工程dense non-aqueous phase liquid 高密度非水相液体detailed site environmental investigation 场地环境详细调查dioxin 二恶英Eecological receptor 生态受体ecological risk assessment 场地生态风险评估ecological risk 生态风险electrokinetic separation 电动分离法encapsulation 封装enclosure 围隔engineering acceptance monitoring 工程验收监测engineering control 工程控制environmental sensitive area 敏感环境区environmental site investigation 场地环境调查established technology 成型技术excavation and disposal/treatment 挖掘-处置/处理ex-situ remediation 异位修复ex-situ thermal treatment 异位热处理法exposure assessment model 暴露评估模型exposure assessment 暴露评估exposure concentration 暴露浓度exposure dose 暴露量exposure factor 暴露参数exposure frequency 暴露频率exposure pathway 暴露途径exposure period 暴露周期exposure scenario 暴露情景exposure 暴露Ffeasibility study for remediation 修复可行性研究*fused-ring aromatic compound 稠环芳烃Ggroundwater of contaminated site 场地地下水groundwater system 地下水系统groundwater table 潜水面Hhazard identification 危害识别hazard index 危害指数hazard quotient 危害商health risk assessment 场地健康风险评估health risk 健康风险heavy metal 重金属*hydraulic conductivity 水力传导系数hydraulic gradient 水力坡度Iincineration 焚烧indoor air 室内空气industrial land 工业用地innovative technology 新型技术*in-situ air stripping 原位吹脱法in-situ remediation 原位修复in-situ soil flushing 原位土壤冲涮法in-situ thermal treatment 原位热处理法inorganic pollutant 无机污染物interview 人员访谈*intrinsic remediation 内禀修复Jjudgemental sampling 专业判断法L*land treatment 土地处理landfarming 土地耕作法landfill 填埋land-use change 土地利用方式变更land-use classification 土地利用分类land-use planning 土地利用规划lead-based paint 含铅涂料life expectancy 期望寿命lifetime exposure 终生暴露light non-aqueous phase liquid 低密度非水相液体low temperature thermal desorption 低温热解吸法*low-temperature thermal volatilization 低温热挥发Mmaintenance of remediation 修复维护multiphase extraction 多相萃取法Nnatural and socio-economic information 自然和社会经济信息natural attenuation 自然衰减non-aqueous phase liquid 非水相液体non-cancer risk 非致癌风险Oon-site residual material 场地残余废弃污染物on-site test 现场检测organic pollutant 有机污染物outdoor air 室外空气Ppeer review 专家论证perched water 上层滞水permeability coefficient 渗透系数permeable bed 透水层permeable reactive barrier 可渗透反应墙persistent organic pollutant 持久性有机污染物pesticide 农药physical remediation 物理修复phytoremediation 植物修复polluter-pays principle 污染责任人付费原则pollution plume 污染扩散区polychlorinated biphenyl 多氯联苯polycyclic aromatic hydrocarbon 多环芳烃preliminary site environmental investigation 场地环境初步调查priority management site 优先管理场地Qqualitative risk assessment 定性风险评估quality assurance and quality control 质量保证和质量控制quantitative risk assessment 定量风险评估Rreceptor 受体recreational land 娱乐用地reference concentration 参考浓度*reference dose 参考剂量reference sampling site 对照采样点remedial technology 修复技术remedy construction 修复施工residential land 居住用地responsible party 污染场地责任人restriction on soil use 土地利用限制risk characterization 风险表征risk 风险S*safety factor 安全系数saturated zone 饱水带semivolatile organic compound 半挥发性有机化合物sensitive life stage 敏感生命阶段shallow soil 浅层土site activity information 场地生产活动相关记录site classification 场地分类site cleanup and remediation option 场地治理与修复方案site conception model 场地概念模型site environment 场地环境site environmental information 场地环境资料site environmental monitoring 场地环境监测site history investigation 场地历史调查site hydrogeological condition 场地水文地质条件site inspection 场地踏勘site investigation and assessment agency 场地调查评估机构site investigation monitoring 场地环境调查监测site monitoring for retrospective assessment 场地回顾性评估监测site remediation acceptance 场地修复验收site remediation monitoring 场地治理修复监测site remediation supervision 污染场地修复工程监理site risk assessment 场地风险评估site-specific parameter 场地特征参数site-use change information 场地利用变迁资料*soil bulk density 土壤容重soil density 土壤密度soil lithology 土壤岩性soil of contaminated site 场地土壤soil organic matter 土壤有机质soil pH 土壤 pHsoil porosity 土壤孔隙度soil property 土壤性质soil remediation 土壤修复*soil roasting 土壤煅焙soil screening value 土壤筛选值soil texture 土壤质地soil vapor extraction 土壤气相抽提法soil washing 土壤淋洗法soil water content 土壤含水量solidification/stabilization 固化/稳定化solvent extraction 溶剂萃取法stakeholder 利益相关方stratified sampling 分区布点法stratigraphic structure 地层结构supercritical water oxidation 超临界水氧化法surface soil 表层土surface water of contaminated site 场地地表水systematic random sampling 系统随机布点法systematic sampling 系统布点法Tthermal desorption 热解吸法*thermal stripping 热脱附thermal treatment 热处理法tiered investigation 分阶段调查total petroleum hydrocarbon 总石油烃toxicity assessment 毒性评估*treatment technology 处理技术Uuncertainty analysis 不确定性分析uncertainty factor 不确定性系数underground storage tank 地下储罐unsaturated zone 非饱水带V*vadose zone 渗流带vitrification 玻璃化作用法volatile organic compound 挥发性有机化合物Wwater table 地下水位。
土壤修复科技作文英文Soil, the foundation of our terrestrial ecosystems, is under threat from pollution and degradation. Innovative soil remediation technologies are emerging to address this crisis, promising a greener and more sustainable future.Advancements in nanotechnology have paved the way for the development of nanoremediation, where nanoparticles are usedto remove contaminants from the soil. These tiny particles have a large surface area, allowing for efficient absorption and degradation of pollutants.Bioremediation, another promising approach, harnesses the power of microorganisms to break down harmful substances inthe soil. By introducing specific bacteria or fungi, we can accelerate the natural process of decomposition, effectively cleaning the soil without the use of harsh chemicals.Phytoremediation, the use of plants to extract, stabilize, or degrade contaminants, is a natural and cost-effective method. Certain plants, known as hyperaccumulators, have the ability to absorb and store pollutants in their tissues, thereby purifying the soil.Soil amendments, such as the addition of organic matteror biochar, can improve soil structure and fertility, supporting the growth of beneficial microorganisms. This not only aids in the remediation process but also enhances thesoil's ability to support plant life.Remote sensing technology plays a crucial role in soil assessment, allowing for the early detection of contamination. Satellite imagery and drones can provide detailed maps of affected areas, guiding targeted remediation efforts.Education and public awareness are vital components ofsoil conservation. By understanding the importance of soil health, communities can take proactive steps to protect and restore their local environments.The integration of these technologies and practices iskey to effective soil remediation. As we continue to innovate and learn, the future of our soils looks increasingly promising, ensuring a healthy and productive landscape for generations to come.。
持久性有机污染物+ persistent organic pollutant修复目标+ remediation goal暴露途径+ exposure pathway人体健康风险评估+ human health risk assessment暴露评价+ exposure assessment土壤污染化学+ soil pollution chemistry生物修复+ bioremediation土壤改良+ soil amendment复合污染+ combined pollution有机污染物+ organic pollutant挥发性有机物+ volatile organic compounds土壤环境质量评价+ soil environmental quality assessment 土壤环境质量标准+ soil environmental quality standard 土壤环境容量+ soil environmental capacity土壤环境保护+ soil environmental protection植物修复+ phytoremediation土壤背景值+ soil background value地下水groundwater/ground water浅层水shallow water潜水unconfined water承压水confined water潜水含水层unconfined aquifer承压含水层confined aquifer包气带vadose zone饱和带saturation zone非饱和带unsaturated zone采样策略sampling strategy源解析source apportionment非系统性样点布设方式non-systematic sampling系统性样点布设方式systematic sampling各向异性heterogeneity各向同性homogeneity地质统计学geostatistics空间变异spatial variability场地特性site characterization背景值background level质量控制样品quality control sample土壤修复方法自然衰减natural attenuation生物修复bioremediation生物降解biodegradation生物转化biotransformation生物富集bioaccumulation/bioconcentration非生物降解abiotic degradation物化修复physical/chemical remediation生物强化/刺激技术biostimulation先锋物种pioneer species生态修复ecological restoration农艺修复agronomic remediation植物修复phytoremediation植物稳定化phytostabilization植物吸(提)取phytoextraction生物富集系数bioconcentration factor转运系数transfer coefficient超积累植物hyperaccumulator能源植物energy plant植物挥发phytovolatilization植物降解phytodegradation植物转化phytotransformation根际过滤rhizofiltration根际效应rhizosphere effect螯合诱导chelate-induced土壤蒸汽提取/汽提soil vapor extraction/air sparging(SVE/AS) 电动修复electrokinetic remediation土壤清洗soil washing土壤淋洗soil flushing土壤稳定化soil stabilization土壤固化soil solidification化学固定/稳定化chemical fixation/stabilization热解吸thermal desorption还原脱氯reductive dechlorination化学脱卤法chemical dehalogenation化学氧化chemical oxidationFenton试剂Fenton’s regent隔离层isolation layer泥浆反应器slurry reactor生物反应器bioreactor土地耕作land farming生物堆制/堆腐/堆肥法biopile/composting生物通风/土壤通气bioventing电磁波频率加热技术radio-wave heating共代谢cometabolism/co-metabolism固定化细胞反应器immobilized cell reactor好氧降解aerobic degradation厌氧降解anaerobic degradation光化学降解photochemical degradation换/客土法soil replacement基因工程菌genetically engineered microorganism渗透反应墙permeable reactive barrier(PRB) 慢速渗滤法slow rate infiltration(SRI)投菌法bioaugmentation土壤改良soil amendment土壤改良剂soil amendment agent异位修复ex-situ remediation原位修复in-situ remediation现场修复on-site remediation离场修复off-site remediation联合/协同修复combined remediation植物基因工程技术plant genetic engineering 转基因植物transgenic plant制备床法prepared bed真菌修复fungal remediation根际修复rhizoremediation超临界萃取supercritical fluid extraction(SFE) 玻璃化作用vitrification移动式处理系统mobile treatment instrument 微生态环境micro-ecological environment工程化控制engineering control修复目标remedial goal场地环境评价 Environmental Site Assessment(ESA) 焚烧 Incineration粒径分布grain size distribution粘土含量clay content阳离子交换量cation exchange capacity(CEC)疏水性有机物hydrophobic organic随机样品grab sample。
第二章、污染土壤的植物修复---2(第一节基本概念和修复机理第二节污染土壤修复模式第一节基本概念和修复机理植物修复(phytoremediation): 利用植物及其根际圈微生物体系的吸收、挥发和转化、降解等作用来清除污染环境中的污染物质。
植物修复发展历程1、无意识地利用植物处理排泄物2、20世纪初,有意识地利用植物生态系统处理废弃物和污水无害化3、1970s后,发展污水的土地处理系统,成为城市生活废水的处理技术;废弃矿山的复垦,污泥的处理和农业应用,植物耐性机理的研究1980s, Chaney 提出利用超积累植物清除土壤重金属污染,形成植物修复概念。
植物对污染物的修复机理---有机物的吸收积累和代谢如图上1、某些植物能在体内代谢或矿化有机物,使其失活;2、但多数研究只证明了植物仅能通过酶催化氧化降解有机物;3、降解产物的进一步深度氧化过程研究还很缺乏;4、为提高植物修复效率,可利用基因工程技术增强植物的降解能力.植物对有机污染物的吸收途径1、对气态污染物的粘附和吸收2、对水溶态污染物的吸收气态污染物:植物粘附污染物的数量, 主要决定于植物表面积的大小和粗糙程度, 某些植物还可分泌油脂、黏液, 如去杉、油松等;气孔是叶片吸收污染物的主要部位, 但高浓度污染物可对叶片造成损害, 如二氧化硫可导致植物气孔张开和关闭的机能瘫痪, 臭氧可损害叶片的栅栏组织.水溶态污染物1、主要通过根吸收2、叶片也能吸收水溶态物质水溶态的污染物到达根表面,主要有两条途径:一条是质体流途径(massflow),即污染物随蒸腾拉力,在植物吸收水分时与水一起到达植物根部;另一条是扩散途径(diffusion),即通过扩散到达根表面。
叶片对农药通过气孔吸收与角质层吸收。
附着性能是影响药效的重要因素。
表面活性剂能显著降低表面张力,改善药液在叶面的附着性, 从而提高吸收。
如: 刘支前等发现不加任何表面活性剂时,草甘膦药液不能直接经蚕豆叶面气孔吸收;添加0.5%的有机硅表面活性剂后,气孔吸收率可达85.4%。
土地生态修复英语作文Land Ecological Restoration。
Land ecological restoration refers to the process of repairing and rehabilitating degraded land to its original ecological state. As the global population continues togrow and human activities intensify, land degradation has become a critical issue that needs urgent attention. In order to address this problem, land ecological restoration has gained increasing attention and has become a crucialpart of sustainable development.There are various causes of land degradation, including deforestation, overgrazing, urbanization, and improper land management practices. These activities lead to soil erosion, desertification, loss of biodiversity, and other negative environmental impacts. Land ecological restoration aims to reverse these effects and restore the health andproductivity of the land.One effective method of land ecological restoration is reforestation. Trees play a vital role in maintaining the ecological balance of an area. They prevent soil erosion, provide habitat for wildlife, and contribute to the overall health of the ecosystem. By planting trees in degraded areas, we can restore the soil's fertility, reduce erosion, and enhance biodiversity.Another important aspect of land ecological restoration is the conservation of water resources. Water scarcity is a pressing issue in many regions around the world, and restoring degraded land can help alleviate this problem. By implementing measures such as rainwater harvesting, constructing terraces to prevent water runoff, andrestoring wetlands, we can improve water availability and quality.In addition to reforestation and water conservation, sustainable land management practices are crucial for land ecological restoration. This includes adopting organic farming methods, practicing crop rotation, and usingnatural fertilizers. These practices not only improve soilhealth but also reduce the use of harmful chemicals and pesticides, thus protecting the environment and human health.Furthermore, involving local communities in land ecological restoration projects is essential for their success. Local knowledge and expertise can contribute tothe effective implementation of restoration efforts. Additionally, engaging communities in the process cancreate a sense of ownership and responsibility, ensuringthe long-term sustainability of the restored land.Land ecological restoration not only benefits the environment but also has numerous socio-economic advantages. Restoring degraded land can improve agricultural productivity, increase employment opportunities, and enhance food security. It also contributes to climate change mitigation by sequestering carbon dioxide from the atmosphere.In conclusion, land ecological restoration is acritical step towards achieving sustainable development. Byaddressing the causes of land degradation and implementing effective restoration strategies, we can restore the health and productivity of degraded land. Through reforestation, water conservation, sustainable land management practices, and community involvement, we can create a more sustainable future and ensure the well-being of both the environment and society.。
有机污染物污染土壤环境的植物修复机理
有机污染物污染土壤环境的植物修复机理
利用活的生物体对有毒有机物污染土壤环境的修复是一种被人们认为安全可靠的方法.植物修复是生物修复研究的热点.植物修复的机理包括植物对有机污染物的直接吸收、植物根系分泌物、微生物对根际环境中有机污染物降解的促进作用.
作者:李兆君马国瑞 LI Zhao-jun MA Guo-rui 作者单位:浙江大学,环资学院资科系,浙江,杭州,310029 刊名:土壤通报ISTIC PKU 英文刊名: CHINESE JOURNAL OF SOIL SCIENCE 年,卷(期):2005 36(3) 分类号: X592 关键词:有毒有机物土壤环境生物修复。