超纯水设备用小型反渗透技术
- 格式:ppt
- 大小:141.50 KB
- 文档页数:11
二级反渗透EDI超纯水设备工艺流程介绍EDI超纯水设备是一种应用于电子、化工、制药等领域的反渗透纯水设备。
其工艺流程包括预处理、反渗透、EDI、精处理等环节。
下面我来详细介绍EDI超纯水设备工艺流程的每个环节。
一、预处理环节:预处理环节的主要作用是去除水中的悬浮物、有机物、胶体物和部分溶解物等杂质,以减少对反渗透膜的污染,保护膜的使用寿命。
预处理设备通常包括砂滤器、活性炭过滤器和软化器等。
首先,水经过砂滤器,通过物理过滤作用去除较大的颗粒物;然后,水进入活性炭过滤器,去除水中的有机物和残留的氯;最后,水进入软化器,去除水中的硬度物质,例如钙、镁离子等。
二、反渗透环节:反渗透环节是实现水的初步纯化,使大部分离子和溶解物被拦截,产生低盐度的RO水。
反渗透设备通常由膜组件、高压泵和控制系统等组成。
在反渗透膜作用下,水中的动力学压力将驱使水分子通过膜的微孔,而溶质则被阻拦在膜的一侧。
这样,大部分盐离子、微生物、有机物等杂质被拦截在膜的一侧,产生的RO水具有较低的电导率和溶质浓度。
三、EDI环节:四、精处理环节:精处理环节主要是对经过EDI的超纯水进行精确控制和调整,以确保所需的纯度和质量。
精处理设备通常包括精密过滤器、紫外线杀菌器、臭氧发生器和加热杀菌装置等。
首先,超纯水经过精密过滤器,去除水中的微小颗粒和细菌;然后,通过紫外线杀菌器进行杀菌消毒;接着,使用臭氧发生器进行进一步的杀菌和氧化处理;最后,超纯水经过加热杀菌装置,以确保水的温度和卫生要求。
以上就是EDI超纯水设备工艺流程的介绍。
通过预处理、反渗透、EDI和精处理等环节的连续作用,EDI超纯水设备能够将普通自来水中的杂质和溶质进行有效去除,得到电阻率高、离子含量低的纯净水,从而满足不同领域对高纯水质的要求。
反渗透水处理技术反渗透水处理技术是在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来。
由于反渗透膜的膜孔径非常小(仅为10A左右),因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率高达97%-98%)。
反渗透是目前高纯水设备中应用最广泛的一种脱盐技术,它的分离对象是溶液中的离子范围和分子量几百的有机物;反渗透(RO)、超过滤(UF)、微孔膜过滤(MF)和电渗析(EDI)技术都属于膜分离技术。
目前反渗透水处理常用的设备系统有以下几种:1、超纯水制备原理反渗透水处理设备通常由原水预处理系统、反渗透纯化系统、超纯化后处理系统三部分组成。
预处理的目的主要是使原水达到反渗透膜分离组件的进水要求,保证反渗透纯化系统的稳定运行。
反渗透膜系统是一次性去除原水中98%以上离子、有机物及100%微生物(理论上)最经济高效的纯化方法。
超纯化后处理系统通过多种集成技术进一步去除反渗透纯水中尚存的微量离子、有机物等杂质,以满足不同用途的最终水质指标要求。
2、原水预处理系统反渗透水处理设备的预处理系统通常由聚丙烯纤维(PP)过滤器和活性炭(AC)过滤器组成。
对硬度较高的原水还需加装软化树脂过滤器。
PP滤芯可高效去除原水中5μm以上的机械颗粒杂质、铁锈及大的胶状物等污染物,保护后续过滤器,其特点是纳污量大, 价格低廉。
AC活性炭滤芯可高效吸附原水中余氯和部分有机物、胶体,保护聚酰胺反渗透复合膜免遭余氯氧化。
软化树脂可脱除原水中大部分钙镁离子,防止后续RO膜表面结垢堵塞,提高水的回收率。
3、反渗透水处理纯化系统反渗透(Reverse Osmosis,简称RO)是以压力差为推动力的一种高新膜分离技术,具有一次分离度高、无相变、简单高效的特点。
反渗透膜“孔径”已小至纳米(1nm=10-9m),在扫描电镜下无法看到表面任何“过滤”小孔。
在高于原水渗透压的操作压力下,水分子可反渗透通过RO半透膜,产出纯水,而原水中的大量无机离子、有机物、胶体、微生物、热原等被RO膜截留。
超纯水设备的工作原理超纯水设备是一种高效净水设备,通过一系列的物理、化学和生物处理过程,将自来水或其他水源中的杂质、溶解物、微生物等去除,从而得到超纯水。
本文将从超纯水设备的工作原理、主要组成部分和应用领域等方面进行介绍。
一、工作原理超纯水设备的工作原理主要包括预处理、反渗透和混床处理等几个步骤。
1.预处理:自来水中常含有悬浮物、有机物、重金属离子等杂质,需要通过预处理来去除这些杂质。
预处理包括颗粒物过滤、活性炭吸附、软化处理等,通过这些处理步骤可以有效去除水中的杂质。
2.反渗透:反渗透是超纯水设备的核心工艺,通过反渗透膜来分离水中的溶解物、离子和微生物等。
反渗透膜是一种半透膜,具有较小的孔径,可以将溶解物和离子等大分子物质截留在膜表面,而将水分子通过膜孔径,从而实现对水的净化。
3.混床处理:混床处理是为了进一步提高水的纯度。
混床处理利用了阳离子交换树脂和阴离子交换树脂,通过树脂对离子的选择性吸附来去除水中的离子。
阳离子交换树脂对阴离子有选择性吸附作用,阴离子交换树脂对阳离子有选择性吸附作用,通过这种方式可以将水中的离子去除,得到更纯净的水。
二、主要组成部分超纯水设备主要由预处理系统、反渗透系统、混床系统和管路系统等组成。
1.预处理系统:预处理系统包括颗粒物过滤器、活性炭吸附器、软化器等。
颗粒物过滤器通过滤网去除水中的悬浮物,活性炭吸附器通过活性炭吸附去除水中的有机物,软化器通过树脂交换去除水中的硬度离子。
2.反渗透系统:反渗透系统主要由反渗透膜组成,反渗透膜通过膜孔径的选择性分离去除水中的溶解物和离子等。
3.混床系统:混床系统包括阳离子交换柱和阴离子交换柱,通过树脂的选择性吸附去除水中的离子。
4.管路系统:管路系统将各个组件连接在一起,形成一个完整的水处理系统。
三、应用领域超纯水设备广泛应用于实验室、制药、电子、化工、电力等领域。
1.实验室:实验室需要使用纯净水来进行实验和分析,超纯水设备可以提供高纯度的水源,保证实验的准确性和可靠性。
超纯水处理原理, 工艺流程及技术简介1.超纯水制备原理威立雅实验室超纯水器通常由原水预处理系统、反渗透纯化系统、超纯化后处理系统三部分组成。
预处理的目的主要是使原水达到反渗透膜分离组件的进水要求,保证反渗透纯化系统的稳定运行。
反渗透膜系统是一次性去除原水中98%以上离子、有机物及100%微生物(理论上)最经济高效的纯化方法。
超纯化后处理系统通过多种集成技术进一步去除反渗透纯水中尚存的微量离子、有机物等杂质,以满足不同用途的最终水质指标要求。
2.原水预处理系统预处理系统通常由聚丙烯纤维(PP)过滤器和活性炭(AC)过滤器组成。
对硬度较高的原水还需加装软化树脂过滤器。
PP滤芯可高效去除原水中5μm以上的机械颗粒杂质、铁锈及大的胶状物等污染物,保护后续过滤器,其特点是纳污量大, 价格低廉。
AC活性炭滤芯可高效吸附原水中余氯和部分有机物、胶体,保护聚酰胺反渗透复合膜免遭余氯氧化。
软化树脂可脱除原水中大部分钙镁离子,防止后续RO膜表面结垢堵塞,提高水的回收率。
3.反渗透纯化系统反渗透(Reverse Osmosis,简称RO)是以压力差为推动力的一种高新膜分离技术,具有一次分离度高、无相变、简单高效的特点。
反渗透膜“孔径”已小至纳米(1nm=10-9m),在扫描电镜下无法看到表面任何“过滤”小孔。
在高于原水渗透压的操作压力下,水分子可反渗透通过RO半透膜,产出纯水,而原水中的大量无机离子、有机物、胶体、微生物、热原等被RO膜截留。
通常当原水电导率<200μS/cm时,一级RO纯水电导率≤5μs/cm,符合实验室三级用水标准。
对于原水电导率高的地区,为节省后续混床离子交换树脂更换成本,提高纯水水质,客户可考虑选择二级反渗透纯化系统,二级RO纯水电导率约1~5μS/cm,与原水水质有关。
4.超纯化后处理系统①混床离子交换纯化柱混床离子交换纯化柱由阴离子交换树脂和阳离子交换树脂按比例混合而成。
阳离子交换树脂用其H+交换去除水中的阳离子,阴离子交换树脂用其OH-交换去除水中的阴离子,在混床树脂中被交换出来的H+和OH-结合生成H2O,因此混床离子交换纯化柱可用来深度去除RO纯水中尚存的微量离子。
EDI超纯水设备工艺介绍与操作说明1. 引言EDI(Electrodeionization)技术是一种高效、低成本的水处理技术,通过电场和离子交换膜的作用,将离子从水中去除,从而获得超纯水。
本文将介绍EDI超纯水设备的工艺流程,以及该设备的操作方法和注意事项。
2. 设备工艺流程EDI超纯水设备的工艺流程如下所示:1.预处理:首先,需要对进水进行预处理,包括去除悬浮物、有机物和游离氯等。
这可以通过沉淀、过滤和活性炭吸附等步骤来实现。
2.反渗透:接下来,将预处理后的水进一步处理,使用反渗透(RO)膜去除大部分的离子和溶解物质。
RO膜是一种半透膜,能够过滤掉离子和溶解物,但保留水分子。
3.电去离子:RO膜后的水进入EDI单元,EDI单元由一个阳离子交换膜和一个阴离子交换膜组成。
水分子在膜间通过强电场作用下离子交换膜,从而将阳离子和阴离子分离开。
最终获得高纯度的超纯水。
4.消毒:得到的超纯水需要进行消毒处理,以确保无菌纯净。
常见的消毒方法包括紫外线照射和臭氧处理。
3. 设备操作说明EDI超纯水设备的操作步骤如下:1.开机准备:检查设备是否完好,并确保其连接正常。
检查预处理系统和反渗透系统的运行状态。
2.开启预处理系统:按照预处理系统的操作说明,将预处理设备打开。
确保预处理设备正常运行,对进水进行必要的处理。
3.开启反渗透系统:按照反渗透系统的操作说明,将反渗透设备打开。
调整系统参数,确保RO膜的正常运行。
监测压力、流量和浓度等指标,确保系统工作正常。
4.开启EDI单元:打开EDI单元,并调整电场强度。
根据设备的说明书设置电场强度和运行参数。
5.监测参数:定期监测超纯水输出的参数,包括电导率、溶解氧等。
确保超纯水质量符合要求。
6.设备维护:定期维护设备,包括清洗预处理系统、反渗透系统和EDI单元。
定期更换膜元件和离子交换树脂,以保证设备的正常运行。
7.关闭设备:当设备不再使用时,按照操作规程关闭设备。
先关闭EDI单元,再关闭反渗透系统和预处理系统。
milli-q超纯水仪工作原理一、引言milli-q超纯水仪是一种用于制备高纯度水的设备,广泛应用于实验室、医药、生物技术等领域。
本文将介绍milli-q超纯水仪的工作原理。
二、工作原理milli-q超纯水仪的工作原理主要包括预处理系统、反渗透膜系统、离子交换树脂系统和纯化柱系统。
1. 预处理系统进水经过预处理系统,去除悬浮物、胶体物质、有机物和微生物等杂质。
预处理系统包括粗颗粒过滤器、活性炭过滤器和微孔过滤器。
粗颗粒过滤器能够去除大颗粒的悬浮物,活性炭过滤器则能吸附有机物和余氯,微孔过滤器则能去除微生物和细菌。
2. 反渗透膜系统经过预处理后的水进入反渗透膜系统。
反渗透膜是一种过滤水的膜,具有微孔结构,能够有效去除水中的溶解物质、离子和微生物。
水在反渗透膜上形成一定压力,通过膜的微孔进入膜内,而溶解物质、离子和微生物则被滞留在膜外形成浓缩液。
经过反渗透膜系统的处理,水质得到明显改善。
3. 离子交换树脂系统反渗透膜系统处理后的水进入离子交换树脂系统。
离子交换树脂是一种能够选择性吸附或释放离子的材料。
水中的离子通过树脂床层时,与树脂上的离子发生交换作用,使水中的离子得到进一步去除或净化。
4. 纯化柱系统离子交换树脂系统处理后的水进入纯化柱系统,通过特殊的吸附剂进一步去除残余的有机物和微量离子。
纯化柱系统的吸附剂能够高效地吸附有机物和微量离子,使水质达到超纯水的要求。
三、总结milli-q超纯水仪通过预处理系统去除水中的悬浮物、胶体物质、有机物和微生物,然后通过反渗透膜系统去除溶解物质、离子和微生物,接着经过离子交换树脂系统去除离子,最后通过纯化柱系统去除残余的有机物和微量离子,从而制备出高纯度的水。
这些系统的相互配合使得milli-q超纯水仪能够高效地制备出高质量的水,为实验室和各个行业提供了可靠的实验用水。
反渗透设备反渗透是一种借助于选择透过(半透过)性膜的工力能以压力为推动力的膜分离技术,当系统中所加的压力大于进水溶液渗透压时,水分子不断地透过膜,经过产水流道流入中心管,然后在一端流出水中的杂质,如离子、有机物、细菌、病毒等,被截留在膜的进水侧,然后在浓水出水端流出,从而达到分离净化目的。
简介反渗透设备是将原水经过精细过滤器、颗粒活性碳过滤器、压缩活性碳过滤器等,再通过泵加压,利用孔径为1/10000μm(相当于大肠杆菌大小的1/6000,病毒的1/300)的反渗透膜(RO膜),使较高浓度的水变为低浓度水,同时将工业污染物、重金属、细菌、病毒等大量混入水中的杂质全部隔离,从而达到饮用规定的理化指标及卫生标准,产出至清至纯的水,是人体及时补充优质水份的最佳选择.由于RO反渗透技术生产的水纯净度是目前人类掌握的一切制水技术中最高的,洁净度几乎达到100%,所以人们称这种产水机器为反渗透纯净水机。
反渗透设备应用膜分离技术,能有效地去除水中的带电离子、无机物、胶体微粒、细菌及有机物质等。
是高纯水制备、苦咸水脱盐和废水处理工艺中的最佳设备。
广泛用于电子、医药、食品、轻纺、化工、发电等领域。
仿生来源生活在海岸边的海鸥,依靠喝海水可以补充身体的水分。
1950年美国科学家DR.S.Sourirajan在观察海鸥时发现,海鸥在掠过海面时会啜起一大口海水,在几秒钟的间隔后,吐出一小口的海水。
他感到十分的困惑,因为陆生由肺呼吸的动物是绝对无法饮用含盐量很高的海水的。
后经过对海鸥的解剖发现,海鸥并没有直接把海水喝下,而是把海水存在喉管里,海鸥喉管的结构是由一层层的粘膜组织构成的,海水经由海鸥吸入体内后加压,再经由压力作用将水分子贯穿渗透过粘膜转化为淡水,海鸥把经过粘膜组织过滤的淡水吸收到身体内部,然后把剩下的高浓度海水再吐出来,海鸥之所以能喝海水的奥秘就在这里。
这也就是反渗透法的基本理论架构。
系统组成预处理系统一般包括原水泵、加药装置、石英砂过滤器、活性炭过滤器、精密过滤器等。
二级反渗透EDI超纯水设备工艺流程介绍一、工艺简介二级反渗透EDI超纯水设备工艺是基于反渗透水处理工艺和电离交换技术的结合,用于制备超纯水的一种高效工艺。
其特点是能够将反渗透水处理后的水品质再次提高,去除更多的离子和微量有机物,生产出更纯净的超纯水。
二、工艺流程1.原水处理原水处理是将原水进行预处理,去除其中的悬浮物、有机物、胶体、微生物、硬度物质等杂质。
一般包括混凝、絮凝、沉淀、过滤等处理工艺。
这一步的目的是保护后续处理设备,避免被污染和堵塞。
2.一级反渗透处理一级反渗透处理是通过反渗透设备(RO设备)进一步去除原水中的大分子有机物、无机盐、微生物等。
RO设备通过将水推动通过半透膜,使水从高浓度背景溶液向低浓度背景溶液扩散,实现了去除溶解物质的目的。
这一步的主要产物是反渗透水(RO水)。
3.再生反洗再生反洗是对RO设备进行清洗和恢复脱盐能力的步骤。
通过对RO设备进行反洗,可以去除设备表面的污垢和颗粒,恢复膜的通透性,并增加RO设备的使用寿命。
4.二级反渗透处理5.EDI处理EDI(Electrodeionization)处理是指通过电化学去离子技术进一步去除水中的离子。
EDI设备由正负电极和离子交换膜组成,在电场作用下,水中的离子会向正负极运动,通过离子交换膜的作用,离子会被高效地去除,从而实现水的去离子。
这一步的主要产物是EDI水。
6.产水处理产水处理是对EDI水进行净化和消毒的步骤。
通常会采用活性炭过滤、微孔滤膜和紫外线灭菌等工艺,以保证最终产水的纯净度和安全性。
经过产水处理后,最终得到的产物就是符合超纯水标准的EDI超纯水。
三、工艺优势1.高处理效率:二级反渗透EDI超纯水设备工艺相比单级反渗透设备工艺,可以进一步提高水的纯净度。
2.低成本:相对于其他超纯水处理工艺,二级反渗透EDI超纯水设备工艺的投资和运行成本相对较低。
3.环保可持续:工艺中没有化学药剂的使用,不会造成二次污染,符合环保要求。
电子工业超纯水设备新工艺反渗透技术是目前电子工业超纯水设备中最先进的处理工艺同时也是处理效果最理想的处理工艺已经到达广泛应用。
反渗透(简称RO)是膜分离技术的一种。
其原理是:用足够的压力使溶液中的溶剂(通常指水)通过反渗透膜分离出水,因它的运行与自然界的正常渗透过程相反,故称反渗透(或称逆渗透)。
随着膜技术的发展,膜性能不断提高,反渗透技术将发展成为进行分离、分级、提纯和富集的化工分离新技术。
反渗透技术的主要特点:能耗低、结构紧凑、操作简单、易维修、自动化程度高、不污染环境。
反渗透技术广泛应用于给水处理、城市自来水的净化、制取电力、电子、医药、医疗和食品等行业的纯水及超纯水、注射用水和食用纯水的制备;海水和苦咸水的淡化;制取饮用水等。
反渗透系统由其预处理及反渗透装置和后处理三部分组成。
反渗透系统的核心是反渗透装置,预处理是反渗透装置能否长期稳定运行的前提,后处理用以满足不同处理对象的最终产水水质指标。
反渗透(膜分离)法超纯水制造技术: 反渗透是用足够的压力使溶液中的溶剂(一般常指水)通过反渗透膜(一种半透膜)而分离出来,方向与渗透方向相反,可使用大于渗透压的反渗透法进行分离、提纯和浓缩溶液。
反渗透膜的主要分离对象是溶液中的离子范围。
反渗透法分离过程有如下优点:①不需加热、没有相变;②能耗少;过程连续稳定;③设备体积小、操作简单,适应性强;④对环境不产生污染。
反渗透纯水系统根据不同的源水水质采用不同的工艺。
一般自来水经一级反渗透系统处理后,产水电导率<10-20μS/cm,经二级反渗透系统后产水电导率<5μS/cm甚至更低,在反渗透系统后辅以离子交换设备或EDI设备可以制备超纯水,使电阻率高达18兆欧姆.厘米。
反渗透膜老化或受污染后,产水质量会下降. 反渗透超纯水设备: 反渗透水处理设备(膜分离)技术的应用使反渗透超纯水设备从传统的阳离子交换器、脱碳、阴离子交换器、复合离子交换器得到了一次进步。
近年来开始在国外推广应用的EDI(电去离子)技术,则是超纯水制造技术的一次革命,从此进入了一个无需再生化学品,而能生产出高达18MΩ•CM的超纯水,用于半导体、集成电路等行业。