最新北师大版初中数学八年级上册《勾股定理》教材分析优秀名师资料
- 格式:doc
- 大小:16.50 KB
- 文档页数:5
第一章勾股定理3 勾股定理的应用教学目标1.利用勾股定理及其逆定理解决简单的实际问题.2.通过观察图形,探索图形间的关系,发展学生的空间观念,在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.教学重难点重点:构建直角三角形,利用勾股定理及其逆定理解决实际问题.难点:从实际问题中合理抽象出数学模型.教学过程导入新课游乐场有一个圆柱形的大型玩具,如图所示,现要从点A开始环绕圆柱侧面修建梯子,正好到达A点的正上方B点,已知圆柱形玩具的底面周长是12米,高AB为5米,那么梯子的长度是多少米?探究新知一、合作探究【探究1】确定立体物体表面上两点之间的最短距离.【例1】如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(1)在你自己做的圆柱上,尝试从点A到点B沿圆柱侧面画几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?你画对了吗?(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?∵AB2 = 122+92,∴AB = 15(cm).答:蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是15 cm.变式训练:如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm.如果一根细线从点P开始经过四个侧面绕一圈到达点Q,那么所用细线最短需要_________cm.答案:13【探究2】应用勾股定理解决实际问题【例2】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.【解】设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt△ACE中,∠AEC = 90°,由勾股定理得AE2+CE2 = AC2,即(x-1)2+32 = x2,解得x = 5.故滑道AC的长度为5 m.变式训练:在一次消防演习中,消防员架起一架25米长的云梯,如图所示那样斜靠在一面墙上,梯子底端离墙7米.(1)这架云梯的顶端距地面有多高?(2)如果消防员接到命令,要把云梯的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?解:(1)由题图可以看出云梯、墙、地面可围成一个直角三角形,即云梯为斜边,云梯底部到墙的线段为一条直角边,云梯顶端到地面的线段为另一条直角边.根据题意252-72 = 242,所以云梯顶端距地面有24米.(2)当云梯顶端下降4米后,云梯顶部到地面的距离为20米.因为252-202 = 152,且15-7 = 8(米),所以云梯底部应水平滑动8米.课堂练习1.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,则问这根铁棒应有多长?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离为____.m=0.33m)的正方形.在水池正中央3.有一个水池,水面是一个边长为10尺(1尺=13有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问:这个水池的深度和这根芦苇的长度各是多少?4.如图,台风过后,某小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂的吗?参考答案1.解:如图,由题意得当铁棒在B处:AC = 1.5米,BC = 2米.∵AB2 = AC2+CB2 = 2.52,∴AB = 2.5米.∵油桶外的部分是0.5米,∴AD = 2.5+0.5 = 3(米).当铁棒垂直进入,得出油桶中的长度1.5米+桶外的0.5米= 2米.答:这根铁棒的长度范围是2米到3米.2.253.解:设水池的深度为x尺,则芦苇的长度为(x+1)尺.根据题意得x²+5² =(x+1)².解得x =12.x+1=12+1=13(尺).答:这个水池的深度和这根芦苇的长度各是12尺和13尺.4.解:设旗杆在离底部x米的位置断裂,由题意得x2+82 = (16-x)2,解得x = 6米.答:旗杆在离底部6米的位置断裂.课堂小结确定立体物体表面上两点之间的最短距离的方法:将其转化为平面上两点间的距离,利用两点之间,线段最短来求解.布置作业习题1.4第1,2,3,4题板书设计3 勾股定理的应用1.确定立体物体表面上两点之间的最短距离例1 如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?2.应用勾股定理解决实际问题例2 如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.。
北师大版八年级数学(上)第一章勾股定理教学分析与建议一、主要内容勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。
它的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。
它是几何学中的重要的定理之一。
教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生经历观察、归纳、猜想和验证的数学发现过程教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体现其文化价值。
当然限于学生的已有知识,问题解决中所涉及的数据均为完全平方数,本章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。
二、评价建议1,关注对探索勾股定理等活动的评价。
一方面要关注学生是否积极参与,是否能与同伴进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括能力,学生是否能够有条理地表达活动过程和所获得的结论等。
2,关注考查对勾股定理及其逆定理的理解和应用。
注意评价时,不应以复杂运算为主,我们应更另关注学生对有关结论的正确使用。
三、教学目标l.经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想;2.掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题;3.掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题;4.通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。
四、教材特点勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。
勾股定理的发现、验证和应用蕴涵着丰富的文化价值。
勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。
北师大版初中数学八年级上册教材分析摘自:《慈利县教师进修学校》一、教材总体思路分析1.本册书的主要内容有:实数、一次函数、二元一次方程组;勾股定理、图形的平移与旋转、四边形、位置的确定;数据的代表。
其中无理数的发现、实数系统的建立和函数概念是本学段知识的重点也是和难点,实数是进一步研究的基础;而函数以及函数思想与其他知识的广泛联系也是重心之一。
勾股定理及其逆定理是初等几何中最基本、最重要的定理之一。
通过拼、摆或图形的割、补,使得这一重要几何事实得以确认。
由于发现及证实它成立的方式非常多且富于变化,因此对学生有很大的吸引力。
《图形的平移与旋转》是新增加的内容,通过研究,可以把静止的图形看成是基本图形经过位移而得到,提供了对复杂图形进行分析的新视角,还可以对“几何变换”有直观的感受。
《位置的确定》从源头上突出了坐标法产生的思想,直角坐标系是实现坐标法的一种选择,建立坐标系把数轴拓展到平面,是数形结合与转化的桥梁。
“变化的鱼”以直观生动的形式加强了几何变换与坐标表示及坐标变化联系起来,从数与形两个方面感受图形变化的数学内涵。
在统计与概率领域,本册提供了刻画数据平均水平的三种量度,力图让学生掌握一定的数据分析的方法,更好地处置惩罚数据。
2.教材设计与内容的组织有如下考虑。
1)无理数的发现可以从理论的角度引发,出现在勾股定理之前。
教科书遵循了人类认识数学的历史顺序,把勾股定理放在实数研究的前面,成为发现无理数的直观背景,自然地表明无理数存在的客观性,同时对无理数研究的必要性作出合理的解释。
实数集中的实数与数轴上的点一一对应并不像想像的那样容易被学生接受,说服的办法也是借助几何解释和理性思考。
这样处理须注意在研究勾股定理时,边长的数据应暂时在有理数范围内选取,在此两章学完之后,可以回过头来在实数范围内重新讨论勾股定理及其应用。
在我们讨论一个平方等于2的数时,发现它是一个无限不循环小数,进一步引出无理数的定义。
八年级数学上册1.3勾股定理的应用说课稿(新版北师大版)一. 教材分析《八年级数学上册1.3勾股定理的应用》这部分内容是北师大版初中数学八年级上册的一个重要组成部分。
在这一节中,学生将学习到勾股定理的应用,进一步理解和掌握勾股定理,并能够运用勾股定理解决实际问题。
教材通过丰富的实例,引导学生探究直角三角形中三边的关系,培养学生的推理能力和解决问题的能力。
二. 学情分析八年级的学生已经学习了勾股定理的定义和证明,对直角三角形有一定的认识。
但是,对于如何运用勾股定理解决实际问题,部分学生可能还存在困难。
因此,在教学过程中,需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 说教学目标1.知识与技能:理解和掌握勾股定理的应用,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、分析和推理,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:勾股定理的应用。
2.教学难点:如何将实际问题转化为勾股定理的形式,并进行计算。
五. 说教学方法与手段本节课采用问题驱动的教学方法,引导学生通过观察、分析和推理,探索勾股定理的应用。
同时,利用多媒体手段,展示实例和计算过程,提高学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何运用勾股定理解决问题。
2.新课讲解:讲解勾股定理的应用,引导学生通过观察、分析和推理,探索直角三角形中三边的关系。
3.实例演示:利用多媒体展示实例,引导学生运用勾股定理进行计算和解决问题。
4.练习与讨论:学生分组进行练习,讨论如何将实际问题转化为勾股定理的形式,并进行计算。
5.总结:对本节课的内容进行总结,强调勾股定理的应用方法和注意事项。
七. 说板书设计板书设计主要包括以下几个部分:1.勾股定理的定义和公式。
2.直角三角形中三边的关系。
3.勾股定理的应用步骤。
北京版数学八年级上册《12.11 勾股定理》说课稿一. 教材分析《12.11 勾股定理》是人教版初中数学八年级上册的一章,主要介绍勾股定理的证明及其应用。
本节内容是在学生已经掌握了三角形的基本性质、 Pythagorean 定理的基础上进行讲解的。
通过本节的学习,使学生了解勾股定理的历史背景,掌握勾股定理的内容,并能运用勾股定理解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了三角形的基本性质,对 Pythagorean 定理有一定的了解。
但勾股定理的证明及应用还需要进一步的学习。
同时,学生对数学历史知识的了解不多,对于勾股定理的历史背景可能比较陌生。
三. 说教学目标1.知识与技能:了解勾股定理的历史背景,掌握勾股定理的内容,能够运用勾股定理解决一些实际问题。
2.过程与方法:通过自主探究、合作交流,培养学生的逻辑思维能力和空间想象能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
四. 说教学重难点1.重点:勾股定理的内容及其应用。
2.难点:勾股定理的证明。
五. 说教学方法与手段1.教学方法:采用问题驱动法、自主探究法、合作交流法。
2.教学手段:多媒体课件、黑板、粉笔。
六. 说教学过程1.引入新课:通过多媒体课件展示勾股定理的历史背景,引导学生了解勾股定理的来历。
2.自主探究:让学生自主阅读教材,理解勾股定理的内容。
3.讲解演示:老师讲解勾股定理的证明过程,并通过几何画板软件演示勾股定理的应用。
4.合作交流:学生分组讨论,总结勾股定理的应用方法。
5.巩固练习:让学生解决一些实际问题,运用勾股定理进行计算。
6.课堂小结:老师引导学生总结本节课的学习内容,巩固所学知识。
7.布置作业:布置一些有关勾股定理的应用题,让学生课后思考。
七. 说板书设计板书设计如下:一. 勾股定理定义:在直角三角形中,斜边的平方等于两直角边的平方和。
公式:a^2 + b^2 = c^2八. 说教学评价教学评价主要从学生的学习效果、课堂表现、作业完成情况等方面进行。
北师大版八年级数学上册:1.3《勾股定理的应用》说课稿一. 教材分析《勾股定理的应用》是人教版八年级数学上册第一章第三节的内容。
这一节主要让学生学会运用勾股定理解决实际问题,巩固他们对勾股定理的理解。
教材通过例题和练习题的安排,让学生在解决实际问题的过程中,加深对勾股定理的记忆和应用。
二. 学情分析八年级的学生已经学习了勾股定理的定义和证明,他们对勾股定理有了初步的理解。
但是,他们在解决实际问题时,可能会对题目中的信息提取和运用勾股定理不够熟练。
因此,在教学过程中,我需要关注学生的理解和应用情况,引导他们正确运用勾股定理解决实际问题。
三. 说教学目标1.知识与技能目标:学生能理解勾股定理的应用,会在实际问题中正确运用勾股定理。
2.过程与方法目标:通过解决实际问题,学生能提高自己的问题解决能力,培养数学思维。
3.情感态度与价值观目标:学生能感受到数学与生活的联系,增强学习数学的兴趣。
四. 说教学重难点1.教学重点:学生能正确运用勾股定理解决实际问题。
2.教学难点:学生能在复杂的情境中,正确提取信息,运用勾股定理。
五. 说教学方法与手段1.教学方法:引导发现法,让学生在解决实际问题的过程中,发现和理解勾股定理的应用。
2.教学手段:多媒体教学,通过图片、动画等形式,直观展示勾股定理的应用。
六. 说教学过程1.导入:通过一个生活中的实际问题,引出勾股定理的应用,激发学生的学习兴趣。
2.新课导入:讲解勾股定理的应用,通过例题和练习题,让学生理解和掌握。
3.课堂实践:学生自主解决一些实际问题,巩固对勾股定理的应用。
4.总结提升:对学生的解题过程进行点评,总结勾股定理的应用方法和技巧。
5.课后作业:布置一些实际问题,让学生进一步巩固和应用勾股定理。
七. 说板书设计板书设计如下:1.勾股定理的应用2.解题步骤:a.理解题意,提取相关信息b.确定已知和未知c.运用勾股定理,列出方程d.解方程,求解未知数e.检验答案,确认无误八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和课后反馈来进行。
北师版八上《勾股定理》说课稿(通用5篇)北师版八上《勾股定理》说课稿1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
北师大版初中数学八年级上册《勾股定理》教材分析本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用。
首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。
在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。
全章分为两节:18。
1勾股定理。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题1的形式呈现了勾股定理。
关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。
通过推理证实命题1的正确性后,教科书顺势指出什么是定理,并明确命题1就是勾股定理。
之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题(画出长度是无理数的线段等)中的应用,使学生对勾股定理的作用有一定的认识。
18。
2勾股定理的逆定理。
本节研究勾股定理的逆定理,教科书从古埃及人画直角的方法说起,给出如果一个三角形的三边满足a2+b2=c2,那么这个三角形是直角三角形的结论,然后让学生画出一些两边的平方和等于第三边的平方的三角形,探索这些三角形的形状,可以发现画出的三角形都是直角三角形,从而猜想如果三角形的三边满足这种关系,那么这个三角形是直角三角形,这样就探索得出了勾股定理的逆定理。
此时这个逆定理是以命题2的方式给出的,教科书通过对照命题1和命题2的题设、结论,给出了原命题和逆命题的概念。
命题2是否正确,需要证明,教科书利用全等三角形证明了命题2,得到勾股定理的逆定理。
勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这在数学和实际中有着广泛应用,教科书通过两个例题,让学生学会运用这种方法解决问题。
北师大版初中数学八年级上册《勾股定理》教材分析核准通过,归档资料。
未经允许,请勿外传~心浪微博:朴恩俊丶熊猫
核准通过,归档资料。
未经允许,请勿外传~
核准通过,归档资料。
未经允许,请勿外传~
北师大版初中数学八年级上册《勾股定理》教材分析
本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用。
首先让学生通过观察得出直角三角形两条直角边的平方和等于斜
边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。
在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。
全章分为两节:
18。
1勾股定理。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题1的形式呈现了勾股定理。
关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。
通过推理证实命题1的正确性后,教科书顺势指出什么是定理,并明确命题1就是勾股定理。
之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题(画出长度是无理数的线段等)中的应用,使学生对勾股定理的作用有一定的认识。
18。
2勾股定理的逆定理。
本节研究勾股定理的逆定理,教科书从古埃及人画
直角的方法说起,给出如果一个三角形的三边满足a2+b2=c2,那么这个三角形是
直角三角形的结论,然后让学生画出一些两边的平方和等于第三边的平方的三角形,探索这些三角形的形状,可以发现画出的三角形都是直角三角形,从而猜想如果三角形的三边满足这种关系,那么这个三角形是直角三角形,这样就探索得出了勾股定理的逆定理。
此时这个逆定理是以命题2的方式给出的,教科书通过对照命题1和命题2的题设、结论,给出了原命题和逆命题
的概念。
命题2是否正确,需要证明,教科书利用全等三角形证明了命题2,
得到勾股定理的逆定理。
勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这在数学和实际中有着广泛应用,教科书通过两个例题,让学生学会运用这种方法解决问题。
课标对本章的要求(本章学习目标):
1、体验勾股定理的探索过程,会运用勾股定理解决简单问题;
2、会运用勾股定理的逆定理判定直角三角形;
3、通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原
命题成立其逆命题不一定成立。
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30?的角所对的直角边等于斜边的一半。
本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,它是几何中几个最重要的定理之一,揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。
它不仅在数学中,而且在其他自然科学中也被广泛地应用。
课时分配:本章教学时间约需8课时,具体安排如下(仅供参考):
18(1 勾股定理 4 课时
18(2 勾股定理的逆定理 3课时
小结 1课时
教学建议:
1、拉长思维链条,让学生体验勾股定理的探索和运用过程。
勾股定理的发现可以以发现等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积为基点,引导学生沿着从特殊到一般的认知规律发现一些其他直角三角形也有上述性质,因而作出猜想:所有直角三角形都有这个性质,即如果直角三角形的两直角边长分别为a、b,斜边长为c,那么
a2+b2=c2。
(为便于教学可采用教科书的记法,把这个猜想记作命题1,把后一节“如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形”记作命题2,便于引出互逆命题)。
勾股定理的应用是重中之重,我们可在教科书三个探究问题的基础上,适当拓宽,有意延长探索路径,增进运用的体验,找到“题感”。
在问题的具体处理过程中,要善于鼓动学生大胆参与,积极交流,获取成功的体验,形成向上的求知动机。
2、结合具体例子介绍抽象概念,适当总结与定理、逆定理有关的内容。
结合勾股定理、勾股定理的逆定理的具体内容介绍了定理、逆命题、逆定理等抽象的概念,是本章的特色之一,在教学中要注意处理的艺术性。
互逆命题、互逆定理的概念,学生接受它们一般来说困难不大,而对于那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题困难较大,是教学中的一个难点。
解决这个难点的方法是,适当复习命题的有关内容,学会把一个命题变为“如果……那么……”的形式。
注意这些概念是第一次学习,不要要求过高,奢想一步到位,
要在后续的学习中“螺旋式”解决。
3、注重介绍数学文化,让学生获得更多与勾股定理有关的背景知识。
我国古代的学者们对勾股定理的研究有许多重要成就,不仅在很久以前独立地发现了勾股定理,而且使用了许多巧妙的方法证明了它。
教科书为了弘扬我国古代数学成就,介绍了我国古人赵爽的证法。
首先介绍赵爽弦图,然后介绍赵爽利用弦图证明命题1的基本思路。
“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲。
正缘于此,这个图案被选为2002年在北京召开的世界数学家大会的会徽。
另外,在习题中安排我国古代数学著作《九章算术》中的问题,展现我国古人在勾股定理应用研究方面的成果,对其他国家的影响很大,这些都是我国人民对人类的重要贡献。
本章教材也介绍了国外的有关研究成果。
如勾股定理的发现是从与毕达哥拉斯有关传说故事引入的;勾股定理的逆定理从古埃及人画直角的方法引入;再如介绍古希腊哲学家柏拉图关于勾股数的结论等。
在教学中,应注意用好以上的素材,展现与勾股定理有关的背景知识,使学生对勾股定理的发展过程有所了解,感受勾股定理的丰富文化内涵,激发学生的学习
兴趣。
特别应通过向学生介绍我国古代在勾股定理研究方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感,同时教育学生发奋图强,努力学习,为将来担负起振兴中华的重任打下基础。