分形与艺术
- 格式:ppt
- 大小:8.20 MB
- 文档页数:54
分形与分形艺术我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。
基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。
分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。
一、分形几何与分形艺术什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。
什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。
这些例子在我们的身边到处可见。
分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。
“分形” 一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有“破碎”、“不规则”等含义。
Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。
Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。
如果计算机的精度是不受限制的话,您可以无限地放大她的边界。
图2、图3 就是将图1中两个矩形框区域放大后的图形。
当你放大某个区域,它的结构就在变化,展现出新的结构元素。
这正如前面提到的“蜿蜒曲折的一段海岸线”,无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。
微积分中抽象出来的光滑曲线在我们的生活中是不存在的。
分形原理及其应用
分形原理,也称为分形几何原理,是由波兰数学家曼德尔布罗特于1975年首次提出的。
分形原理指的是存在于自然界和人
造物体中的重复模式,这些模式在不同的尺度上都呈现出相似的结构和特征。
换句话说,分形是一种具有自相似性的形态。
分形原理的应用十分广泛,下面列举几个主要领域:
1. 自然科学领域:生物学、地理学、气象学、天文学等都能从分形原理中获得启示。
例如,树叶、花瓣和岩石都具有分形结构,通过分析这些结构可以揭示它们的生长和形成规律。
2. 数学与计算机图形学:分形理论为图形图像的生成、压缩和渲染提供了新的思路和方法。
通过分形原理,可以生成具有逼真效果的山水画、云彩图等。
3. 经济学和金融学:金融市场中的价格变动往往呈现出分形特征,通过分析分形模式可以帮助预测市场走势和制定投资策略。
4. 艺术设计:分形原理在艺术设计中被广泛应用。
通过将分形结构应用到艺术作品中,可以创造出独特而美丽的图案和形态。
5. 计算机网络和通信:分形技术可以用于改进数据传输的效率和可靠性。
通过在网络中应用分形压缩算法,可以减少数据传输的带宽需求,提高网络性能。
综上所述,分形原理作为一种有着广泛应用价值的理论,已经
渗透到了各个学科和领域中,为科学研究和技术创新提供了新的思路和方法。
什么是分形艺术?
作者:韩妙第
首先明确“什么是分形”的定义,先明确分形的定义然后再阐述什么是分形艺术?
什么是分形?其实很简单:局部就是整体的缩影,这些局部几何形状和整体几何形状之间的关系具有固定或相对函数影响下无限递归,或者变大,或着变小或者逆向递归。
所有的变化的几何形状具有相似性、重复性、无限性。
所以,分形说简单了就中国盒一样,一个套一个,不停地循环。
说得严谨点就是各组织之间都有自相似的特性,这就是递归性。
有正向递归和逆向递归二种主要形式。
分型艺术理论的阐述简而概之:利用艺术的手段创作出具有分形几何特征的艺术品的艺术创作行为即为分形艺术。
分形艺术的几何元素在视觉上具有相似性、重复性、无限性;
分形艺术在心理上能够引发人类的探索性、求知性以及无穷性的趣味;
分形艺术在玩具上表现为“万花筒”的特征;。
分形数学与艺术结合的明珠大家注意到最近google 图标变成这个样子很多人不明白,这是什么意思,其实这是为了纪念法国数学家Gston Julia是,他发现了在数论中有名的julia序列,就是在这个google LOGO上面看到的数学公式。
通过这个数学公式可以在解析几何上实现很多不规则边的图形。
学名,也叫做分形。
我们在网上搜索了一些资料,为大家做一下分形这个图形学上的概念普及。
认识分形作为一门新兴学科,分形不但受到了科研人员的青睐,而且因为其广泛的应用价值,正受到各行各业人士的关注。
那么,在我们开始学习分形之前,首先应该明白的一件事情是:什么是分形?严格地而且正式地去定义分形是一件非常复杂而且困难的事情。
但是,有一些不太正规的定义却可以帮助我们理解分形的含义。
在这些定义中,最为流行的一个定义是:分形是一种具有自相似特性的现象、图象或者物理过程。
也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已。
让我们来看下面的一个例子。
下图是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。
而枝杈的枝杈也和整体相同,只是变得更加小了。
那么,枝杈的枝杈的枝杈呢?自不必赘言。
如果你是个有心人,你一定会发现在自然界中,有许多景物和都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。
其实,远远不止这些。
从心脏的跳动、变幻莫测的天气到股票的起落等许多现象都具有分形特性。
这正是研究分形的意义所在。
例如,在道·琼斯指数中,某一个阶段的曲线图总和另外一个更长的阶段的曲线图极为相似。
上图中的风景图片又是说明分形的另一很好的例子。
这张美丽的图片是利用分形技术生成的。
在生成自然真实的景物中,分形具有独特的优势,因为分形可以很好地构建自然景物的模型。
除了自相似性以外,分行具有的另一个普遍特征是具有无限的细致性。
上面的动画所演示的是对Mandelbrot集的放大,只要选对位置进行放大,就会发现:无论放大多少倍,图象的复杂性依然丝毫不会减少。
几何里的艺术家——分形几何几何不仅仅是数学中的一个概念,它也是艺术中的一种灵感源泉。
而分形几何则将几何之美发挥到了极致,成为了一种兼具科学和艺术特质的美学形式。
在分形几何的世界里,数学的精密和艺术的想象交织在一起,勾勒出了独特的美丽景观。
本文将带领读者一起探索几何里的艺术家——分形几何。
1. 分形几何的起源分形几何一词最早由法国数学家贝诺瓦·曼德博特在1975年提出。
分形一词源于拉丁文“fractus”,意为碎片、断裂。
在数学上,分形是指一种具有自相似性的几何形态,即整体的部分在不同尺度上都与整体类似。
这种自相似性使得分形几何成为了一种富有美感和艺术感的数学形式。
分形几何得到了诸多科学和艺术领域的关注,成为了一种跨学科的研究领域。
2. 分形几何和艺术在艺术领域,分形几何为艺术家们带来了无限的灵感。
通过计算机技术和数学算法,艺术家们可以创造出种种奇妙的分形图像,这些图像既具有科学的精密性,又富有艺术的想象力。
分形艺术作品常常展现出几何的美感和图案的丰富多样性,在细节的赏析上更是令人叹为观止。
分形艺术作品已经成为了一种独特的艺术风格,吸引了众多艺术家和观众的关注。
3. 分形几何的应用除了在艺术领域中发挥重要作用之外,分形几何在科学领域中也有着广泛的应用。
在物理、生物、地质等领域,分形几何被用来研究复杂系统的形态和特性。
分形几何的自相似性和分形维度等特性,为科学家们提供了一种独特的研究方法,帮助他们理解和解释自然界中的复杂现象。
分形几何的应用范围正在不断拓展,有望成为解决复杂问题的重要工具。
4. 分形几何与人类文化分形几何不仅仅是一种数学形式,它还深刻地影响着人类文化的发展。
在建筑、绘画、音乐等领域,分形几何都留下了深远的痕迹。
建筑设计师们常常运用分形几何的原理来设计出富有美感和结构稳定性的建筑物;绘画艺术家们则通过分形几何的图案来展现出作品的纷繁多样;音乐创作家们也借助分形几何的节奏和和谐结构来创作富有艺术感的音乐作品。
数学与艺术结合的例子数学与艺术是两个看似截然不同的领域,一个注重逻辑推理和精确计算,一个强调创造力和情感表达。
然而,它们之间存在着紧密的联系和相互影响。
数学为艺术提供了智力思维和结构框架,而艺术则将数学的抽象概念转化为可视化的形式。
下面将列举十个以数学与艺术结合的例子,展示它们之间的奇妙交织。
1. 黄金分割比例与艺术构图黄金分割比例是一种比例关系,可以用数学的方式表示为1:1.618。
这一比例在艺术构图中被广泛运用,能够产生视觉上的和谐与美感。
例如,著名画家达·芬奇的作品《蒙娜丽莎》中,脸部的构图就运用了黄金分割比例,使画面更加平衡和美观。
2. 幾何學与建筑设计几何学是数学的一个分支,研究图形的形状、大小、位置和相互关系。
在建筑设计中,几何学被广泛应用于建筑物的结构、立面和空间布局。
例如,拜占庭建筑中的圆顶、哥特式建筑中的尖拱和现代建筑中的几何造型,都是几何学与艺术相结合的产物。
3. 透视与绘画透视是一种数学原理,用于在平面上创造出三维的视觉效果。
在绘画中,透视可以使画面更加真实和立体。
艺术家通过运用透视原理,使观者感受到距离和深度。
例如,文艺复兴时期的绘画大师达·芬奇和拉斐尔就善于运用透视原理创作具有空间感和逼真度的作品。
4. 对称与图案设计对称是数学中的一个概念,指物体的两部分在某个中心或轴线处完全相同。
在艺术中,对称被广泛应用于图案设计,能够产生平衡和谐的效果。
例如,古希腊建筑中的对称立面、中国传统绘画中的对称构图等,都是对称与艺术结合的典型例子。
5. 分形与艺术创作分形是一种数学形式,具有无限复制和自相似的特点。
在艺术创作中,分形被用于创造出错综复杂的图像和纹理。
例如,荷兰艺术家埃舍尔的作品中经常出现各种分形形式,使观者感受到无穷无尽的变化和细节。
6. 色彩理论与绘画色彩理论是一门研究色彩的科学,通过对颜色的组合和对比,可以产生不同的视觉效果和情感表达。
在绘画中,艺术家运用色彩理论来创造出丰富多样的色彩效果。
分形艺术,数学与艺术完美的结合让人惊叹美丽美丽的不真实这些虚幻的美丽,却被人们真实绘画出来这些图片来自于分形艺术(fractal art),是由IBM研究室的数学家曼德布洛特(Benoit.Mandelbrot,1924-2010)提出。
其维度并非整数的几何图形,而是在越来越细微的尺度上不断自我重复,是一项研究不规则性的科学。
分形诞生在以多种概念和方法相互冲击和融合为特征的当代。
分形混沌之旋风,横扫数学、理化、生物、大气、海洋以至社会学科,在音乐、美术间也产生了一定的影响。
分形所呈现的无穷玄机和美感引发人们去探索。
即使您不懂得分形艺术图片,分形艺术图片其中深奥的数学哲理,也会为之感动。
分形使人们觉悟到科学与艺术的融合,数学与艺术审美上的统一,使昨日枯燥的数学不再仅仅是抽象的哲理,而是具体的感受;不再仅仅是揭示一类存在,而是一种艺术创作,分形搭起了科学与艺术的桥梁。
分形把数学方程式的抽象转化为可见、易懂的艺术图画。
分形是神奇之术是现实与想象力的统一。
分形艺术作品体现出许多传统美学的标准,如平衡、和谐、对称等等,但更多的是超越这些标准的新的表现。
分形艺术内在的秩序,局部与整体的对称屏弃了欧几里德几何形式的对称给人带来呆板的感觉,其结构丰富饱满却不杂乱。
混乱中的秩序,统一中的丰富,形成的强烈视觉冲击力能带给人独特的审美快感。
分形艺术作品中酝涵着无穷的嵌套结构,这种结构的嵌套性给了画面极大的丰富性。
分形艺术具有传统艺术所不具备的一种对称:不同标度下的局部与整体的对称,阐释了“一沙一世界”的哲学美感。
欣赏者不能轻而易举的看出里面的所有内含。
“分形艺术”不同于普通的“电脑绘画”,普通的“电脑绘画”概念是用电脑为工具从事美术创作,创作者要有很深的美术功底,且作品的创作几乎完全依赖于作者的个人意愿。
“分形艺术”则是利用分形几何学原理,借助计算机强大的运算能力,将数学公式反复迭代运算,再结合作者的审美及艺术性的塑造,从而将抽象神秘的数学公式变成一幅幅精美绝伦的艺术画作。
分形在艺术中的运用
分形图形在艺术中的运用源于20世纪80 年代,并由于其自我无限的复杂结构而被广泛应用于平面设计、影像创作中。
分形图形能让艺术作品形成一种抽象效果,使得观众在沉浸其中时深刻地感知作品中所暗含的意义。
这种独特的效果也带给观众一种新鲜的视觉体验,形成艺术家与观众之间的交流。
分形图形如今也广泛应用于多媒体影像、音乐等。
除了艺术创作,分形图形也被用于受人敬重的科学领域,例如地理学、数学、统计学等。
分形地形和分形集合可以用来模拟各种复杂的现象,从而改进熟知的地理和统计数据。
因此,分形在科学上也具有重要的意义。
在日常生活中,人们也更常见到分形图形的运用,例如在照片滤镜中的味道分形,或者品牌识别的造型等。
这些都是通过分形图形来表达每个品牌独特的主题和特色,增加视觉记忆,同时也增加了观赏艺术品的乐趣性。
55个惊人美丽的分形艺术作品55个惊人美丽的分形艺术作品“分形”一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有”破碎”、”不规则”等含义。
Fractal by LynnDream Blooms by ColliemomThe Beginning by Magnusti78Fleur D’Apo by mynameishaloA Feeling by Magnusti78Autumn Dance by SilwenkaFantasy Lover by KLR620Cubik Olympic by digitalpaintersFurnace by Aexion… by LynnFairy Tree by NiroloSanctuary by Creativ82Alchemy by 404-Not-FoundFractal Art by Nathan SmithMelt the Ice by zueukTalisman V by hmnFractal Art by Nathan SmithIllusions by CygX1Evolution by trystianityNexus by NinthTabooGhostly Visage by tdierikxFractal Art by Nathan SmithI sleep only to dream of you by longan drink Aeries Reborn by theArchonAir by SilwenkaPerception Redefined by TyrantWaveForever Friend by Rhiannon104Night of the Phoenix by magnusti78Flying Carpet by wm-dDragon in the Evening Desert by Treehouse Charms The Awakening III – Rebirth by cyg1XRR2 – Wonderland Forever by magnusti78 Mycology by cyberxaosFractal Flowers CollectionLast of the Summer Flowers by Omron。
几何里的艺术家——分形几何分形几何是一个结合了数学和艺术的领域,它研究的是自相似的图案和结构。
分形的概念最早由法国数学家勒谢德雷于20世纪70年代提出。
他认为自然界中存在着许多看似无规律的现象,如云朵的形状、山脉的轮廓、树的分枝等,但这些现象却具有某种规律性。
通过数学的方法,勒谢德雷研究了这些现象背后的规律,并将其命名为“分形”。
分形几何的一个重要特点就是自相似性。
自相似是指一个物体的一部分与整体非常相似。
树的分枝和整棵树的形状非常相似,云朵的一小块与整个云朵的形状也非常相似。
这种自相似性使得分形图案可以无限地重复下去,越往细节处观察,越能发现新的图案。
分形几何的应用非常广泛。
在科学领域,分形几何可以用来研究各种现象,如地理地貌的形成、动植物的生长规律等。
在工程领域,分形几何可以用来设计更高效的网络、建筑和交通系统等。
在艺术领域,分形几何可以用来创作各种艺术作品,如绘画、雕塑和音乐。
分形几何在艺术创作中的应用非常有意思。
艺术家可以利用分形几何的原理,创造出各种奇妙的图案和结构。
他们可以通过数学软件生成分形图案,然后再加以修改和装饰,使其更具艺术效果。
艺术家还可以利用分形几何的自相似性,创作出逐渐放大或缩小的图案,使观众感受到无限的延伸和变化。
分形几何作品可以以各种形式呈现。
在绘画中,艺术家可以使用分形图案来创造各种纹理和形状。
在雕塑中,艺术家可以使用分形几何的结构来构建复杂的雕塑作品。
在音乐中,艺术家可以利用分形几何的规律来创作出奇妙的音乐作品,如迭代曲线和分形序列。
分形几何是一个充满艺术魅力的领域。
它的研究和应用为我们揭示了自然界和人类社会中的规律和美丽。
分形几何作品以其奇妙和无限的形式给人带来了无尽的想象空间,使我们更好地了解和欣赏世界的复杂性和多样性。
分形艺术名词解释嘿,朋友们!今天咱来聊聊分形艺术这玩意儿。
你说啥是分形艺术呀?简单来说,它就像是大自然的神奇魔法!你看那树枝,一根大枝上分出好多小枝,小枝上又分出更小的枝,这就是一种分形。
还有那云朵,远看是一大团,近看呢,里面有各种奇奇怪怪的形状,这也是分形呀!分形艺术可神奇了呢!它能把那些看似普通的形状变得超级复杂又超级美丽。
就好像一个普通的图形,经过分形的处理,一下子就变得像万花筒里的世界一样,五彩斑斓,变化无穷。
比如说,你想想雪花,每一片雪花的形状都不一样,但它们都有着那种精致的、对称的美感。
这就是分形的魅力呀!它能在小小的一片雪花里创造出那么多的细节和奇妙。
再比如海岸线,你要是凑近了看,会发现它弯弯曲曲的,有着无穷无尽的变化。
这不就是分形在大自然里的杰作嘛!分形艺术就像是一个无穷无尽的宝藏,你永远不知道下一秒会出现什么样的奇妙图案。
它可以是复杂到让你眼花缭乱的图案,也可以是简洁却又充满魅力的线条。
咱平常生活里也能看到分形艺术的影子哦!你看那墙上的瓷砖图案,有的不就是分形的设计嘛。
还有那些精美的壁纸,说不定也是从分形中获取的灵感呢。
而且哦,分形艺术不仅仅是好看,它还能让我们更好地理解这个世界。
它让我们看到,原来简单的规则也能创造出无比复杂的东西。
这不就像我们的生活嘛,一些小小的选择,慢慢积累起来,就可能变成完全不一样的人生。
分形艺术是不是超级有趣呀?它就像是一个隐藏在我们身边的秘密魔法,等待着我们去发现和探索。
所以呀,朋友们,下次当你看到一些奇奇怪怪却又特别好看的图案时,说不定那就是分形艺术在向你招手呢!别错过这个神奇的世界呀,去感受它的魅力,去享受它带给我们的惊喜吧!分形艺术,真的是太有意思啦!。
数学分形理论及其在自然科学和艺术中的应用作为一门研究图形自相似性质的数学分支学科,分形理论是近年来备受关注的话题,因其具有广泛的应用领域和丰富的研究价值而备受科学家和艺术家们的喜爱。
在自然科学和艺术领域中,分形理论的变化和延伸应用层出不穷,为人们的生活和工作带来了极大的帮助和启发。
一、数学分形理论的定义与基本概念分形理论属于非线性动力学的范畴,研究的对象是具有自相似性的物体或现象。
分形物体通常有着很多分相似的结构,其每一个部分都与全体呈现出相似性。
分形的“分相似性”表明图形或现象具有自姐妹,即是自己的一部分又是自己的整个,它们可以按照一定的规则进行重复与改变。
分形的核心概念是“分形维数”,它是指在纳入越来越详细的特征时披露出的物体空间结构的复杂程度。
具体来说,当获得更高分辨率的时候,我们看到的图像变得越来越精细,然而这些细节不仅是越发多,而且还表现出复杂的变化。
它不同于欧氏几何的维数,而是一种“怪异”维数,常常是一个实数,介于整数维和无限维之间。
二、自然科学中的分形理论应用分形理论在自然科学领域中有着广泛的应用,不仅帮助科学家更好地理解和解释自然现象,还可以用于改进科学技术。
以下是分形理论在自然科学中的应用实例:1、大气分形模拟分形模型是研究大气环流和气象现象的有力工具。
研究表明,大气边界层具有分形特性与非线性动力学行为,因此可以用分形模型来模拟和分析气象现象和大气边界层中的空气湍流.2、药物的分形特征研究研究表明,药物分子具有分形特征,这类分子的分形维数可以反映药物的生物利用度。
通过将分形维数应用到药物的开发中能够预测药物的溶解性和渗透性。
这为新药的研发提供更好的基础。
3、地震信号分形特征研究复杂的地震信号可以被表示为一些具有“分形”意义的标志,通过分析这些标志可以得出地震的一些特征。
这一研究领域已经成为当前地震预警和预测研究的一个重要方向。
三、艺术中的分形理论应用分形理论不仅在自然科学领域内有广泛的应用,同时也在艺术领域中引起极大的关注,尤其是当代艺术中常常会出现很多抽象的分形艺术作品。